:::

詳目顯示

回上一頁
題名:科學博物館運用專題導向學習策略對國小學生跨領域學習之研究
作者:郭世文
作者(外文):KUO, SHIH-WEN
校院名稱:國立高雄師範大學
系所名稱:科學教育暨環境教育研究所
指導教授:洪振方
學位類別:博士
出版日期:2022
主題關鍵詞:科學博物館跨領域學習博物館學習成效程式學習態度專題導向學習Science MuseumInterdisciplinary LearningMuseum Learning OutcomesCoding AttitudesProject-based -Learning
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
科學博物館是學校以外提供科學教育的重要場域。博物館具有豐富的展示、多樣化的教育活動和學習材料,提供了很好的探究學習的環境。本研究以分析(analysis)、設計(design)、發展(development)、實施(implementation)、評鑑(evaluation)(ADDIE)設計發展科學博物館的專題導向學習活動。研究以科學博物館的莫拉克風災紀念館作為學習場域,發展跨領域的學習活動,分別針對「專題導向學習」的實驗組,與博物館經常辦理的「動手做」活動的對照組,設計不同的活動方案,來比較兩組不同的活動方案實施後,對於程式學習態度,及博物館學習成效之差異。
本研究採用的量表有二:(1)採用Mason和Rich(2020)所發展的「程式設計態度量表」,測量學習者的程式學習態度;(2)以「博物館通用學習成效量表(GLOs)」,測量學習者的博物館學習成效。研究對象為自願報名參加科學博物館活動的國小五、六年級學生,隨機分為實驗組及對照組,每組各30人。活動前兩組先針對「程式設計態度量表」進行前測填答,活動結束後進行「程式設計態度量表」後測及「博物館通用學習成效量表」的施測,並輔以半結構式訪談來了解學童的學習成效。本研究分析方法包含共變數分析(ANCOVA)、相依樣本t檢定分析與獨立樣本t檢定分析。
研究結果發現,經歷不同的活動方案之後,在「程式學習態度」方面:實驗組對促進學生的「程式設計信心」、「程式設計興趣」、「程式設計效用」有顯著差異,對照組僅對促進學生的「程式設計興趣」有顯著差異;在排除前測的影響下,實驗組對「程式設計信心」、「程式設計興趣」、「程式設計效用」的促進效果皆優於對照組;此外,兩組學習方案對促進學生的「社會影響力」與「對程式設計者的態度」皆沒有顯著差異。在「博物館學習成效」方面:經歷不同的活動方案之後,實驗組的「知識與理解」、「態度與價值觀」、「樂趣、啟發與創造力」、「行動與行為的改變」表現,皆優於對照組。從研究結果得知,二種活動方案對於促進學習者的博物館學習成效皆有助益,且「專題導向學習」策略對促進學習者對程式學習的信心、興趣及效用均有顯著提升,但「動手做」活動組僅能促進學習者對程式學習的興趣。最後,本研究也針對實驗結果,為科學博物館未來發展專題導向之跨領域學習活動,提出課程設計的相關建議。
Science museums are an important venue forproviding science education outside of schools. With rich displays, diverseeducational activities, and learning materials, science museums provide anexcellent environment for inquiry and learning. This study uses the analysis,design, development, implementation, and evaluation (ADDIE) design to develop thematic-oriented learning activities for sciencemuseums. The study used the Morakot Memorial Hall of the science museum as alearning site to develop interdisciplinary learning activities. Differentintervention programs were designed for the experimental group ofthematic-oriented learning and the control group of hands-on activities thatare often conducted in the museum. The differences in the attitudes towardprogram learning and the effectiveness of museum learning between the twogroups were compared after the implementation of the programs.
Two scales were used in this study: 1. TheProgramming Attitude Scale developed by Mason & Rich (2020) was used to measure learners' attitudes toward program learning; 2.The "Museum General Learning Effectiveness Scale" was used to measurelearners' museum learning effectiveness. The 5th or 6th grade elementary schoolstudents who voluntarily enrolled in the science museum activities were dividedrandomly into two groups as research sample. Before the activity, two groups ofstudents were administered a pre-test on the Programming Attitude Scale (PES), and after the activity, a post-test on the PES and asemi-structured interview were managed to understand the learning outcomes ofthe students. The analysis methods used in this study included analysis ofcovariance (ANCOVA), dependent sample t test, andindependent sample t test.
The results of the study revealed thatafter the different interventions, the experimental group showed significantdifferences in the promotion of students' "programming confidence","programming interest", and "programming effectiveness",while the control group only showed significant differences in the promotion ofstudents' "programming interest". Excluding the effect of pretest,the experimental group had better effect on "programming confidence","programming interest" and "programming effectiveness" thanthe control group. In addition, there was no significant difference between thetwo learning programs in terms of "social influence" and"attitude toward programmers". In terms of "museum learningoutcomes", the experimental group outperformed the control group in termsof "knowledge and understanding", "attitudes and values","fun, inspiration and creativity", and "action and behaviorchange". The results of the study indicated that both activity programswere beneficial in promoting learners' effectiveness in museum learning, andthe thematic-oriented learning strategy significantly increased learners'confidence, interest, and effectiveness in program learning, but the hands-onactivity group only promoted learners' interest in program learning.
Finally, this study proposes recommendations forthe future development of thematic-oriented interdisciplinary learningactivities in science museums based on the experimental results.
中文部分
王秋貴(2016)。以ADDIE模式探討數位學習教材之教學設計-以國中程式語言教學為例。〔碩士論文,南華大學資訊管理學系]。https://hdl.handle.net/11296/4ee835
王俊明、李心平、李鎮鍵、臧運忠、謝正倫(2010)。莫拉克颱風災害綜覽。中華防災學刊,2(1),27-34。
王啟祥(2008)。博物館觀眾學習成果與影響研究的發展與啟示。博物館學季刊,22(4),91-107。
王裕宏(2002)。國小學童傳播科技課程規劃及成效之探討。科技博物,6(6),55-66。
王裕宏、張美珍、朱耀明(2008)。國中生參與專案式學習活動之科技概念學習成效分析。科技博物,12(4),59-76。
王裕宏、劉佳儒、陳育新(2020)。通用學習成效模式(GLOs)運用於博物館教育活動成效評量—以潔能科技創意展為例。工業科技教育學刊,13,135-150。
王裕宏、劉佳儒、楊芷翎(2021)。科學博物館情境學習促進學生能源素養之成效研究。工業科技教育學刊,(14),56-70。
田孟心(2020)。PISA加考創意思考,迎戰108課綱-人才必備5大特質。天下雜誌,710。
朱耀明(2011)。「動手做」的學習意涵分析—杜威的經驗學習觀點。生活科技教育,44(2),32-43。
江淑芳(2002)。以品質缺口模式探討國立科學工藝博物館服務品質之研究。博物館學季刊,16(1),111-135。
行政院農業委員會水土保持局(無日期)。大規模崩塌介紹。土石流防災資訊網。2020年12月20日擷取自https://reurl.cc/3oqQlO
行政院農業委員會水土保持局(2020)。氣候變遷下大規模崩塌防減災計畫第二期(110至115年度)。https://reurl.cc/3oqQlO
行政院數位國家創新經濟推動小組(2017)。數位國家・創新經濟發展方案(2017-2025年)核訂本。2020年12月20日擷取自https://reurl.cc/9ZzyYX
吳佩修、朱斌妤(2001)。解說員影響民眾參觀博物館經驗之研究—以國立科學工藝博物館為例。科技博物,5(4),65-81。
吳忠宏、江宜珍(2003)。國立科學工藝博物館觀眾參觀動機與滿意度之研究。科技博物,7(1),35-59。
吳明隆(2011)。論文寫作與量化研究。臺北:五南。
吳淑華(2018)。展示如何說故事?以國立科學工藝博物館常設展示廳為例。科技博物,22(2),81-97。
呂佳珍、張雅甯(2015)。博物館動態展示品與使用者經驗。博物館學季刊,29(3),89-102。
呂理政(1999)。博物館展示的傳統與展望。臺北:南天書局。
宋祚忠、陳思妤(2019)。科學類博物館觀衆學習成效與評量之研究:以國立海洋科技博物館帆船特展為例。博物館與文化,(17),207-239。
李秀靜(2020)。家政的跨領域/跨科統整教學。普通型高級中等學校學科資源平台,教育部國民及學前教育署。https://reurl.cc/p1eYKe
李明益(2017)。eBlockly:基於Blockly之可擴充程式學習環境〔碩士論文,國立成功大學資訊工程學系]。https://hdl.handle.net/11296/g23cs9
李曄淳、楊翰宗(2012)。科教活動之顧客認知價值與學習滿意度之研究。科技博物,16(1),111-144。doi:10.6432/TMR.201203.0112
李鎮洋、賴文基、陳振宇、黃效禹、郭力行(2011)。莫拉克颱風複合型災害發生歷程的時空重建—以小林村深層崩塌為例。中華水土保持學報,42(4),313-324。
何慕凡(2021)。紀念博物館的創傷歷史展示—以德國柏林東德博物館為例。博物館學季刊,35(4),129-141。
周佳、劉紹臣(2012)。全球氣候變遷觀測。大氣科學,40(3),185-213。
林之丞、曾瑞蓮(2017)。科學博物館推動環境教育—澳洲與臺灣經驗之比較研究。博物館學季刊,31(3),55-77。
林永豐(2018)。延續或斷裂?從能力到素養的課程改革意涵。課程研究期刊,13(2),1-20。
林育慈、吳正己(2016)。運算思維與中小學資訊科技課程。教育脈動,6,5-20。
林信良(2015,6月12日)。小小程式設計師適用工具的啟示。iThome。http://www.ithome.com.tw/voice/96509
林冠宇(2019)。InterdisciplinaryLearning—淺談跨領域學習。清華教育,108。
林書毅(2018)。國小學生自製Kodu遊戲程式輔助英語字彙學習之研究〔碩士論文,國立臺北科技大學技術及職業教育研究所〕。https://hdl.handle.net/11296/93hmy8
邱靖蓉(2012)。導入TTQS, PDCA循環與ISO 10015等訓練品質管理概念於公民核心素養課程系統設計之應用。通識教育學刊,(10),83-120。
施明發(2001)。如何規劃博物館教育活動。臺北:行政院文化建設委員會。
段曉林(2020)。中學自然科學領域探究與實作教材教法。臺北:五南圖書。
洪敬婷(2014)。故事情境鷹架導入博物館互動式展區參觀模式之研究〔碩士論文,國立臺中教育大學數位內容科技學系〕。https://reurl.cc/Xe6gYR
涂金堂(2012)。量表編制與SPSS。臺北:五南圖書。
徐典裕、王薏涵、郭凡瑞(2015)。博物館虛實整合科普教育應用與推廣服務模式—以融入小學課程主題之虛實整合行動學習為例。博物館學季刊,29(1),99-115。
耿鳳英(2008)。懷舊與創新:21 世紀歷史展示新定位,博物館學季刊,22(3),39-54。
高于鈞(2020)。數位時代下博物館學習經驗的權力轉移。博物館與文化,20,135-169。
高翠霞、高慧芬、許惠閔、蔡宜臻(2020)。日本防災教育及其在社會教科書之設計—以東京書籍版本為例。教科書研究,13(2)。
國立科學工藝博物館(無日期)。希望.未來莫拉克風災紀念館。2020年12月20日擷取自https://morakot.nstm.gov.tw/
國家教育研究院(2019)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校議題融入說明手冊。國家教育研究院,92-93。
國家教育研究院(2022)。雙語詞彙、學術名詞暨辭書資訊網。(2022,6月5日)。https://reurl.cc/n1xMZD
張子超(2017)。議題教育的意義與課程融入—以環境教育為例。教育脈動,(11),23-30。
張民杰(2018)。運用問題導向學習設計與實施素養導向教學可行性之探究。課程研究,13(2),43-58。
張恒裕(主編)(2014)。莫拉克颱風災後重建五週年成果彙編。行政院莫拉克颱風災後重建推動委員會。
張美珍、王裕宏、沈益丞(2018)。科學博物館能源教育活動對於國小學童能源知識與態度影響。高雄師大學報:自然科學與科技類,(44),19-41。
張美珍、朱耀明(2004)。九年一貫“自然與生活科技”領域課程活動方案的發展:以博物館為學習的場域。科技博物,8(2),15-27。
張婉真(2001)。如何分析博物館展示—研究方法旨趣。博物館學季刊,15(3), 13-24。
張婉真(2019)。詩意的科學—法國國立自然史博物館《 隕石:天地之間》 特展的藝術介入。博物館學季刊,33(1),55-73。
張崇山(1997)。展示理念與主題規劃。科技博物,1(5&6),69-75。
張崇山(2004)。博物館展示的科學與藝術。科技博物,8(4),23-36。
張媛甯(2021)。運用問題導向學習於跨領域學習課程之教學實踐研究。教育理論與實踐學刊,(44),1-28。
教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校自然科學領域。https://reurl.cc/4yROeL
許晃雄、吳宜昭、周佳、陳正達、陳永明(2011):臺灣氣候變遷科學報告2011。國家災害防救科技中心。
郭世文(2017)。土石流與大規模崩塌災害。科學發展月刊,538。
陳永森(2010)。極端氣候影響下對臺灣環境規劃與災害識覺之省思—以八八水災為例。工程環境會刊,(25),33-44。
陳叔倬(2013)。天然災難後臺灣各博物館的公共參與—以 921 地震與 88 風災為例。博物館與文化,5,87-103。
陳慧娟(2015)。科博館兩個捐贈展的不同策展模式。博物館與文化,9,55-75。
陳瓊花、洪詠善(2017)。創作與轉化:十二年國教藝術領域課程綱要草案之研析。教育脈動,10,1-20。
陳麗淑、宋祚忠、陳思妤(2020)。博物館之通用學習成效研究:以國立海洋科技博物館金魚特展為例。博物館與文化,19,3-33。
曾子旂(2019)。從二十一世紀關鍵能力的養成論以專案式學習促進核心素養。課程研究,14(2)。
黃俊夫(1999)。觀眾參觀行為之觀察研究—以國立科學工藝博物館為例。科技博物,3(5),4-11。
黃書涵、劉德祥(2012)。「愛他,不Hot他」—全球暖化特展對觀眾知識與態度的影響。博物館學季刊,26(1)。
黃國鴻(2020)。中小學資訊教育之省思—以國外資訊課程變革為鑑。台灣教育研究期刊,1(2),141-162。
黃淑玲、池俊吉(2010)。解析學生學習成效。評鑑雙月刊,28,9-12。
黃惠婷(2015)。如何藉由觀眾滿意度調查提升博物館服務品質—以國立科學工藝博物館為例。科技博物,19(3),179-224。
黃惠婷、陳淑菁(2018)。觀衆研究在博物館服務升級之運用:以國立科學工藝博物館為例。科技博物,22(1),63-97。
黃惠婷、陳淑菁、黃俊夫(2020)。科學博物館增進觀衆科學素養之分析—以「莫拉克風災重建展示館」導覽解說為例。科技博物,24(3),85-115。
黃嘉郁(2000)。博物館的非制式科學教育。科技博物,4(4),48-56。
黃慶源、章嘉芝、吳春美、張孟勤(2005)。博物館服務品質與觀眾滿意度及忠誠度之研究:以國立科學工藝博物館為例。科技博物,9(1),21-47。
經濟部水利署(2009)。莫拉克颱風暴雨量及洪流量分析。經濟部水利署。https://is.gd/NtCqZ8
萬宣佑(2019)。ADDIE模式融入英語繪本閱讀教學對低成就高職學生閱讀態度之影響研究[碩士論文,國立臺灣師範大學課程與教學研究所]。https://hdl.handle.net/11296/j382ck
葉蓉樺(2007)。高中生動手做研習架構發展初探:以國立自然科學博物館“高中生史特林引擎模型組裝研習”為例。科學教育月刊,(303),2-16。
董少桓、林宗德、沈維倫、錢傳明、沈勇嘉(2005年12月)。支援教師分身的智慧型程式語言教學平台〔論文發表〕。全國計算機會議,崑山科技大學,臺南,臺灣。
賈明蓉(2017):探討博物館觀眾學習成效研究。以國立臺灣科學教育館科學演示活動為例〔碩士論文,國立臺北教育大學文化創意產業經營學系〕。https://hdl.handle.net/11296/48c9v4
鄒宜君、江妍瑩、丁維欣(2019)。以觀展經驗為例初探什麼是有「溫度」的展覽?。科技博物,23(2),49-70。
漢寶德(1987)。博物館是開放的學校。博物館學季刊,1(3),1-1。
趙嘉裕、黃任閔、王弘裕(2014):國立海洋生物博物館遊客對導覽解說服務滿意度與需求之研究。運動健康休閒學報,5,11-30。
劉佳儒(2018)。非制式教育場域辦理自造及科技教育活動之調查。科技博物,22(3),135-156。
劉佳儒、張美珍、王裕宏、張簡智挺、楊芷翎(2021)。以結構方程模式探討學生參與科學博物館節水教育活動之成效分析。工業科技教育學刊,(14),1-14。doi:10.6306/JITE.202109_(14).0001
劉冠任、章晨玫、張鈞翔(2017)。科學博物館探尋臺灣哺乳動物化石系列教育活動成效評量。科技博物,21(2),51-76。
劉婉珍(2011)。博物館觀眾研究。臺北市:三民書局。
劉慶宗(2001)。博物館觀眾參觀經驗之研究—以國立海洋生物博物館為例[碩士論文,國立中山大學公共事務研究所]。
蔡海廣(2013)。通用學習成效應用於教育活動規劃的成效—以國立自然科學博物館歡迎光臨絲樂園活動為例。科技博物,17(3),87-116。
蔡崇華(2019)。中小學生學習程式設計動機之研究〔碩士論文,國立臺灣師範大學〕。https://doi.org/10.6345/THE.NTNU.EMBA.021.2019.F08
蔡清田(2016)。核心素養在台灣十二年國民基本教育課程改革的角色。全球教育展望,(2),13-23。
鄭瑞洲、李育諭、林煥祥(2019)。臺灣公民參與科技議題活動與參訪科學工藝類博物館的關係及變化。科技博物,23(2),71-95。
鄭瑞洲、洪振方、黃臺珠(2011)。程式設計態度—制式與非正式課程科學學習的交會點。科學教育月刊,340,2-10。
鄭瑞洲、黃臺珠(2018)。探討臺灣公民參訪科學工藝博物館和其科學素養間之關係。科技博物,22(1),43-62。
盧秀琴、林毓哲(2018)。國小教師開發「昆蟲桌遊教具」以增強學童「沈浸經驗、科學過程技能」。課程與教學,21(1),105-131。
蕭瑞棠(2004)。博物館環境:另一種學習理念的初探。博物館學季刊,18(1),63-71。
謝文和(2003)。博物館成人學習之研究建構主義觀點—以國立臺灣史前文化博物館為例。[博士論文,國立臺灣師範大學社會教育研究所]https://hdl.handle.net/11296/2c683u
鍾乙豪(2019)。新課綱下小學科技課程設計的新模式。學校行政雙月刊,124。
蘇芳儀(2020)。通用學習成效應用於博物館展示教育規劃設計之研究—以國立科學工藝博物館DIY無人機為例。博物館與文化,19,67-94。
蘇晉輝、盧東華(2019)。MakeCode for micro: bit結合開發板及模擬器提升學生學習成效與態度研究—以新北市某國小學生為例。載於國立金門大學(主編),NCS 2019全國計算機會議[論文集],711-716。https://reurl.cc/2b0eXm
 
 
英文部分
Al-Balushi, S.M., & Al-Aamri, S. S. (2014). The effectof environmentalscience projects on students’ environmental knowledge andscienceattitudes. International Researchin Geographical & EnvironmentalEducation, 23(3), 213-227.
Aldoobie, N. (2015). ADDIE Model. American International Journal ofContemporaryResearch, 5(6), 68-72.
Almulla, M. A.(2020). The effectiveness of theproject-based learning (PBL) approach asa way toengage students in learning. Sage Open, 10(3), 2158244020938702.
Arts CouncilEngland. (n.d.). Researcher’s question bank.  https://reurl.cc/p1vyK8
Astolfi, J.-P.(1997). Mots-clés de la didactique des sciences : repères,définitions,bibliographies. Paris: De Boeck & Larcier.
Azizah, W. A.,Sarwi, S., & Ellianawati, E. (2020).Implementation ofProject-Based Learning Model (PjBL) UsingSTREAM-Based Approach in Elementary Schools. Journal ofPrimaryEducation, 9(3), 238-247.
Bandura, A. (2006). Guide for constructing self-efficacy scales. Self-efficacybeliefsof adolescents, 5(1), 307-337.
Barak, M.& Asad, K. (2012). Teaching image-processingconcepts in junior high schools: boys’ andgirls’ achievement and attitudestowards technology. Research inScience& Technological Education, 30(1), 81-105.
Barak, M.,& Shachar, A. (2008). Projects intechnology education and fostering learning: The potentialand itsrealization. Journal of Science Education and Technology, 17(3), 285-296.
Barrett J.(2012):追求民主—作為公共空間的博物館(邱家宜,譯)。博物館學季刊,26(4),7-28。
Barron, B. J.,Schwartz, D. L., Vye, N. J., Moore, A., Petrosino, A., Zech,L., &Bransford, J. D. (1998). Doing withunderstanding: Lessons from research on problem- andproject-basedlearning. Journal of the Learning Sciences, 7(3–4), 271–311.
Barron, B.,& Darling-Hammond, L. (2008). Teachingfor Meaningful Learning: A Review of Research on Inquiry-Basedand CooperativeLearning. Book Excerpt. George Lucas EducationalFoundation.
Behrendt, M.,& Franklin, T. (2014). A review ofresearch on school field trips and their value ineducation. InternationalJournal of Environmental and Science Education, 9(3), 235-245.
Bell, L. (2008). Engaging the public in technology policy: A new role forsciencemuseums. Science Communication, 29(3), 386-398.
Bell, P.,Lewenstein, B., Shouse, A. W., & Feder, M. A. (2009). Learning science ininformal environments: People, places,and pursuits (Vol. 140). Washington, DC: NationalAcademies Press.
Bell, S. (2010). Project-based learning for the 21st century: Skills for thefuture. Theclearing house, 83(2), 39-43.
Beyer, S. (2014). Why are women underrepresented in Computer Science? Genderdifferences instereotypes, self-efficacy, values, and interests and predictorsof future CScourse-taking and grades. Computer Science Education, 24(2-3), 153-192.
Bitgood, S. (1988). Problems in visitor orientation and circulation. VisitorStudies:Theory, Research & Practice. Jacksonville, AL: PsychologyInstitute ofJacksonville State University, 155-170.
Bloom, J. N.,Powell, E. A., Cochran Hicks, E., & Munley, M. E. (1984). Museums for a New Century.Washington DC: American Association ofMuseums.
Blumenfeld, P.C., Kempler, T., & Krajcik, J. S. (2006). Motivationand cognitiveengagement in learning environments. In R. K. Sawyer (Ed.), Cambridge handbookof the learning sciences. New York:Cambridge University Press.
Blumenfeld, P.C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M.,& Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing,supporting thelearning. Educational psychologist, 26(3-4), 369-398.
Boaler, J. (1998). Open and closed mathematics: Student experiencesandunderstandings. Journal for research in mathematics education, 29(1), 41-62.
Bocconi, S.,Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt,K. (2016). Developing computational thinking incompulsoryeducation-Implications for policy and practice. Seville, Spain:JointResearch Centre. Retrieved from   https://reurl.cc/5olqqn
Brennan, K.,& Resnick, M. (2012, April). New frameworks for studying and assessing the developmentofcomputational thinking. In Proceedings of the 2012 annual meetingofthe American educational research association, Vancouver, Canada (Vol. 1, p. 25).
Brody, S. (2003). Modeling watershed flooding andadaptive flood management: An integrativeplan for research, teaching, andlearning, College of Architecture, TexasA&M Univ., College Station, TX.
Brody, M.,Bangert, A., & Dillon, J. (2008). Assessing learning ininformal sciencecontexts. National ResearchCouncil for Science Learning inInformal Environments Committee, Washington, DC.Retrieved from  https://reurl.cc/4yRMnR
Brophy, J. E. (2013). Motivating students to learn. New York: Routledge.
Burcaw, G. E. (1997). Introduction to museum work. Rowman Altamira.
Campbell, P.C. (2014). Modifying ADDIE: Incorporatingnew technologies in library instruction.Public Services Quarterly, 10(2), 138-149.
Chambers, D.W. (1983). Stereotypic images of thescientist: The draw-a-scientist test. Scienceeducation, 67(2), 255-265.
ChanLin, L.J. (2008). Technology integration applied to project-based learninginscience. Innovations in Education andTeaching International, 45(1), 55-65.
Chao, C. Y.,Chen, Y. T., & Chuang, K. Y. (2015). Exploringstudents' learningattitude and achievement in flipped learning supportedcomputer aided designcurriculum: A study in high school engineeringeducation. ComputerApplications in Engineering Education, 23(4), 514-526.
Chen, C. H.,& Yang, Y. C. (2019). Revisitingthe effects of project-based learning on students’ academicachievement: Ameta-analysis investigating moderators. EducationalResearch Review, 26,71-81.
Cheng, R. W.,Lam, S.., & Chan, C. (2008). When highachievers and low achievers work in the same group: the role ofgroupheterogeneity and processes in project-based learning. BritishJournal of Educational Psychology, 78(2), 205-221.
Cherry, M. I. (2009). What can museum and herbarium collections tell us about climatechange?:news & views. South African Journal of Science, 105(3), 87-88.
Cohen, J (1988). Statistical Power Analysisfor the Social Sciences (2nd. Edition). Hillsdale, New Jersey,Lawrence Erlbaum Associates.
Colliver, J. A.(2000). Effectiveness of problem-basedlearning curricula: research andtheory. Academic medicine, 75(3), 259-266.
Cox, K. R.,Clark, D. (1994). Computing models that empowerstudents. Computer Educational, 24(4), 277-284.
Decker-Lange,C. (2018). Problem-and inquiry-basedlearning in alternative contexts: Using museumsin management education. Theinternational journal of managementeducation, 16(3), 446-459.
Delisle, R. (1997). How to use problem-based learning in the classroom. Alexandria,VA:Association for Supervision and Curriculum Development. DevelopmentalReview, 30(1), 1-35.
Devine, J.,Finney, J., de Halleux, P., Moskal, M., Ball, T., & Hodges,S. (2018). MakeCode and CODAL: intuitive and efficient embedded systemsprogrammingfor education. ACM SIGPLAN Notices, 53(6), 19-30.
Dewey, J. (1938). Education and experience. New York, NY: Macmillan.
Dochy, F.,Segers, M., Van den Bossche, P., & Gijbels, D. (2003). Effects of problem-basedlearning: A meta-analysis. Learningand instruction, 13(5), 533-568.
Domenici, V. (2022). STEAM Project-Based Learning Activities at the Science Museum asan EffectiveTraining for Future Chemistry Teachers. Education Sciences, 12(1), 30.
Doppelt, Y. (2003). Implementation and assessment of project-based learning in aflexibleenvironment. InternationalJournal of Technology and Design Education,13(3), 255-272.
Dorn, B.,& Elliott Tew, A. (2015). Empiricalvalidation and application of the computing attitudessurvey. ComputerScience Education, 25(1), 1-36.
Dorph, R.,Schunn, C. D., Crowley, K., & Shields, P. (2012, April). Activating young sciencelearners: Igniting persistent engagementin science learning and inquiry.In Poster presented at the annualmeeting of the American EducationResearch Association. Vancouver, BC.
Dou, R.,Hazari, Z., Dabney, K., Sonnert, G., & Sadler, P. (2019). Early informal STEMexperiences and STEM identity: The importanceof talking science. ScienceEducation, 103(3), 623-637.
Ertmer, P. A.,& Simons, K. D. (2005). Scaffoldingteachers’ efforts to implement problem-based learning. InternationalJournalof Learning, 12(4), 319-328.
Fadel, C. (2008). 21st Century Skills: How can you prepare students for the newGlobalEconomy. Paper presented at OECD/CERI International Conference, Learningin the21st Century: Research, Innovation and Policy, Paris, France.Retrievedfrom  https://reurl.cc/9ZzynY
Falk, J. H. (2018). Born to choose: Evolution, self, and well-being.Routledge.
Falk, J. H.,Dierking, L. D., Swanger, L. P., Staus, N., Back, M.,Barriault, C., ... &Verheyden, P. (2016). Correlating science center usewith adult science literacy: Aninternational, cross‐institutional study. ScienceEducation, 100(5), 849-876.
Falk, J. H.,Pattison, S., Meier, D., Bibas, D., & Livingston, K. (2018). The contribution ofscience‐rich resources to public scienceinterest. Journal of Researchin Science Teaching, 55(3), 422-445.
Falk, J. H.,Scott, C., Dierking, L., Rennie, L., & Jones, M. C. (2004). Interactives and visitorlearning. Curator: The MuseumJournal, 47(2), 171-198.
Falk, J. H.,Staus, N., Dierking, L. D., Penuel, W., Wyld, J., &Bailey, D. (2015). Understanding youth STEM interest pathways within a singlecommunity: TheSynergies project. International Journal of ScienceEducation, Part B, 6(4), 369-384.
Falk, J. H.,Storksdieck, M., & Dierking, L. D. (2007).Investigating public scienceinterest and understanding: Evidence for theimportance of free-choicelearning. PublicUnderstanding of Science, 16(4), 455–469.
Falk, J.,& Storksdieck, M. (2005). Using thecontextual model of learning to understand visitor learningfrom a sciencecenter exhibition. Science Education, 89(5), 744-778.
Falk, J.H.,Meier, D., Pattison, S., Livingston, K. & Bibas, D. (2019). The contributions made byfive science education resources toyouth’s interest in science.http://www.instituteforlearninginnovation.org/wp-content/uploads/2019/10/R21.pdf
Feinstein, N.,Allen, S., & Jenkins, E. (2013). Outside the pipeline: Reimaginingscience educationfor nonscientists. Science, 340(6130), 314–317.
Ferrero, M.,Vadillo, M. A., & León, S. P. (2021). Isproject-based learningeffective among kindergarten and elementary students? Asystematic review. PloSone, 16(4), e0249627.
Gabuardi, V.M. F. (2021). Project-Based Learning: boosting21st century skills. Estudios, (43), 340-419.
Garnett, R.,& Ghislaberti, A. (2002). The impact of science centers/museums ontheir surroundingcommunities: summary report. National Science Foundation (NSF), Texas.Retrieved from   https://reurl.cc/zb8G8V
Geier, R.,Blumenfeld, P.C., Marx, R.W., Krajcik, J.S., Fishman, B.Soloway, E. &Clay- Chambers, J. (2008).Standardized test outcomes for students engaged in inquiry-basedsciencecurricula in the context of urban reform. Journalof Research inScience Teaching, 45(8), 922-939.
Gijbels, D.,Dochy, F., Van den Bossche, P., & Segers, M. (2005). Effects ofproblem-basedlearning: A meta-analysis from the angle of assessment. Reviewofeducational research, 75(1), 27-61.
Google CS EdResearch Group (Firm). (2014). Women WhoChoose Computer Science: what Really Matters: The Critical RoleofEncouragement and Exposure.
Grafinger, D.J. (1988). Basics of instructional systemsdevelopment. Alexandria: AmericanSociety for Training and Development.
Graham, J.,(2013). Learning Unlimited Evidencing the impact of the GLOs2008-2013.University of Leicester, UK. Retrieved from   https://reurl.cc/OX17Qg
Grossnickle,E. M. (2016). Disentangling curiosity:Dimensionality, definitions, and distinctionsfrom interest in educationalcontexts. Educational Psychology Review, 28(1), 23-60.
Gunbatar, M.S., & Karalar, H. (2018). Genderdifferences in middle school students’ attitudes and self-efficacyperceptionstowards mBlock programming. EuropeanJournal of EducationalResearch, 7(4), 925-933.doi: 10.12973/eu-jer.7.4.923
Gutwill, J.P., & Allen, S. (2010).Facilitating family group inquiry at science museum exhibits. ScienceEducation, 94(4), 710-742.
Gutwill, J.P., & Allen, S. (2012). Deepeningstudents' scientific inquiry skills during a science museumfield trip.Journal of the Learning Sciences, 21(1), 130-181.
Hackman, J.R., & Oldham, G. R. (1980). Workredesign (Vol. 72). Reading, MA: Addison-Wesley.
Hanif, S.,Wijaya, A. F. C., & Winarno, N. (2019). EnhancingStudents'Creativity through STEM Project-Based Learning. Journal ofscienceLearning, 2(2), 50-57.
Hansen, A. K.,Dwyer, H. A., Iveland, A., Talesfore, M., Wright, L.,Harlow, D. B., &Franklin, D. (2017, March). Assessing children'sunderstanding of the work of computer scientists:The draw-a-computer-scientisttest. In Proceedings of the 2017 ACMSIGCSE technical symposium oncomputer science education (pp. 279-284).
Harlow, D. B.,Dwyer, H. A., Hansen, A. K., Iveland, A. O., & Franklin,D. M. (2018). Ecological design-based research for computer scienceeducation:Affordances and effectivities for elementary school students. Cognitionandinstruction, 36(3), 224-246.
Harmer, N.,& Stokes, A. (2014). Thebenefits and challenges of project-based learning: A review of theliterature.Plymouth, MA: Pedagogic Research Institute and Observatory (PedRIO). Retrieved from  https://reurl.cc/b2QrLd
Hattie, J. (2012). Visible learning for teachers: Maximizing impact onlearning.Routledge.
Helle, L.,Tynjälä, P. & Olkinuora, E. (2006).Project-based learning inpost-secondary education – theory, practice andrubber sling shots. HigherEducation,51, 287-314.
Herring, S. (2012). Transforming the workplace: critical skills and learning methodsfor thesuccessful 21st century worker. Big Think.
Hirsch, L. S.,Carpinelli, J. D., Kimmel, H., Rockland, R., & Bloom,J. (2007, October). The differential effects ofpre-engineering curricula on middle schoolstudents’ attitudes to and knowledgeof engineering careers. In 200737th Annual Frontiers in EducationConference-Global Engineering: Knowledgewithout Borders, Opportunities withoutPassports (pp. S2B-17). IEEE.
Hmelo-Silver,C.E., Duncan, R.G. & Chinn, C.A. (2007). Scaffoldingand achievementin problem-based and inquiry learning: a response to Kirschner,Sweller andClark (2006). Educational Psychologist, 42(2), 99-107.
Hoegh, A.,& Moskal, B. M. (2009, October). Examining science and engineering students' attitudes towardcomputerscience. In 2009 39th IEEE Frontiers in Education Conference (pp. 1-6). IEEE.
Hooper‐Greenhill,E. (2004). Measuring learning outcomes inmuseums, archives and libraries: Thelearning impact research project (LIRP). International Journal of Heritage Studies, 10(2), 151-174.
Hooper-Greenhill,E. (2007). Museums and education:Purpose, pedagogy, performance. UK:Routledge Press.
Hooper-Greenhill,E., (2002). Developing a scheme for findingevidence of the outcomes and impact oflearning in museums, archives andlibraries: The conceptual framework.Unpublished manuscript, University ofLeicester. Retrieved from  https://reurl.cc/WEdYg5
Hooper-Greenhill,E., Dodd, J., Moussouri, T., Jones, C., Pickford, C.,Herman, C., MarleneMorrison, M; Vincent, J & Toon, R. (2003). Measuringthe outcomes andimpact of learning in museums, archives and libraries. TheLearning ImpactResearch Project end of project paper, Research Centre forMuseums andGalleries (RCMG), TheUniversity of Leicester, UK.
Hou, H.,Chang, K., & Sung, Y. (2007). An analysisof peer assessment online discussions within a course thatuses project-basedlearning. Interactive Learningenvironments, 15(3), 237-251. https://doi.org/10.1080/10494820701206974
Howland, K.,Good, J., & Nicholson, K. (2009).Language-based support forcomputational thinking. In 2009 IEEESymposium on Visual Languages andHuman-Centric Computing (VL/HCC), 147-150.
Hsu, P. S.,Van Dyke, M., Chen, Y., & Smith, T. J. (2015). The effectof agraph‐oriented computer‐assisted project‐based learning environmentonargumentation skills. Journal of Computer Assisted Learning, 31(1), 32-58.
Hsu, T.-Y.,Kuo, F.-R., Liang, H.-Y., & Lee, M.-F. (2016). A curriculum-basedvirtualand physical mobile learning model for elementary schools in museums. TheElectronicLibrary, 34(6), 997-1012.
Ivanitskaya,L., Clark, D., Montgomery, G., & Primeau, R. (2002).Interdisciplinary learning:Process and outcomes. Innovative highereducation, 27(2), 95-111.
Jonas, M.,& Sabin, M. (2015). Computational thinking inGreenfoot: AI game strategies for CS1:conference workshop. Journal ofComputing Sciences in Colleges, 30(6), 8-10.
Kekelis, L.,& Sammet, K. (2019). Changing the game in STEM with familyengagement. STEM NextOpportunity Fund.
Knight, M.,& Cunningham, C. (2004, June). Draw an Engineer: Development of a tool to investigate students’ideasabout engineers and engineering. In 2004 Annual Conference (pp. 9-482).
Kokotsaki, D.,Menzies, V., & Wiggins, A. (2016).Project-based learning: Areview of the literature. Improving schools, 19(3), 267-277.
Kong, S. C.,Chiu, M. M., & Lai, M. (2018). A study ofprimary school students' interest, collaboration attitude, andprogrammingempowerment in computational thinking education. Computers&education, 127, 178-189.
Korn, R. (2004). Self-portrait: First know thyself, then serve your public. MuseumNews,Washington, 83(1), 32-35.
Krajcik, J.S., Blumenfeld, P. C., Marx, R. W., & Soloway, E. (1994). A Collaborative Model forHelping Middle Grade Science TeachersLearn Project-Based Instruction. Theelementary school journal, 94(5), 483-497.
Kwon, S. M.,Wardrip, P. S., & Gomez, L. M. (2014). Co-designofinterdisciplinary projects as a mechanism for school capacity growth. ImprovingSchools, 17(1), 54-71.
Larmer, J.,Mergendoller, J., & Boss, S. (2015). Settingthe standardfor project based learning. ASCD.
Lawrence, M.,& Tinkler, A. (2015). What canyou learn about science in a natural history museum? SchoolScience Review,97(358), 61–66.
Leadbeater,C., & Wong, A. (2010). Learningfrom the extremes: A white paper. San jose, Calif.,Cisco Systems Inc.
Lewis, M. (2017). Problem Solving through Programming with Greenfoot. Retrieved fromhttps://reurl.cc/9ZzjD8
Ljung-Djärf,A., Magnusson, A., & Peterson, S. (2014). From Doingto Learning:Changed focus during a pre-school learning study project onorganicdecomposition. International Journalof Science Education, 36(4), 659-676.
Lou, S.J.,Liu, Y.H., Shih, R.C., Tseng, K.H. (2011).Effectiveness of on-lineSTEM project-based learning for female senior highschool students, 27,399-410.
Mahasneh, A.M., & Alwan, A. F. (2018). The Effectof Project-Based Learning on Student Teacher Self-EfficacyandAchievement. International Journal of Instruction, 11(3), 511-524.
Mahoney, M. P.(2010). Students' Attitudes toward STEM:Development of an Instrument for HighSchool STEM-Based Programs. Journalof Technology Studies, 36(1), 24-34.
Manzano-Sanchez,H., Outley, C., Gonzalez, J. E., & Matarrita-Cascante,D. (2018). The influence of self-efficacy beliefs in the academic performanceofLatina/o students in the United States: A systematic literaturereview. HispanicJournal of Behavioral Sciences, 40(2), 176-209.
Markham, T.,Larmer, J., & Ravitz, J. L. (2003). Projectbasedlearning handbook: A guide to standards-focused project based learningformiddle and high school teachers. Buck Institute for Education.
Mason, S. L.,& Rich, P. J. (2020). Developmentand analysis of the elementary student coding attitudessurvey. Computers& Education, 153, 103898.
Master, A.,Cheryan, S., Moscatelli, A., & Meltzoff, A. N. (2017). Programming experiencepromotes higher STEM motivation amongfirst-grade girls. Journal ofexperimental child psychology, 160,92-106.
McManus, P. M.(1992). Topics in museums and scienceeducation. Studies in ScienceEducation, 20, 157-182.
Mettas, A.,& Constantinou, C. P. (2008). TheTechnology Fair: a project-based learning approach for enhancingproblemsolving skills and interest in design and technology education. InternationalJournal of Technology andDesign Education, 18(1), 79-100.
Mihic, M.,& Zavrski, I. (2017). Professors’and students’ perception of the advantages and disadvantagesof project basedlearning. International Journal ofEngineering Education 33(6),1737-1750.
Mocker, D. W. (1982). Lifelong learning: Formal, nonformal, informal, andself-directed (Vol. 241). ERIC Clearinghouse onAdult, Career, and Vocational Education,National Center for Research inVocational Education, Ohio State University.
Molenda, M. (2003). In search of the elusive ADDIE model. Performance improvement,42(5), 34-37.
Moreno-León,J., Robles, G., & Román-González, M. (2015). Dr.Scratch: Automaticanalysis of scratch projects to assess and fostercomputational thinking. Revistade Educación a Distancia, (46), 1-23.
Mortensen, M.F. (2010). Exhibit engineering: A newresearchperspective. [Unpublisheddoctoral dissertation]. University ofCopenhagen.  https://reurl.cc/Er579m
Moser, S.,2010. The devil is in the detail: Museum displays and thecreation ofknowledge. Museum Anthropology, 33(1): 22-32.
Mujtaba, T.,Lawrence, M., Oliver, M., & Reiss, M. J. (2018). Learningand engagementthrough natural history museums. Studies in ScienceEducation, 54(1), 41-67.
Murray, I.,& Reiss, M. J. (2005). The student review of the nationalcurriculum. School ScienceReview, 87(318), 1-11.
NationalResearch Council. (2009). Learningscience in informal environments: People, places, andpursuits. NationalAcademies Press.
Newman, M. (2003). A Pilot Systematic Review and Meta-Analysis on the EffectivenessofProblem Based Learning.  https://reurl.cc/8oQVRR
Owen, S. V.,Toepperwein, M. A., Marshall, C. E., Lichtenstein, M. J.,Blalock, C. L., Liu,Y., ... & Grimes, K. (2008). Findingpearls: psychometricreevaluation of the Simpson–Troost Attitude Questionnaire (STAQ). Science Education, 92(6), 1076-1095.
Partnershipfor 21st Century Skills. (2007). Theintellectual and policy foundations of the 21st century skillsframework.
Partnershipfor 21st Century Skills. (2021). Frameworkfor 21st century learning. Retrieved from   https://reurl.cc/RrMzgD
Pattison, S.,Gutwill, J., Auster, R., & Cannady, M. (2019).Experimental andquasi-experimental designs in visitor studies: A criticalreflection on threeprojects. Visitor Studies, 22(1), 43-66.
Peterson, C. (2003). Bringing ADDIE to life: Instructional design at its best. JournalofEducational Multimedia and Hypermedia, 12(3), 227-241.
Phelan, S.,Bauer, J., & Lewalter, D. (2018). Visitmotivations:Development of a short scale for comparison across sites. MuseumManagementand Curatorship, 33(1), 25-41.
Pintrich, P.R., & Schunk, D. (1996). Motivationin education: Theory, research and application. Columbus,OH:Merrill/Prentice Hall.
Ravitz, J. (2009). Introduction: Summarizing findings and looking ahead to a newgenerationof PBL research. Interdisciplinary Journal of Problem-BasedLearning, 3(1), 4-11.
Reed, H. B.,& Loughran, E. L. (1984). BeyondSchools: Education for Economic, Social and PersonalDevelopment.Publications, CITP/CERC, 225 Furcolo Hall, University of Massachusetts,Amherst,MA 01003..
Reinbold, S. (2013). Using the ADDIE model in designing library instruction. Medicalreference services quarterly, 32(3), 244-256.
Renner, N. O. (2011). Multisensory sensemaking: Children’s exploratory behavior hasorganizingstructure at micro-and macro-scales. In Proceedings of theAnnualMeeting of the Cognitive Science Society (Vol. 33, No. 33).
Renninger, K.A. (2007). Interest and motivation in informal science learning.Paperpresented at Learning Science in Informal Environments Committee,NationalResearch Council, USA.
Repenning, A.,Webb, D., and Ioannidou, A. (2010). Scalablegame design and thedevelopment of a checklist for getting computationalthinking into publicschools. In Proceedingof the 41st ACM Technical Symposium on ComputerScience Education, (265-269), Milwaukee, WI, USA, ACM Press.
Román-González,M., Pérez-González, J. C., Moreno-León, J., & Robles,G. (2018). Extending the nomological network of computational thinkingwithnon-cognitive factors. Computers in Human Behavior, 80,441-459.
Rosenthal, E.,& Blankman-Hetrick, J. (2002).Conversations across time:Family learning in a living history museum. Learningconversations inmuseums, 305, 329.
Sadler, W. J. (2006). Evaluating the short- and long-term impact of an interactivescienceshow [Unpublished Master’s thesis].Milton Keynes: The OpenUniversity.
Sandell, R.,& Nightingale, E. (2012). Museums,equality and social justice.
Scott, C. (2003). Museums and impact. Curator: The Museum Journal,46(3), 293-310.
Scott, C. L. (2015a). The Futures of Learning 1: Why must learning content and methodschangein the 21st Century. UNESCOEducation Research and Foresight, Paris.
Scott, C. L. (2015b). The Futures of Learning 2: What kind of learning for the21stcentury?. UNESCO Education Research andForesight, Paris.
Scott, C.L. (2015c). The Futures of Learning 3: What kind of pedagogies for the21stcentury? UNESCO Education Research andForesight, Paris. [ERFWorking Papers Series, No. 15]. Retrieved June 19,2022, from   https://reurl.cc/RroqDr
Shein, P. P.,Falk, J. H., & Li, Y. Y. (2019). The role ofscience identityin science center visits and effects. ScienceEducation, 103(6), 1478-1492.
Sheng, C. W.,& Chen, M. C. (2012). A study ofexperience expectations of museum visitors. Tourism management, 33(1), 53-60.
Shin, M. H. (2018). Effects of Project-Based Learning on Students' MotivationandSelf-Efficacy. English Teaching, 73(1), 95-114.
Stocklmayer,S. M., & Gilbert, J. K. (2002). New experiences and oldknowledge: Towards a model for the publicawarenessof science. International Journal ofScience Education, 24,835–858.
Sullivan, A.,& Bers, M. U. (2019). VEXRobotics Competitions: Gender differences in student attitudesandexperiences. Journal of Information Technology Education, 18.
Thomas, J. W. (2000). A review of research on project-based learning. SanRafael,CA: Autodesk Foundation.
Trilling, B.,& Fadel, C. (2009). 21st century skills:Learning for life in our times. JohnWiley & Sons.
Tsai, M. J.,Wang, C. Y., & Hsu, P. F. (2019). Developingthe computerprogramming self- efficacy scale for computer literacy education. Journalof Educational Computing Research,56(8), 1345-1360.
Vavoula, G.,Pachler, N., & Kukulska-Hulme, A. (Ed.) (2009). Researchingmobilelearning: frameworks, tools, and research designs. Oxford: PeterLangVerlag.
VijayakumarSelvaraj. (2015). EFFICACY OF ADDIE MODEL IN THEDIGITAL CLASSROOM: AN EVIDENCE BASEDSTUDY. LangLit, 2(1), 347-353.  https://reurl.cc/55dOLz
Walker, A.,& Leary, H. (2009). A problem based learning metaanalysis: Differences across problem types,implementation types, disciplines,and assessment levels. Interdisciplinaryjournal of problem-basedlearning, 3(1), 6.
Warr, M.,& West, R. E. (2020). Bridgingacademic disciplines with interdisciplinary project-basedlearning: Challengesand opportunities. Interdisciplinary Journal ofProblem-Based Learning, 14(1).
Weil, S. E. (2003). Beyond big and awesome-Outcome-based evaluation (The impact of museums on theirvisitors). MuseumNews, 82(6), 40-45,52-53.
Wentzel, K.R., & Wigfield, A. (1998). Academicand social motivational influences on students' academicperformance. EducationalPsychology Review, 10(2), 155-175.
Wigfield, A.,& Cambria, J. (2010). Students’achievement values, goal orientations, and interest: Definitions,development,and relations to achievement outcomes. Developmental review, 30(1), 1-35.
Wigfield, A.,& Eccles, J. S. (2000).Expectancy–value theory of achievement motivation. ContemporaryEducational Psychology, 25(1), 68-81.

Willingham, D.T. (2009). Why students don’t like school? A cognitive scientist answersquestions about how themind works and what it means for the classroom. SanFrancisco, CA:Jossey.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE