:::

詳目顯示

回上一頁
題名:改質生物鈣淨化室內空氣品質與綠色建材應用之研究
作者:鄧有偉
作者(外文):DONG, YU-WEI
校院名稱:國立臺北科技大學
系所名稱:設計學院設計博士班
指導教授:邵文政
學位類別:博士
出版日期:2022
主題關鍵詞:室內空氣品質循環經濟無機聚合物健康建築永續發展目標SDGsIAQCircular EconomyGeopolymerHealthy BuildingsSDGs
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
自工業革命後能源過度開發,環境嚴重污染,造成氣候變遷與溫室效應日益嚴重,並衍生出大量廢棄物;環境保護之『永續發展』與『淨零碳排』議題逐年受到重視與推動,製造-使用-回收的『循環經濟』已成為資源效率的提升與發展綠色能源之外的重要減碳策略的目標與推動方針,目的使資源使用發揮最大效益、對環境的衝擊性影響最小,達成零廢棄及淨零碳排(Net-Zero)之願景。隨著氣候變遷與空氣污染所產生之共伴效應,已嚴重危害人類的生命與健康,在室內為室外空氣污染2-5倍的情況下,每人每日處在室內環境活動時間高達80%-90%,因此,為了健康改善生活環境並優化室內空氣品質,已成為極重要之目標。
隨著國人雞蛋食用量增加,每年所產生的廢棄蛋殼,大都被當作廢棄物處理,除浪費資源也污染環境,因此在對環境衝擊、資源利用與友善環境上,已成為所需處理面對之課題;由於蛋殼為高鈣具多孔性可吸附結構,已在工業廢棄重金屬與染色劑的吸附及生質能源的催化等的研究與運用上獲得不少成果,若能將廢棄蛋殼改質活化提升吸附效能,在淨化室內空氣的建材應用上,應可達成室內空氣品質改善之目標,因此本研究將以廢棄蛋殼做為吸附劑研發之主要材料。
本研究將依文獻資料分析結果,進行改質實驗,將廢棄蛋殼以煅燒方式進行改質與活化,實驗經不同參數(溫度)與變數(時間)煅燒後,分別進行檢測驗證:1.『物理性吸附』-外觀表面變化觀察分析、電子顯微鏡(SEM)對微孔性結晶結構的觀察分析及粉末繞射儀(XRD)的晶體掃描分析,探討其最佳物理性吸附;2.『化學性吸附』-以回收率、鈣含量、酸鹼值(pH)與氧化還原電位值(ORP)之檢測分析,探討其最佳化學性吸附。將結果進行歸納分析最經濟且具最佳理化吸附效能之煅燒時間及溫度,根據此結果對室內空氣污染物甲醛進行吸附效能實驗與殺菌實驗,驗證改質生物鈣活化後之淨化效能,並以吸附動力學模式進行分析探討。接著將改質生物鈣應用在吸附性綠色建材創新與研發,以實驗驗證淨化室內空氣品質甲醛之吸附性能與功效,並取代一次性使用建材,降低建築產業的耗能與碳排放;再將綠色建材創新與研發導入健康建築之綠建材評估、循環經濟架構體系進行評估與永續發展體系評估,達成符合本研究之目標。經本研究可獲得結論如下:
1.蛋殼煅燒改質成果
(1) 蛋殼煅燒最佳改質溫度與時間為900°C 2hrs,此時具有最佳理化吸附特性。
(2) 煅燒後測得比表面積為19.98m²/g,孔容為0.045cm3/g,平均孔徑為2.78nm,孔結構已轉變成多層微孔晶體,具物理性吸附效能。
(3) 煅燒後測得鈣含量為693mg/kg、pH值為12.7、ORP值為-196mV,易與空氣中的水分結合,產生活氧性與離子性,可以吸附室內空氣污染物,降解成CO2與H20,具化學性吸附效能。
2.蛋殼煅燒改質生物鈣淨化甲醛與殺菌驗證
(1) 在溫度為28℃±1℃與相對濕度為50±5%之1m3環境實驗箱,進行甲醛吸附驗證實驗得,蛋殼煅燒改質生物鈣每單位改質生物鈣可降解甲醛4.35mg/g,5分鐘就可吸附降解甲醛80%,且經1hr就可達99%得吸附率。
(2) 依文獻對比其它吸附劑甲醛吸附量結果可得:改質生物鈣(3.13mg/g) ≒改質二氧化鈦P25-TiO2(3.14mg/g)>二氧化鈦TiO2(3.06mg/g)>活性碳(2.67mg/g)>沸石(2.70mg/g)>幾丁聚醣(2.21mg/g)。
(3) 依殺菌劑環境衛生殺菌試驗測定法(NIEA D201.01C)進行殺菌實驗,證實蛋殼煅燒900℃ 2hrs殺菌效益最佳,殺菌液調配濃度或殺菌作用時間越久,殺菌效益與殺菌數越大,在濃度1g/1L與作用時間30min下,殺菌效能達100%。
3. 吸附動力學模式探討
吸附動力學模式經回歸方程式分析探討可得,「擬一階吸附動力學模式」雖也在標準分析值內,但應以「擬二階吸附動力學模式」或「顆粒內部擴散模式」進行分析,其顆粒內部反應具有瞬間內孔壁表面吸附,與經擴散作用吸附到孔隙內之兩階段吸附特性,因此吸附力強不易產生脫附現象。
4.改質生物鈣綠色建材應用
(1) 在吸附性建材應用之吸附性油漆部分,經實驗顯示可吸附微量甲醛,但因吸附量極少,因此視為不具吸附室內空氣中游離甲醛之效能。
(2) 在吸附性建材應用之吸附性無機聚合磁磚部分,經實驗顯示對甲醛吸附吸附降解效能為:改質生物鈣(92.7%)>矽藻土(88.1%)>蛋殼粉(80.6%)。
(3) 經毒物溶出(TCLP)檢測,各項檢驗值均未超標,且無含石綿與放射性物質,且氯離子含量也符合規範標準值以下,均符合臺灣綠建材通則規範。
(4) 每生產1m2鋪設面積之吸附性無機聚合磁磚,CO2會排放11.41kg,相較傳統磁磚CO2排放14.86kg,可有效降低碳排效益23.22%,可節省171元/噸。
5.標章評估與探討
(1) 在「綠建材評估」中,可通過「綠建材通則」評定標準,而在「再生綠建材」評定,則除在「性能試驗項目與方法」外,其餘均能通過評定標準。
(2) 在「創新綠建材評估」中,「創新發展」與「資源利用」可獲得極高得分率。
(3) 在「綠建材環境效率評估」中,符合碳盤查之綠建材之標準,且在溫室氣體排放指標中有較高得分,因此獲得優異的評比。
(4) 循環經濟架構體系的搖籃到搖籃評估中,在「材料健康性」與「材料循環再利用性」評估項目,獲得銀級標章,「再生能源使用及碳管理」評估項目,獲得基本級標章。
(5) 「2030永續發展目標」評估經探討可鏈結SDG1「1.5」、SDG3「3.9」、SDG6「6.3」「6.A」、SDG8「8.8」「8.9」、SDG9「9.1」「9.4」「9.5」、SDG11「11.5」「11.6」「11.C」、SDG12「12.4」「12.5」、SDG17「17.7」「17.8」等8項核心策略項目,並達16項細項目標。 
Since the industrial revolution, energy has been over-exploited, the environment has been seriously polluted, climate change and the greenhouse effect have become increasingly serious, and a large amount of waste has been generated. The "circular economy" of manufacture-use-recycling has become the goal and promotion policy of an important carbon reduction strategy other than the improvement of resource efficiency and the development of green energy. The purpose is to maximize the use of resources and minimize the impact on the environment. The Vision of Zero Waste and Net Zero Carbon Emissions (Net-Zero). With the co-existence of climate change and air pollution, it has seriously endangered human life and health. Under the circumstance that indoor air pollution is 2-5 times that of outdoor air, each person spends up to 80% -90% of their daily activities in indoor environment, so it has become a very important goal to improve and optimize the quality of indoor air for a healthy living environment.
With the increase of egg consumption nationwide, most of the discarded eggshells produced every year are treated as garbage, which not only wastes resources, but also pollutes the environment. Therefore, it has become an issue that must be dealt with and faced in terms of environmental impact, resource utilization and environmental friendliness. Due to the high calcium content of eggshell and its porous and adsorbable structure, many achievements have been made in the research and application of industrial waste heavy metal and dye adsorption, biomass energy catalysis, etc. Modification activation can improve the adsorption performance. In the application of building materials to purify indoor air, the purpose of improving indoor air quality should be achieved. Therefore, in this study, the waste eggshells will be developed as the main material of the adsorbent.
In this study, according to the analysis results of the literature, a modification experiment will be carried out, and the discarded eggshells will be modified and activated by calcination. 1.Physical adsorption-observation and analysis of appearance and surface changes, observation and analysis of microporous crystal structure by electron microscope (SEM), and crystal scanning analysis by powder diffractometer (XRD), to discuss its optimal physical adsorption. 2. Chemical properties Adsorption - The best chemical adsorption is discussed based on the detection and analysis of recovery rate, calcium content, pH and redox potential (ORP). the results are summarized and analyzed to find the most economical and optimal physical and chemical adsorption performance According to the results, the adsorption efficiency experiment and sterilization experiment of indoor air pollutant formaldehyde were carried out to verify the purification efficiency of the modified biological calcium after activation, and the adsorption kinetics model was used to analyze and discuss. Then, the modified bio-calcium is applied to the innovation and research and development of adsorbent green building materials, and the adsorption performance and efficacy are verified by experiments, which can achieve the result of purifying indoor air quality formaldehyde, replacing single-use building materials and reducing the energy consumption and carbon emissions of the construction industry. Then, the innovation and research and development of green building materials are introduced into the healthy building and circular economy framework system for evaluation to achieve the goal of conforming to the evaluation. The following conclusions can be drawn from this study:
1. Modification results of calcined eggshells
(1) The best modification temperature and time of eggshell calcination is 900°C 2hrs, which has the best physical and chemical adsorption characteristics.
(2) After calcination, the specific surface area is 19.98m²/g, the pore volume is 0.045cm3/g, the average pore diameter is 2.78nm, and the pore structure has been transformed into multi-layer microporous crystals, which has physical adsorption efficiency.
(3) The calcium content measured after calcination is 693mg/kg, the pH value is 12.7, and the ORP value is -196 mV. It is easy to combine with the moisture in the air to produce active oxygen and ionic properties, which can adsorb indoor air pollutants and degrade into CO2 and H2O, with chemical adsorption performance.
2. Formaldehyde purification and sterilization verification by eggshell calcination modified biological calcium
(1) Carry out the formaldehyde adsorption verification experiment in a 1m3 environmental test chamber with a temperature of 28℃±1℃ and a relative humidity of 50±5%. Each unit of calcined eggshell modified biological calcium can degrade formaldehyde 4.35mg/g. The formaldehyde can be absorbed and degraded 80% in 5 minutes, and the adsorption rate can reach 99% in 1hr.
(2) Comparing the formaldehyde adsorption results of other adsorbents according to the literature, we can get: modified bio-calcium(3.13mg/g) ≒ Modified titanium dioxide P25-TiO2(3.14mg/g) > Titanium dioxide TiO2(3.06mg/g) > Activated Carbon(2.67mg/g) > Zeolite(2.70mg/g) > Chitosan(2.21mg/g).
(3) According to the determination method of bactericide environmental sanitation sterilization test (NIEA D201.01C), the bactericidal effect is confirmed to reach the highest value when the eggshell is calcined at 900℃ for 2hrs. The higher the concentration of bactericidal solution, the greater the bactericidal effect and the longer the bactericidal effect The more the number of sterilizations, the sterilization efficiency of 100% in 30 mins at a concentration of 1g/1L.
3. Discussion on Adsorption Kinetic Models
The adsorption kinetic model can be obtained through the analysis of the regression equation. Although the “pseudo-first-order adsorption kinetic model” is also within the standard analytical value, it should be carried out with the “pseudo-second-order adsorption kinetic model” or the “internal diffusion model”. Analysis shows that the internal reaction of the particles has two-stage adsorption characteristics of instantaneous adsorption on the surface of the inner pore wall and adsorption into the pores by diffusion, so the strong adsorption force is not easy to cause desorption.
4. Application of modified bio-calcium green building materials
(1) In the adsorption paint part of the application of adsorption building materials, experiments have shown that it can absorb a small amount of formaldehyde, but because the adsorption amount is very small, it is regarded as not having the effect of adsorbing free formaldehyde in indoor air.
(2) In the adsorption inorganic polymer tile part of the adsorption building material application, the experiment shows that the adsorption and degradation efficiency of formaldehyde is: Modified bio-calcium (92.7%) > Diatomite (88.1%) > Eggshell powder (80.6%).
(3) After the Toxic Dissolution (TCLP) test, all the test values did not exceed the standard, and there was no asbestos and radioactive substances, and the chloride ion content also met the standard value below, all in line with the general rules of Taiwan Green Building Materials.
(4) It is calculated that the CO2 emissions of 11.41kg of CO2 will be emitted for every 1m2 of absorbent inorganic polymer tiles produced, which can effectively reduce the carbon emission benefit by 23.22% and save 171 yuan / ton.
5. Certification Assessment and Discussion
(1) In the "Green Building Materials Evaluation", the evaluation criteria of "General Principles of Green Building Materials" can be passed, and in the evaluation of "Recycled Green Building Materials", except for the "Performance Test Items and Methods", all other evaluation criteria can be passed.
(2) In the "Innovative Green Building Materials Evaluation", "Innovative Development" and "Resource Utilization" can get a very high score rate.
(3) In the "Evaluation of Environmental Efficiency of Green Building Materials", it complies with the standards of green building materials for carbon inventory, and has a high score in the greenhouse gas emission index, so it has won an excellent evaluation.
(4) In the cradle-to-cradle evaluation of the circular economy framework system, the "Material Health" and "Material Recycling" evaluation items can obtain a "Silver-level" certification, and the "Renewable Energy Use and Carbon Management" evaluation items can only obtain "Basic-level" certification.
(5) After discussion the evaluation of "2030 Sustainable Development Goals" can be linked to SDG1 "1.5", SDG3 "3.9", SDG6 "6.3" "6.A", SDG8 "8.8" "8.9", SDG9 "9.1" "9.4" "9.5", SDG11 "11.5", "11.6", "11.C", SDG12 "12.4", "12.5", SDG17 "17.7", "17.8" and other 8 core strategic projects, and reached 16 sub-targets.
參考文獻

一、書籍
1.內政部建築研究所,2015,「綠建材解說與評估手冊2015年版。
2.田中俊六、武田仁、足立哲夫、土屋喬雄, 2004,最新建築環境工學,pp.181 六合出版社。
3.石原正雄,1969,建築換氣設計,pp.86-87 朝倉書店。
4.池田耕一,2011,「病態建築一級診斷士應試用教科書(上、下)」歐姆株式會社 佐藤正次發行。
5.行政院農委會,2021,「農業統計年報-畜牧生產」行政院農業委員會農糧署。
6.行政院環境保護署,2013,「事業廢棄物再利用管理參考手冊」。
7.江哲銘,1997,「建築物理」三民書局出版社。
8.林憲德,2012,「綠建築評估手冊-基本型」,內政部建築研究所。
9.孫國書,2015,「室內空氣品質管理與改善簡介」 環保技術與法規資訊電子報第104期 - 經濟部工業局產業資訊網。
10.張虎成,2013,「國家示範性院校建設項目成果系列-發酵原料藥生產」北京市:中國輕工業出版社。
11.張勝善,1986,「蛋品加工學」第33-39,68-79 頁 華香園出版社。
12.楊智惠,2013,「大腸桿菌培養探索較具實驗」義守大學生物科技叢書。
13.楊萬發,1995,「磁磚空氣汙染防制技術」經濟部工業局,文化印刷有限公司。
14.經濟部工業局,廢棄物資源化技術資料彙編,臺北市:經濟部,1999。
15.蔡耀賢、林芳銘、陳振誠, 2020,「綠建材解說與評估手冊2020年更新版」,內政部建築研究所。
16.謝豪晃,1989,「探討蛋形成與蛋殼品質的問題-飼料營養雜誌」第9期 茂群峪畜牧圖書公司。
17.C2C台灣分公司,2018,「Cradle to Cradle Certified搖籃到搖籃,邁向搖籃到搖籃之島—臺灣推動搖籃到搖籃設計策略規劃」,「Cradle to Cradle Certified, ProductStandard Version 3.1,臺灣搖籃到搖籃策略聯盟。
18.Davis C. Reeves R.,2002,「Eggshell and eggshellmembrane.」 High value opportunities from the chicken egg pp.30-35. RIRDC. Rhode Island.
19.Finland proceedings, 2000, Healthy Buildings 2000:[August 6-10, 2000, Espoo, Finland], Publishing: Helsinki SIY Indoor Air Information Oy.
20.LEED, 2014,「 Reference Guide For Building Design and Construction. USGBC」.
21.Simons, P. C. M.,1971,「Ultrastructure of the hen eggshell and its physiological interpretation.」Communication No. 175 Central Institute Poultry Research Beekbergen The Netherlands.
22.Solomon S. E. Bain M. M. Cranstoun S. Nascimento V.,1994,「Hen’s eggshell structure and function.」 Crted by Board R. G. Fuller R. Eds. Microbiology of the Avian Egg pp.1-5 Chapman and Hall London.
23.W.C. Shao, C.M. Chiang, T.Y. Chen,2003,「Integrated impacts of the indoor temperature on the characteristic of VOC emissions for local paints in Taiwan-solvent-based paints as example」,Healthy Buildings.
24.Well Building Institute, 2016,「The WELL Building Standard International」.
二、期刊論文
1.江哲銘,李彥頤,邵文政,蘇慧貞,2006,「相關裝修變因對辦公空間揮發性有機污染物濃度影響分析」中華民國建築學報,第49期pp.01-21。
2.江哲銘、陳念祖、周伯丞、李彥頤、連憶菁,2008,「水平導風板對室內自然通風之效益研究」中華民國建築學會建築學報 第64期pp.83-102。
3.林凱隆、羅康維、鄭大偉、許皓翔, 2020,「無機聚合物製成防火材料之應用」,土木水利,第47卷第2期,第21-434頁。
4.封娜(Feng Na.),2010,「室內甲醛污染的危害和防治」化工技術與研發 39(12) pp.37-40。
5.范繼中、藍惠玲、楊涵婷、吳純衡,2011,「煅燒溫度對貝殼結晶構型之影響」水產研究 19(2) pp.93-101。
6.張淑娟、黃耀棠,2010,「利用植物淨化室內甲醛污染的研究進展」生態環境學報 19(12)pp.3006-3013。
7.曾昭衡、劉肇昀,2017,「室內空氣品質改善策略-通風換氣」土木水利44卷6期。
8.黃琨智、江哲銘、李俊璋、鄭元良、林霧霆,2012,「台灣綠建材降低室內甲醛濃度之吸附性能檢測系統驗證」,臺灣建築學會「建築學報」,第80期,第63~83 頁。
9.詹榮鑑,2008,「添加牡蠣殼粉和爐石粉對多孔隙混凝土工程性質之研究」,萬能學報,第30期,第193-205頁。
10.楊矚明 張國友 何雯青,2016,「蛋殼作為吸附材料的研究進展」農業工程學報第32卷 北京 100081。
11.鄭大偉,邱俊萍,2002,「利用高爐爐石製成無機聚合材料之研究」,礦冶,第46卷第3期,第109-116頁。
12.鄭大偉,2010,「無機聚合技術的發展應用及回顧」,礦冶,第54 卷第1期,第140-157頁。
13.鄭大偉、蔡志達、李韋皞、吳佳正,2020,「無機聚合混凝土在國內應用的實例」,土木水利,第47卷第2期,第36-40頁。
14.鄭伉妙,顏瑞錫,吳天基,李宜樺,2011,「都市規劃導入搖籃到搖籃觀念之策略規劃研究」,台灣環境資源永續發展協會專刊,第121-133頁。
15.劉悅婷,葉青,王建飛,2019,「我國健康建築評價標準和國際WELL建築標準v2的比較分析」建築經濟 DOI:10.14181/j.cnki.1002-851x. 40(5):114-116.。
16.蔡寶珍、金荷仙、熊偉,2011,「室內植物對甲醛淨化性能的研究進展」中國農學通報 27(6) pp.30-34。
17.Alex I.,Paul F., 2013,「Heterogeneous Photocatalysis: Recent Advances and Applications.」Catalysts.MDPI.2013, 3(1):189-218.
18.Antonia M., Asterios B., Eleni A., 2001,「The effects of limestone characteristics and calcinations temperature to the reactivity of quicklime.」 Cement and Concerete Research, 31(4):633-639.
19.Asada T., Omichi M., Kimura T., Oikawa K., 2001,「Batericidal effect if calcium oxide and calcined shell calcium on legionella pneumophila.」 J. Heath SCI 47(4):414-418.
20.Ashish B., Bhaskar S., Upadhyay S.N., Sharma Y.C., 2011,「Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell.」 Bioresour Technol Pages 95-100.
21.Christoskova S.G., Danova N., Georgieva M.,1995,「Investigation of nickel oxide system for heterogeneous oxidation of organic compounds.」 Applied Catalysis A General 128(2):219–229.
22.Cwirzen A., Punkki J.,Engblom R., Habermehl-Cwirzen K., 2012,「Effects of curing: comparison of optimised alkali-activated PC-FA-BFS and PC concretes.」 Magazine of Concrete Research,vol.66, pp.315-323.
23.Dada A. O., et al., 2012,「Langmuir, Freundlich, Temkin and Dubinin Radushkevich Isotherms Stud ies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk.」 IOSR Journal of Applied Chemistry Vol.3, No.1, pp.38–45
24.Davidovits J., 1988,「Geopolymer chemistry and properties.」 Geopolymer 88, France, pp.25-48.
25.Davidovits J., Comrie D. C., Paterson J. H., 1990,「Geopolymer concrete for environmental protection.」 Concrete, vol.21, pp.30-40.
26.Davidovits J., 1991,「Geopolymers : inorganic polymeric new materials, Journal of Thermal Analysis.」 Vol.37, pp.1633-1656.
27.Davidovits J., 2008,「Geopolymer chemistry and applications.」 France: Geopolymer Institute, pp.100.
28.Davis C., Reeves. R., 2002,「Eggshell and eggshell membrane. High value opportunities from the chicken egg.」 A a report for the Rural Industries Research and Development Corporation. Rirdc publication. 2:1-6.
29.Douwes, J., Thorne, P., Pearce, N. and Heedreik, D.,2003,「Bioaerosol healtheffects and exposure assessment:progress and prospects.」 Annals of Occupational Hygiene 3(47):187-200.
30.Elena M., Alexandre M. R., Andea M. C., 2002,「Studies on the mechanisms of lead immobilization by hydroxyapatite.」Environ. Sci. Technol. 36:1625-1629.
31.Feng Na.,2010,「Harmfulness and treatment of indoor formaldehyde.」 Technology & Development of Chemical Industry 39(12):37-40.
32.Feng S.Q., 2002,「China's Poultry Industry Affected by WTO.」World Poultry 18(2):12-14.
33.Foster J.J., Masel R.I.,1986,「Formaldehyde oxidation on nickel oxide.」 Industrial & Engineering Chemistry Product Research and Development 25(4):563-568.
34.Gil-Lim Y., Byung-Tak K., Baeck-Oon K., Sang-Hun H.,2003,「Chemical-mechanical characteristics of crushed oyster-shell.」 Waste Manag. 23:825-834.
35.HAO H.Q., ZHANG Y.Z., HAO S.J., ZHANG C.F., JIANG W.F., CUI P.H.,2016,「Preparation and Metallurgical Analysis of High Activity Burnt Lime for Steelmaking.」 Journal of Iron and Steel Resarch,International.SCI 23(9):884-890.
36.Hincke M. T., Gautron J., Panheleux M., Garcia-Ruiz J., McKee M.D. Nys Y., 2000,「Identification and localization of lysozyme as a component of eggshell membrane and eggshell matrix.」 Matrix Biol. 19(5):443-53.
37.Hyok-Bo K., Chan-Won L., Byung-Sei J., Jon-Do Y., Seung-Yeon W., Ben K.,2004,「Recycling waste oyster shells for eutrophication control.」 Conserv. Genet. Resour. 41:75-82.
38.Jai P.H., Wook J. S., Kyu Y. J., Gil K. B., Mok L. S., 2007,「Removal of heavy metals using waste eggshell.」 J Environ Sci (China). 19(12):1436-41.
39.Jiao Z., Luo P. C., Wu Y. T.,2006,「 Absorption of lean formaldehyde from air with Na2SO3 solution.」Journal of Hazardous Materials 134(1/3):176-182.
40.Köse, T. E., Kıvanç B., 2011,「Adsorption of phosphate from aqueous solutions using calcined waste eggshell.」 Chemical Engineering Journal, 178:34-39.
41.Levin H.,1995,「Building ecology: an architect perspective on healthy buildings」,in Maroni et al., Proceedings of Healthy Buildings‘95 Proceedings of the Fourth International Conference on Healthy Buildings Milan Italy September.
42.Liu X.H., Zhang X.G., Wang X.Y., Lou N.Q.,1997,「Solvation of magnesium oxide clusters with water in direct laser vaporization.」 International Journal of Mass Spectrometry and Ion Processes. 171(1-3):L7-L11.
43.Nilofar Asim,et al., 2019,「Emerging sustainable solutions for depollution: Geopolymers.」 Construction and Building Materials 199 pp.540–548
44.Roy D. M., Elliot J. C., 1969,「Synthesis and characterization of carbonate hydroxyapatite.」 Calcified Tissue Int.3:293-298.
45.Sawai J., Miyoshi H., Kojima H.H.,2003,「Sporicidal kinetics of Bacillus subtilis spores by heated scallop shell powder.」 Food Prot. 66:1482-1485.
46.Sawai J., Shiga H., Kojima H.,2003,「Kinetic analysis of the bactericidal action of heated scallop-shell powder.」Int. J. Food Microbiol. 71: 211-218
47.Schaafsma A., Pakan I., Hofstede G. J. H., Muskiet F. A. J., Van Der Veer E., De Vries P. J. F., 2000,「Mineral, amino acid, and hormonal composition of chickn eggshell powder and the evaluation of its use in human nutrition.」 Poultry Sci.87:267-275.
48.Sekine Y., Nishimura A.,2001,「 Removal of formaldehyde from indoor air by passive type air-cleaning materials.」 Atmospheric Environment 35(11):2001–2007.
49.Sekine Y.,2002,「Oxidation decomposition of formaldehyde by metal oxides at room temperature.」 Atmospheric Environment 36(35):5543–5547.
50.Takeuchi Y., Arai H., 1990,「Removal of coexisting Pb2⁺, Cu2⁺ and Cd2+ ions from water by addition of hydroxyl-apatite powder.」 Chem. Eng. Jpn. 23:75-80.
51.Wei Z., Xu C., Li.B., 2009,「Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour.」 Technol. 100:2883–2885.
52.Witoon T., 2011,「Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent.」 Ceramics International 37:3291-3298.
53.Yamamoto A., Takagi H., Kitamura D., Tatsuoka H., Nakano H., Kawano H., Kuroyanagi H., Yahagi Y., Kobayashi S., Koizumi K., Sakai T., Saito K., Chiba T., Kawamura K., Suzuki K., Watanabe T., Mori H., Shirasawa T.,1998,「Deficiency in protein-isoaspartyl methyltransferase results in a fatal progressive epilepsy.」 Neurosci 18:2063–2074.
54.Y.Huang, M.F.Han, 2011,「The influence of α-Al2O3 addition on micro-structure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products.」 Journal of Hazardous Materials 193 pp.90–94
55.Yi Huang, Minfang Han, Ruanrong Yi, 2012,「Microstructure and properties of fly ash-based geopolymeric material with 5A zeolite as a filler.」 Construction and Building Materials 33 pp.84–89
56.Zhang C.B., He H., Tanaka K.I.,2005,「Perfect catalytic oxidation of formaldehydes over a Pt/ TiO2 catalyst at room temperature.」 Catalysis Communications 6(3):211-214.
57.Zhang C B., He H., 2007,「A comparative study of TiO2. supported noble metal catalysts for the oxidation of formaldehyde at room temperature.」 Catalysis Today 126(3/4):345-350.
58.Zhenguang Y., Zi F., Zhuojun M., Jinye D., Shuo L., Liping X., Rongqing Z., 2007,「Biomineralization: Functions of calmodulin-like protein in the shell formation of pearl oyster.」 Biochim. Biophys. Acta 1770:1338-1344.
三、學位論文
1.王俞文,2008,「幾丁聚醣濾網降低室內空氣甲醛濃度之研究」 國立臺北科技大學環境工程與管理研究所 碩士論文。
2.李云瑄,2020,「牡蠣殼類循環型建材性能驗證與評估之研究」 國立臺北科技大學建築系建築與都市設計研究所 碩士論文。
3.佘宗銘,2012,「綠建築案例與環境空氣電位之探討」 中華大學土木工程研究所 碩士論文。
4.邵文政,2004,「建材揮發有機化合物管制策略之研究 」 成功大學建築研究所博士論文。
5.邵盈傑,2004,「二氧化鈦光觸媒對水溶液中小分子有機酸之去除及大腸桿菌殺菌效果之探討」 國立中興大學環境工程研究所 碩士論文。
6.周伯丞,2000,「建築軀殼開口部自然通風效果之研究」 國立成功大學建築研究所博士論文。
7.林壹鴻,2011,「灰化牡蠣殼粉應用於截切蔬菜對其品質影響之研究」 中國文化大學生活應用科學研究所 碩士論文。
8.郝華強,2017,「不同微觀結構石灰的製備及對鍊鋼造渣過程的影響研究」 中國東北大學材料工程學院 博士論文。
9.徐嘉玲,2003,「二氧化鈦塗料的殺菌作用」 大同大學生物工程學系研究所 碩士論文。
10.陳志恩,2013,「利用廢棄物為催化劑製作生質柴油之研究」 國立中山大學環境工程研究所 碩士論文。
11.陳俞君,2010,「中孔洞複合材料之合成、分析與對二氧化碳吸附之研究」 國立交通大學材料科學與工程研究所 碩士論文。
12.陳信安,2012,「無機聚合技術應用於綠色水泥及綠色混凝土之研究」 國立臺北科技大學資源工程研究所 碩士論文。
13.張捷安,2017,「創新綠建材評估指標與發展趨勢之研究」 國立臺北科技大學建築與都市設計研究所 碩士論文。
14.張凱婷,2015,「廢棄蛋殼與煅燒對水溶液中銀與鎳之吸附能力」 東海大學畜產與生命科技研究所 碩士論文。
15.莊棖貿,2016,「活性碳濾網吸附甲醛之動力模式及其應用」 國立臺北科技大學環境工程與管理研究所 碩士論文。
16.黃柏華,2018,「酸性改質活性碳去除室內甲醛之研究」 國立臺北科技大學環境工程與管理研究所 碩士論文。
17.馮慧蕙,2012,「應用改質吸附劑去除室內環境中甲醛之研究」 中原大學生物環境工程研究所 碩士論文。
18.葉誠達,2020,「活性氧化鋁附載鉑金屬對於甲醛去除之研究」 國立臺北科技大學環境工程與管理研究所 碩士論文。
19.薛人瑋,2010,「潔淨室外氣空調用化學濾網上之甲苯吸附平衡、動力學及穿透理論模式卻效性研究」 國立台北科技大學機械科技研究所 博士論文。
20.謝婷婷,2013,「氣候變遷下綠建材環境效率評估模式之研究」 國立成功大學建築學系博士班 博士論文。
21.Wargocki P.,1998,「Human Perce ption, Productivity and Symptoms Related to Indoor Air Quality.」 Ph.D. Technical University of Denmark.
四、研究計畫
1.江哲銘,1997,「建築技術規則通風條文增修訂之研究」 內政部建築研究所委託研究計畫。
2.江哲銘、李俊璋,林芳銘,邵文政,2010,「綠建材對甲醛及 TVOC 吸附性能之測試方法驗證計畫」 內政部建築研究所委託研究報告。
3.江哲銘、李俊璋,2011「綠建材吸附甲醛及TVOC性能評定基準驗證計畫」內政部建築研究所委託研究報告。
4.李慧梅、李家偉、洪崇軒、呂事勳,2003,「室內空氣清淨技術與成效評估」 國科會空污防制科研計畫。
5.林憲德、蔡耀賢、楊詩弘、尤巧茵,2019「建築材料碳足跡資料系統建置之研究」 內政部建築研究所委託研究報告。
6.陳文卿、陳靖原,2018,「綠建材循環經濟產業鏈結推廣計畫」 內政部建築研究所業務委託計畫成果報告。
7.黃倩芸、洪劍長、陳幸婷, 1997,「辦公建築室內裝修建材逸散物質對室內空氣品質影響之調查研究」內政部建築研究所委託研究計畫。
8.廖錦聰、陳禱、林淑華、陳宏仁、關家倫、陳崇智、劉毅弘,2007「再生綠建材技術開發與實驗室管理」 內政部建築研究所補助研究報告,第7-44頁。
9.蔡志達、龔東慶、陳宏達、張建智、于寧、廖錦聰、陳宏仁、吳智庭,2008「再生綠建材開發與推廣應用計畫」 內政部建築研究所補助研究報告,第46-52頁。
10.蕭江碧、陳寒濤、林憲德、楊冠雄,2003「建築外殼建材之隔熱性能評估研究」 內政部建築研究所研究計畫成果報告。
11.蘇慧貞,江哲銘,1997-2003,「室內空氣品質標準於不同建築物之試行評估及管制策略研定」行政院環保署專題委託研究計畫。
五、會議
1.王志豪、鄭大偉,「無機聚合綠色水泥及混凝土之收縮性質及耐久特性之研究」,中華民國環境工程學會2015廢棄物處理技術研討會論文集,中壢,2015。
2.江毓庭、邵文政、鄭大偉、林彥廷,「牡蠣殼發泡隔熱磚建材性能試驗之研究」,中華民國空間設計學會2021論文集,臺南,2021。
3.李云瑄、邵文政、鄭大偉、林彥廷、江毓庭,「在地循環之牡蠣殼高壓磚建材性能試驗」,中華民國空間設計學會2020論文集,彰化, 2020。
4.邵文政 江哲銘 陳丁于 陳逸青,「複合建材揮發性有機物質逸散特性之研究-以接著劑為例」,中華民國建築學會第十六屆第二次建築研究成果發表會論文集,2004。
5.秦偉庭、邵文政、宋承翰、何明錦、陳瑞鈴、呂文弘,「室內裝修應用健康綠建材控制揮發性有機化合物之研究-以內政部建築研究所辦公室裝修工程為例」 中華民國建築學會第十八屆第二次建築研究成果發表會論文集,2006。
6.楊立昌,鄭大偉,「無機聚合綠色水泥收縮性與工作性改善之研究」, 102年環保技術與工程實務研討會論文集,台灣台北,2013。
六、網站
1.中央畜產會,2001,「日本研發蛋殼資源再生利用之新科技」Available:http://www.naif.org.tw
2.中國國家建築材料工程研究院測試中心,2020,Available:http://www.cbmtc.com/
3.行政院環保署IAQ室內空氣品質資訊網,2020,Available:https://iaq.epa.gov.tw/indoorair/page/News_6_1.aspx
4.美國環保署整合毒理資料庫,2022,Integrated Risk Information System, IRIS. Available:https://www.epa.gov/iris
5.經濟部工業局產業資訊網,2019,「室內空氣品質改善技術簡介」 Available:https://proj.ftis.org.tw/eta/epaper/PDF/ti104-1.pdf
6.©BEEAM Building Research Establishment BEEAM., 2020, https://www.breeam.com/
7.©Column, Circular Taiwan Network, Circular Foundation (Dec. 2021). 循環台灣基金會 Available: https://circular-taiwan.org/2021/12/30/
8.©WELL建築,2020,「11項人體系統與7大指標」Available:https://www.wellcertified.com
9.©EPEA Intl. Umweltforschung Gmbh Taiwan Branch (June 2020).
C2C台灣分公司Cradle to Cradle® Platform Message. Available: http://www.c2cplatform.tw/c2c.php?Key=1.
10.©SDGs Column,The United Nations Commission on Sustainable Development (CSD) Sustainable Development Knowledge Platffrm (May 2022). Available: https://sustainabledevelopment.un.org/intgovmental.html

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE