:::

詳目顯示

回上一頁
題名:感染病原體及宿主免疫反應即時檢測方法開發及臨床驗證
作者:陳正翰
作者(外文):Chen, Cheng-Han
校院名稱:國立清華大學
系所名稱:跨院國際博士班學位學程
指導教授:鄭兆珉
學位類別:博士
出版日期:2022
主題關鍵詞:敗血症即時檢測側向流體免疫分析法IL-6快速篩檢系統細胞激素陣列分析Sepsisbacteria detectionInterleukin-6 rapid diagnostic systemLateral flow immunoassaypoint-of care testingCytokines array
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
N/A
Sepsis remains a considerable threat to health loss and socio-economic burden in the contemporary healthcare system. Sepsis mortality is significantly rising if delayed diagnosis and inappropriate treatment and management. However, the variety of patients' clinical presentations and the labor-intensive laboratory examinations impede the diagnosis of sepsis. Therefore, it is essential to recognize the critical information of septic patients early and effectively. Nowadays, the crucial information about controlling sepsis might be separated into two major issues: pathogen identification and host immune response. This doctoral project aims to develop point-of-care (POC) devices assisting sepsis management and further evaluate the potential effectiveness of these POC devices in clinical samples.
Prompt recognition of the presence of microorganisms is critical for controlling infectious diseases. Standard culture methods, however, are time-consuming, inefficient, and laborious. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-phenazine methosulfate (MTT-PMS) assay has been utilized for screening living microbes. By adding NaOH and Tris-EDTA, the process of the modified assay can be expedited (within 15 min) and quickly detect common living microbes. The results of the MTT-PMS assay can be assessed colorimetrically and semi-quantitatively via the ELISA reader. The assay had a detection limit of approximately 104 CFU/mL in buffered system. In the clinical efficacy evaluation, the MTT-PMS assay showed the negative predictive value for detecting living microbes at the concentration of 105 CFU/mL was approximately 80 percent in urine samples but was 100 percent when the redox interference of abnormal blood in urine was excluded. Thus, the MTT-PMS assay might provide a conceivable screening result costing only USD 1 per test. Given the features of rapid results, easy to use, and low expenditure, the MTT-PMS assay may be a potential tool for microorganism detection.
Interleukin-6, on the other hand, is a cytokine that will be released into the bloodstream in response to sepsis. Previous studies had demonstrated the elevation of Interleukin-6 (IL-6) indicated a higher possibility of poor outcome. However, the conventional measurement of IL-6 of the enzyme-linked immunosorbent assay (ELISA), which comprises several steps, and is time consuming and laborious, impedes the IL-6 measurement in clinical utilization. The IL-6 rapid diagnostic system combined with a lateral flow immunoassay-based IL-6 test strip and a spectrum-based optical reader is a novel tool developed for rapid and continuous bedside monitoring of serum IL-6. The prospective observational study demonstrated the efficacy of serum IL-6 detection platform in predicting respiratory failure of the elderly patients with pneumonia. In consecutive measurement, decreased serum IL-6 concentrations within 24 h after admission indicated a lower risk of developing respiratory failure (ROC curve=0.696, p=0.072) Sequential IL-6 measurements with the IL-6 rapid diagnostic system might be useful in early clinical risk assessment and severity stratification in elderly patients with pneumonia. The IL-6 rapid diagnosis system is a potential point-of-care diagnostic device for continuous serum IL-6 monitoring. Besides the IL-6 measurement, a sub-analysis study with cytokine array demonstrated the relationship among significant decreased serum IL-1β after admission and the development of respiratory failure in later admission courses. These findings could be further integrated the other cytokines into the new POC devices development.
Thus, this doctoral project discovered the potential clinical application of the point-of-care devices with the MTT-PMS assay and the IL-6 rapid diagnostic system. These POC devices for rapid sepsis management could be further optimized by incorporating machine learning and the internet of things (IoT). The quality of care for sepsis can be improved with the rapid, ease-to-use, and disposable POC devices for bacterial screening and host immune response evaluation.
Reference
1. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. Jan 18 2020;395(10219):200-211. doi:10.1016/s0140-6736(19)32989-7
2. Mitsakakis K, D'Acremont V, Hin S, von Stetten F, Zengerle R. Diagnostic tools for tackling febrile illness and enhancing patient management. Microelectron Eng. Dec 5 2018;201:26-59. doi:10.1016/j.mee.2018.10.001
3. El Bcheraoui C, Mokdad AH, Dwyer-Lindgren L, et al. Trends and Patterns of Differences in Infectious Disease Mortality Among US Counties, 1980-2014. JAMA. 2018;319(12):1248-1260. doi:10.1001/jama.2018.2089
4. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical care medicine. Jun 2006;34(6):1589-96. doi:10.1097/01.Ccm.0000217961.75225.E9
5. Shallcross LJ, Davies DS. Antibiotic overuse: a key driver of antimicrobial resistance. Br J Gen Pract. Dec 2014;64(629):604-5. doi:10.3399/bjgp14X682561
6. Kiyatkin D, Bessman E, McKenzie R. Impact of antibiotic choices made in the emergency department on appropriateness of antibiotic treatment of urinary tract infections in hospitalized patients. J Hosp Med. Mar 2016;11(3):181-4. doi:10.1002/jhm.2508
7. Thomas ST HC, Price CP, Van den Bruel A, Plüddemann A. . Point-of-care testing for urinary tract infections 2016. https://www.community.healthcare.mic.nihr.ac.uk/reports-and-resources/horizon-scanning-reports/point-of-care-testing-for-urinary-tract-infections
8. Davenport M, Mach KE, Shortliffe LMD, Banaei N, Wang TH, Liao JC. New and developing diagnostic technologies for urinary tract infections. Nat Rev Urol. May 2017;14(5):296-310. doi:10.1038/nrurol.2017.20
9. Chu CM, Lowder JL. Diagnosis and treatment of urinary tract infections across age groups. Am J Obstet Gynecol. Jul 2018;219(1):40-51. doi:10.1016/j.ajog.2017.12.231
10. Vila J, Gómez MD, Salavert M, Bosch J. [Methods of rapid diagnosis in clinical microbiology: Clinical needs]. Enferm Infecc Microbiol Clin. Jan 2017;35(1):41-46. Métodos de diagnóstico rápido en microbiología clínica: necesidades clínicas. doi:10.1016/j.eimc.2016.11.004
11. Reali S, Najib EY, Treuerné Balázs KE, et al. Novel diagnostics for point-of-care bacterial detection and identification. RSC Advances. 2019;9(37):21486-21497. doi:10.1039/c9ra03118a
12. Huang M, Cai S, Su J. The Pathogenesis of Sepsis and Potential Therapeutic Targets. Int J Mol Sci. Oct 29 2019;20(21)doi:10.3390/ijms20215376
13. David S, Brunkhorst FM. [Sepsis-3 : What has been confirmed in therapy?]. Internist (Berl). Dec 2017;58(12):1264-1271. Sepsis-3 : Was ist gesichert in der Therapie? doi:10.1007/s00108-017-0338-5
14. Reddy B, Hassan U, Seymour C, et al. Point-of-care sensors for the management of sepsis. Nature Biomedical Engineering. 2018/09/01 2018;2(9):640-648. doi:10.1038/s41551-018-0288-9
15. Hojyo S, Uchida M, Tanaka K, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen. 2020;40:37. doi:10.1186/s41232-020-00146-3
16. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect. Jun 2020;80(6):607-613. doi:10.1016/j.jinf.2020.03.037
17. World Health O. Guidelines for the regulatory assessment of medicinal products for use in self-medication. Geneva: World Health Organization; 2000.
18. Vashist SK. Point-of-Care Diagnostics: Recent Advances and Trends. Biosensors (Basel). Dec 18 2017;7(4)doi:10.3390/bios7040062
19. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: status and future. Anal Chem. Jan 17 2012;84(2):487-515. doi:10.1021/ac2030199
20. Chin CD, Linder V, Sia SK. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip. Jan 2007;7(1):41-57. doi:10.1039/b611455e
21. Fortune Business Insights. Point of Care [POC] Diagnostics Market Size, Share & COVID-19 Impact analysis, By Product (Blood Glucose Monitoring, Infectious Disease Testing, Cardiometabolic Disease Testing, Pregnancy & Fertility Testing, Hematology Testing, and Others), By Sample ( Blood, Nasal and Oropharyngeal Swabs, Urine, and Others), By End-user ( Hospital Bedside, Physician’s Office Lab, Urgent Care & Retail Clinics, and Homecare/Self-Testing), and Regional Forecast, 2022-2029. Internet. Fortune Business Insights. Accessed July 6th, 2022. https://www.fortunebusinessinsights.com/industry-reports/point-of-care-diagnostics-market-101072
22. Global Market Insight. Point of Care Testing Market Share Forecast 2022-2030. Internet. Updated July 2022. Accessed July 11, 2022. https://www.gminsights.com/industry-analysis/point-of-care-testing-market
23. Jani IV, Peter TF. How Point-of-Care Testing Could Drive Innovation in Global Health. New England Journal of Medicine. 2013;368(24):2319-2324. doi:10.1056/NEJMsb1214197
24. Peeling R. WHO programme on the evaluation of diagnostic tests. Bull World Health Organ. Aug 2006;84(8):594.
25. Florkowski C, Don-Wauchope A, Gimenez N, Rodriguez-Capote K, Wils J, Zemlin A. Point-of-care testing (POCT) and evidence-based laboratory medicine (EBLM) - does it leverage any advantage in clinical decision making? Crit Rev Clin Lab Sci. Nov - Dec 2017;54(7-8):471-494. doi:10.1080/10408363.2017.1399336
26. Kozel TR, Burnham-Marusich AR. Point-of-Care Testing for Infectious Diseases: Past, Present, and Future. Journal of clinical microbiology. 2017;55(8):2313-2320. doi:10.1128/jcm.00476-17
27. Vilmi P, Varjo S, Sliz R, Hannuksela J, Fabritius T. Disposable optics for microscopy diagnostics. Sci Rep. Nov 20 2015;5:16957. doi:10.1038/srep16957
28. Drain PK, Hyle EP, Noubary F, et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis. Mar 2014;14(3):239-49. doi:10.1016/s1473-3099(13)70250-0
29. Kost GJ, Mecozzi DM, Brock TK, Curtis CM. Assessing Point-of-Care Device Specifications and Needs for Pathogen Detection in Emergencies and Disasters. Point Care. Jun 1 2012;11(2):119-125. doi:10.1097/POC.0b013e31825a25cb
30. Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria - A review. Acta Histochem. May 2018;120(4):303-311. doi:10.1016/j.acthis.2018.03.007
31. Liao Y-H, Muthuramalingam K, Tung K-H, et al. Portable Device for Quick Detection of Viable Bacteria in Water. Micromachines. Dec 4 2020;11(12):1079. doi:10.3390/mi11121079
32. Andrijevic I, Matijasevic J, Andrijevic L, Kovacevic T, Zaric B. Interleukin-6 and procalcitonin as biomarkers in mortality prediction of hospitalized patients with community acquired pneumonia. Ann Thorac Med. Jul 2014;9(3):162-7. doi:10.4103/1817-1737.134072
33. Chen R, Sang L, Jiang M, et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol. Jul 2020;146(1):89-100. doi:10.1016/j.jaci.2020.05.003
34. Liu T, Zhang J, Yang Y, et al. The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol Med. Jul 7 2020;12(7):e12421. doi:10.15252/emmm.202012421
35. Weidhase L, Wellhöfer D, Schulze G, et al. Is Interleukin-6 a better predictor of successful antibiotic therapy than procalcitonin and C-reactive protein? A single center study in critically ill adults. BMC Infect Dis. Feb 13 2019;19(1):150. doi:10.1186/s12879-019-3800-2
36. Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. Oct 2015;72:4-15. doi:10.1016/j.peptides.2015.04.012
37. Schefold JC, Hasper D, von Haehling S, Meisel C, Reinke P, Schlosser HG. Interleukin-6 serum level assessment using a new qualitative point-of-care test in sepsis: A comparison with ELISA measurements. Clin Biochem. Jul 2008;41(10-11):893-8. doi:10.1016/j.clinbiochem.2008.03.008
38. Lagier J-C, Edouard S, Pagnier I, Mediannikov O, Drancourt M, Raoult D. Current and past strategies for bacterial culture in clinical microbiology. Clinical microbiology reviews. 2015;28(1):208-236.
39. Sanders ER. Aseptic laboratory techniques: plating methods. JoVE (Journal of Visualized Experiments). 2012;(63):e3064.
40. Chen C-H, Tsao Y-T, Yeh P-T, et al. Detection of Microorganisms in Body Fluids via MTT-PMS Assay. Diagnostics. 2022;12(1):46.
41. Price TK, Dune T, Hilt EE, et al. The Clinical Urine Culture: Enhanced Techniques Improve Detection of Clinically Relevant Microorganisms. Journal of clinical microbiology. May 2016;54(5):1216-22. doi:10.1128/jcm.00044-16
42. Cedillo-Rivera R, Ramírez A, Muñoz O. A rapid colorimetric assay with the tetrazolium salt MTT and phenazine methosulfate (PMS) for viability of Entamoeba histolytica. Arch Med Res. 1992;23(2):59-61.
43. Grela E, Kozlowska J, Grabowiecka A. Current methodology of MTT assay in bacteria - A review. Acta Histochem. May 2018;120(4):303-311. doi:10.1016/j.acthis.2018.03.007
44. Finnegan S, Percival SL. EDTA: an antimicrobial and antibiofilm agent for use in wound care. Advances in wound care. 2015;4(7):415-421.
45. Thomas KJ, Rice CV. Revised model of calcium and magnesium binding to the bacterial cell wall. Biometals. 2014;27(6):1361-1370.
46. Wang H, Wang F, Tao X, Cheng H. Ammonia-containing dimethyl sulfoxide: an improved solvent for the dissolution of formazan crystals in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Analytical biochemistry. Feb 1 2012;421(1):324-6. doi:10.1016/j.ab.2011.10.043
47. Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria – A review. Acta Histochemica. 2018/05/01/ 2018;120(4):303-311. doi:https://doi.org/10.1016/j.acthis.2018.03.007
48. Rose C, Parker A, Jefferson B, Cartmell E. The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Crit Rev Environ Sci Technol. Sep 2 2015;45(17):1827-1879. doi:10.1080/10643389.2014.1000761
49. Deshmukh D, Joseph J, Chakrabarti M, et al. New insights into culture negative endophthalmitis by unbiased next generation sequencing. Sci Rep. Jan 29 2019;9(1):844. doi:10.1038/s41598-018-37502-w
50. Malekzadeh D, Osmon DR, Lahr BD, Hanssen AD, Berbari EF. Prior use of antimicrobial therapy is a risk factor for culture-negative prosthetic joint infection. Clin Orthop Relat Res. Aug 2010;468(8):2039-45. doi:10.1007/s11999-010-1338-0
51. Fenollar F, Raoult D. Molecular genetic methods for the diagnosis of fastidious microorganisms. Apmis. Nov-Dec 2004;112(11-12):785-807. doi:10.1111/j.1600-0463.2004.apm11211-1206.x
52. Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn. Dec 2001;6(4):313-21. doi:10.1054/modi.2001.29158
53. Novosad BD, Callegan MC, West, et al. Severe bacterial endophthalmitis: towards improving clinical outcomes. Expert review of ophthalmology. 2010;5(5):689-698.
54. Al-Omran AM, Abboud EB, EL-ASRAR AMA. Microbiologic spectrum and visual outcome of posttraumatic endophthalmitis. Retina. 2007;27(2):236-242.
55. Jackson TL, Eykyn SJ, Graham EM, Stanford MR. Endogenous bacterial endophthalmitis: a 17-year prospective series and review of 267 reported cases. Survey of ophthalmology. 2003;48(4):403-423.
56. Durand ML, Miller JW, Young LH. Endophthalmitis. Springer; 2016.
57. Schwartz SG, Flynn Jr HW. Update on the prevention and treatment of endophthalmitis. Expert review of ophthalmology. 2014;9(5):425-430.
58. Jackson TL, Paraskevopoulos T, Georgalas I. Systematic review of 342 cases of endogenous bacterial endophthalmitis. Survey of Ophthalmology. 2014;59(6):627-635.
59. Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. Jan-Dec 2019;11:1756287219832172. doi:10.1177/1756287219832172
60. Mambatta AK, Jayarajan J, Rashme VL, Harini S, Menon S, Kuppusamy J. Reliability of dipstick assay in predicting urinary tract infection. J Family Med Prim Care. Apr-Jun 2015;4(2):265-8. doi:10.4103/2249-4863.154672
61. Stepanenko AA, Dmitrenko VV. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. Dec 15 2015;574(2):193-203. doi:10.1016/j.gene.2015.08.009
62. Postnikova GB, Shekhovtsova EA. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes. Biochemistry (Mosc). Dec 2016;81(13):1735-1753. doi:10.1134/s0006297916130101
63. Bartlett JM, Stirling D. A short history of the polymerase chain reaction. PCR protocols. Springer; 2003:3-6.
64. Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in microbiology. 2015;6:791. doi:10.3389/fmicb.2015.00791
65. Bizzini A, Greub G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. Nov 2010;16(11):1614-9. doi:10.1111/j.1469-0691.2010.03311.x
66. Jacobs MR, Mazzulli T, Hazen KC, et al. Multicenter Clinical Evaluation of BacT/Alert Virtuo Blood Culture System. Journal of clinical microbiology. Aug 2017;55(8):2413-2421. doi:10.1128/jcm.00307-17
67. Kim SC, Lee S, Kim S, Cho OH, Park H, Yu SM. Comparison of Clinical Performance Between BacT/Alert Virtuo and BacT/Alert 3D Blood Culture Systems. Ann Lab Med. May 2019;39(3):278-283. doi:10.3343/alm.2019.39.3.278
68. Wang H, Cheng H, Wang F, Wei D, Wang X. An improved 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. Journal of microbiological methods. 2010;82(3):330-333.
69. Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria–A review. Acta histochemica. 2018;120(4):303-311.
70. Matsuura K, Wang WH, Ching A, Chen Y, Cheng CM. Paper-Based Resazurin Assay of Inhibitor-Treated Porcine Sperm. Micromachines (Basel). Jul 25 2019;10(8)doi:10.3390/mi10080495
71. Matsuura K, Huang H-W, Chen M-C, Chen Y, Cheng C-M. Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices. Scientific Reports. 2017/04/07 2017;7(1):46213. doi:10.1038/srep46213
72. Lin SC, Hsu MY, Kuan CM, et al. Cotton-based diagnostic devices. Sci Rep. Nov 13 2014;4:6976. doi:10.1038/srep06976
73. Tsao YT, Yang CY, Wen YC, et al. Point‐of‐care semen analysis of patients with infertility via smartphone and colorimetric paper‐based diagnostic device. Bioengineering & Translational Medicine. 2020;doi:10.1002/btm2.10176
74. Vincent JL. The Clinical Challenge of Sepsis Identification and Monitoring. PLoS Med. May 2016;13(5):e1002022. doi:10.1371/journal.pmed.1002022
75. Seymour CW, Gesten F, Prescott HC, et al. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N Engl J Med. Jun 8 2017;376(23):2235-2244. doi:10.1056/NEJMoa1703058
76. Alam N, Oskam E, Stassen PM, et al. Prehospital antibiotics in the ambulance for sepsis: a multicentre, open label, randomised trial. Lancet Respir Med. Jan 2018;6(1):40-50. doi:10.1016/S2213-2600(17)30469-1
77. Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. Nov-Dec 2013;27(6):669-84.
78. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Frontiers in immunology. 2020;11:1446.
79. Tabassum T, Rahman A, Araf Y, Ullah MA, Hosen MJ. Prospective selected biomarkers in COVID-19 diagnosis and treatment. Biomarkers in Medicine. 2021/10/01 2021;15(15):1435-1449. doi:10.2217/bmm-2021-0038
80. Chen CH, Lin SW, Shen CF, Hsieh KS, Cheng CM. Biomarkers during COVID-19: Mechanisms of Change and Implications for Patient Outcomes. Diagnostics (Basel). Feb 16 2022;12(2)doi:10.3390/diagnostics12020509
81. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. The Journal of clinical investigation. 2003;111(12):1805-1812. doi:10.1172/jci18921
82. Hahn W-H, Song J-H, Kim H, Park S. Is procalcitonin to C-reactive protein ratio useful for the detection of late onset neonatal sepsis? The Journal of Maternal-Fetal & Neonatal Medicine. 2018;31(6):822-826.
83. Mooiweer E, Luijk B, Bonten MJM, Ekkelenkamp MB. C-Reactive protein levels but not CRP dynamics predict mortality in patients with pneumococcal pneumonia. Journal of Infection. 2011/04/01/ 2011;62(4):314-316. doi:https://doi.org/10.1016/j.jinf.2011.01.012
84. Rowland T, Hilliard H, Barlow G. Chapter Three - Procalcitonin: Potential Role in Diagnosis and Management of Sepsis. In: Makowski GS, ed. Advances in Clinical Chemistry. Elsevier; 2015:71-86.
85. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection. Frontiers in immunology. 2018;9:754-754. doi:10.3389/fimmu.2018.00754
86. Rodríguez A, Reyes LF, Monclou J, et al. Relationship between acute kidney injury and serum procalcitonin (PCT) concentration in critically ill patients with influenza infection. Medicina Intensiva. 2018/10/01/ 2018;42(7):399-408. doi:https://doi.org/10.1016/j.medin.2017.12.004
87. Shimazui T, Matsumura Y, Nakada T-a, Oda S. Serum levels of interleukin-6 may predict organ dysfunction earlier than SOFA score. https://doi.org/10.1002/ams2.263. Acute Medicine & Surgery. 2017/07/01 2017;4(3):255-261. doi:https://doi.org/10.1002/ams2.263
88. Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Brückner UB. Is interleukin 6 an early marker of injury severity following major trauma in humans? Archives of surgery. 2000;135(3):291-295.
89. Kuribayashi T. Elimination half-lives of interleukin-6 and cytokine-induced neutrophil chemoattractant-1 synthesized in response to inflammatory stimulation in rats. lar. 06 2018;34(2):80-83. doi:10.5625/lar.2018.34.2.80
90. Song J, Park DW, Moon S, et al. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions. BMC Infectious Diseases. 2019/11/12 2019;19(1):968. doi:10.1186/s12879-019-4618-7
91. Weidhase L, Wellhöfer D, Schulze G, et al. Is Interleukin-6 a better predictor of successful antibiotic therapy than procalcitonin and C-reactive protein? A single center study in critically ill adults. BMC Infectious Diseases. 2019/02/13 2019;19(1):150. doi:10.1186/s12879-019-3800-2
92. Emami Ardestani M, Zaerin O. Role of Serum Interleukin 6, Albumin and C-Reactive Protein in COPD Patients. Tanaffos. 2015;14(2):134-140.
93. Jekarl DW, Lee SY, Lee J, et al. Procalcitonin as a diagnostic marker and IL-6 as a prognostic marker for sepsis. Diagn Microbiol Infect Dis. Apr 2013;75(4):342-7. doi:10.1016/j.diagmicrobio.2012.12.011
94. Lee H. Procalcitonin as a biomarker of infectious diseases. Korean J Intern Med. 2013;28(3):285-291. doi:10.3904/kjim.2013.28.3.285
95. Nargis W, Ibrahim M, Ahamed BU. Procalcitonin versus C-reactive protein: Usefulness as biomarker of sepsis in ICU patient. Int J Crit Illn Inj Sci. Jul 2014;4(3):195-9. doi:10.4103/2229-5151.141356
96. VIDAS® B.R.A.H.M.S PCT. Accessed 23-Jun-2016, https://www.biomerieux-diagnostics.com/vidasr-brahms-pct
97. Amin P, Amin V. Viral Sepsis. Annual Update in Intensive Care and Emergency Medicine. 2015 2015;2015:37-59.(doi):10.1007/978-3-319-13761-2_4. Human Immunodeficiency Virus
Severe Acute Respiratory Syndrome
Dengue Fever
Rabies Virus
Hemorrhagic Fever. doi:10.1007/978-3-319-13761-2_4
98. Samprathi M, Jayashree M. Biomarkers in COVID-19: An Up-To-Date Review. Review. Frontiers in Pediatrics. 2021-March-30 2021;8(972)doi:10.3389/fped.2020.607647
99. Noval Rivas M, Porritt RA, Cheng MH, Bahar I, Arditi M. COVID-19-associated multisystem inflammatory syndrome in children (MIS-C): A novel disease that mimics toxic shock syndrome-the superantigen hypothesis. J Allergy Clin Immunol. 2021;147(1):57-59. doi:10.1016/j.jaci.2020.10.008
100. Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front Immunol. 2018;9:2147. doi:10.3389/fimmu.2018.02147
101. Liu Z, Li J, Chen D, et al. Dynamic Interleukin-6 Level Changes as a Prognostic Indicator in Patients With COVID-19. Original Research. Frontiers in Pharmacology. 2020-July-17 2020;11(1093)doi:10.3389/fphar.2020.01093
102. Huang L, Zhao X, Qi Y, et al. Sepsis-associated severe interleukin-6 storm in critical coronavirus disease 2019. Cellular & Molecular Immunology. 2020/10/01 2020;17(10):1092-1094. doi:10.1038/s41423-020-00522-6
103. Lin S-W, Shen C-F, Liu C-C, Cheng C-M. A Paper-Based IL-6 Test Strip Coupled With a Spectrum-Based Optical Reader for Differentiating Influenza Severity in Children. Frontiers in bioengineering and biotechnology. 2021;9
104. Wang Y-C, Lin S-W, Wang I-J, et al. Interleukin-6 Test Strip Combined With a Spectrum-Based Optical Reader for Early Recognition of COVID-19 Patients With Risk of Respiratory Failure. Brief Research Report. Frontiers in Bioengineering and Biotechnology. 2022-February-15 2022;10doi:10.3389/fbioe.2022.796996
105. Lin S-W, Shen C-F, Liu C-C, Cheng C-M. A Paper-Based IL-6 Test Strip Coupled With a Spectrum-Based Optical Reader for Differentiating Influenza Severity in Children. Original Research. Frontiers in Bioengineering and Biotechnology. 2021-October-06 2021;9(924)doi:10.3389/fbioe.2021.752681
106. Hung K-F, Hung C-H, Hong C, et al. Quantitative Spectrochip-Coupled Lateral Flow Immunoassay Demonstrates Clinical Potential for Overcoming Coronavirus Disease 2019 Pandemic Screening Challenges. Micromachines. 2021;12(3):321.
107. Garau J, Baquero F, Pérez-Trallero E, et al. Factors impacting on length of stay and mortality of community-acquired pneumonia. Clinical Microbiology and Infection. 2008/04/01/ 2008;14(4):322-329. doi:https://doi.org/10.1111/j.1469-0691.2007.01915.x
108. World Health Organization. The top 10 causes of death. Internet. Updated December 9, 2020. Accessed July 25., 2022. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
109. Ferreira-Coimbra J, Sarda C, Rello J. Burden of Community-Acquired Pneumonia and Unmet Clinical Needs. Adv Ther. Apr 2020;37(4):1302-1318. doi:10.1007/s12325-020-01248-7
110. Li W, Ding C, Yin S. Severe pneumonia in the elderly: a multivariate analysis of risk factors. Int J Clin Exp Med. 2015;8(8):12463-75.
111. Ray P, Birolleau S, Lefort Y, et al. Acute respiratory failure in the elderly: etiology, emergency diagnosis and prognosis. Crit Care. 2006;10(3):R82. doi:10.1186/cc4926
112. Schouten LRA, Bos LDJ, Serpa Neto A, et al. Increased mortality in elderly patients with acute respiratory distress syndrome is not explained by host response. Intensive Care Medicine Experimental. 2019/10/29 2019;7(1):58. doi:10.1186/s40635-019-0270-1
113. Berk SL. Bacterial pneumonia in the elderly: the observations of Sir William Osler in retrospect. J Am Geriatr Soc. Sep 1984;32(9):683-5. doi:10.1111/j.1532-5415.1984.tb02261.x
114. National Development Council T. 高齡化時程. Accessed July 4, 2022. https://www.ndc.gov.tw/Content_List.aspx?n=695E69E28C6AC7F3
115. Lin Y-Y, Huang C-S. Aging in Taiwan: Building a Society for Active Aging and Aging in Place. The Gerontologist. 2016;56(2):176-183. doi:10.1093/geront/gnv107
116. Santa Cruz A, Mendes-Frias A, Oliveira AI, et al. Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front Immunol. 2021;12:613422. doi:10.3389/fimmu.2021.613422
117. Karhu J, Ala-Kokko TI, Vuorinen T, Ohtonen P, Julkunen I, Syrjälä HT. Interleukin-5, interleukin-6, interferon induced protein-10, procalcitonin and C-reactive protein among mechanically ventilated severe community-acquired viral and bacterial pneumonia patients. Cytokine. 2019/01/01/ 2019;113:272-276. doi:https://doi.org/10.1016/j.cyto.2018.07.019
118. Lin TY, Yeh YH, Chen LW, et al. Hemophagocytic Lymphohistiocytosis Following BNT162b2 mRNA COVID-19 Vaccination. Vaccines (Basel). Apr 8 2022;10(4)doi:10.3390/vaccines10040573
119. R&D Systems I. Human IL-6 Quantikine ELISA Kit. Accessed Aug 2., 2022. https://www.rndsystems.com/products/human-il-6-quantikine-elisa-kit_d6050#product-details
120. Kaur S, Singh A, Tewari MK, Kaur T. Comparison of Two Intervention Strategies on Prevention of Bedsores among the Bedridden Patients: A Quasi Experimental Community-based Trial. Indian J Palliat Care. Jan-Mar 2018;24(1):28-34. doi:10.4103/ijpc.Ijpc_60_17
121. Kellum JA, Kong L, Fink MP, et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Arch Intern Med. Aug 13-27 2007;167(15):1655-63. doi:10.1001/archinte.167.15.1655
122. Rendon A, Rendon-Ramirez EJ, Rosas-Taraco AG. Relevant Cytokines in the Management of Community-Acquired Pneumonia. Curr Infect Dis Rep. Mar 2016;18(3):10. doi:10.1007/s11908-016-0516-y
123. Menéndez R, Sahuquillo-Arce JM, Reyes S, et al. Cytokine activation patterns and biomarkers are influenced by microorganisms in community-acquired pneumonia. Chest. Jun 2012;141(6):1537-1545. doi:10.1378/chest.11-1446
124. Mizgerd JP. Inflammation and Pneumonia: Why Are Some More Susceptible than Others? Clin Chest Med. 2018;39(4):669-676. doi:10.1016/j.ccm.2018.07.002
125. Fernandez-Botran R, Uriarte SM, Arnold FW, et al. Contrasting inflammatory responses in severe and non-severe community-acquired pneumonia. Inflammation. Aug 2014;37(4):1158-66. doi:10.1007/s10753-014-9840-2
126. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. Jun 2003;111(12):1805-12. doi:10.1172/jci18921
127. Samsudin I, Vasikaran SD. Clinical Utility and Measurement of Procalcitonin. Clin Biochem Rev. Apr 2017;38(2):59-68.
128. Biffl WL, Moore EE, Moore FA, Peterson VM. Interleukin-6 in the Injured Patient: Marker of Injury or Mediator of Inflammation? Annals of surgery. 1996;224(5):647-664.
129. Karakioulaki M, Stolz D. Biomarkers in Pneumonia-Beyond Procalcitonin. Int J Mol Sci. Apr 24 2019;20(8)doi:10.3390/ijms20082004
130. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. Feb 1 1990;265(3):621-36. doi:10.1042/bj2650621
131. Lone NI, Walsh TS. Prolonged mechanical ventilation in critically ill patients: epidemiology, outcomes and modelling the potential cost consequences of establishing a regional weaning unit. Crit Care. 2011;15(2):R102. doi:10.1186/cc10117
132. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Review. Frontiers in Immunology. 2018-April-09 2018;9doi:10.3389/fimmu.2018.00586
133. Ershler WB. Interleukin-6: a cytokine for gerontologists. J Am Geriatr Soc. Feb 1993;41(2):176-81. doi:10.1111/j.1532-5415.1993.tb02054.x
134. Puzianowska-Kuźnicka M, Owczarz M, Wieczorowska-Tobis K, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. doi:10.1186/s12979-016-0076-x
135. Lin T, Liu GA, Perez E, et al. Systemic inflammation mediates age-related cognitive deficits. Frontiers in aging neuroscience. 2018;10:236.
136. Dobbs R, Charlett A, Purkiss A, Dobbs S, Weller C, Peterson D. Association of circulating TNF‐α and IL‐6 with ageing and parkinsonism. Acta Neurologica Scandinavica. 1999;100(1):34-41.
137. Ershier WB, Sun WH, Binkley N. The role of interleukin-6 in certain age-related diseases. Drugs & aging. 1994;5(5):358-365.
138. Chakraborty RK BB. Systemic Inflammatory Response Syndrome. . StatPearls [Internet]. 2022 Jan-. Accessed Dec 2. 2022. https://www.ncbi.nlm.nih.gov/books/NBK547669/
139. Samanta J, Singh S, Arora S, et al. Cytokine profile in prediction of acute lung injury in patients with acute pancreatitis. Pancreatology. Dec 2018;18(8):878-884. doi:10.1016/j.pan.2018.10.006
140. D’Ardes D, Boccatonda A, Rossi I, et al. COVID-19 and RAS: Unravelling an Unclear Relationship. Int J Mol Sci. 2020;21(8):3003.
141. Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduction and Targeted Therapy. 2020/05/29 2020;5(1):84. doi:10.1038/s41392-020-0191-1
142. Yang P, Ding Y, Xu Z, et al. Epidemiological and clinical features of COVID-19 patients with and without pneumonia in Beijing, China. medRxiv. 2020:2020.02.28.20028068. doi:10.1101/2020.02.28.20028068
143. Chen C-H, Lin S-W, Shen C-F, Hsieh K-S, Cheng C-M. Biomarkers during COVID-19: Mechanisms of Change and Implications for Patient Outcomes. Diagnostics. 2022;12(2):509.
144. Endeman H, Meijvis SCA, Rijkers GT, et al. Systemic cytokine response in patients with community-acquired pneumonia. European Respiratory Journal. 2011;37(6):1431. doi:10.1183/09031936.00074410
145. Tahtinen S, Tong A-J, Himmels P, et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nature Immunology. 2022/04/01 2022;23(4):532-542. doi:10.1038/s41590-022-01160-y
146. Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. May 22 1986;89(2):271-7. doi:10.1016/0022-1759(86)90368-6
147. Tsukatani T, Suenaga H, Higuchi T, et al. Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. Journal of microbiological methods. Sep 2008;75(1):109-16. doi:10.1016/j.mimet.2008.05.016
148. Chiu JL. Analysis of Older Adults under Home Care in Taiwan's Ageing Society. Comput Intell Neurosci. 2022;2022:8687947. doi:10.1155/2022/8687947
149. Chén OY, Roberts B. Personalized Health Care and Public Health in the Digital Age. Front Digit Health. 2021;3:595704-595704. doi:10.3389/fdgth.2021.595704
150. Wang Y, Li Z, Hu Q. Emerging self-regulated micro/nano drug delivery devices: A step forward towards intelligent diagnosis and therapy. Nano Today. 2021/06/01/ 2021;38:101127. doi:https://doi.org/10.1016/j.nantod.2021.101127
151. Chen C-H, Cheng C-M. Potential next-generation medications for self-administered platforms. Journal of Controlled Release. 2022/02/01/ 2022;342:26-30. doi:https://doi.org/10.1016/j.jconrel.2021.12.028
152. Ballard ZS, Joung H-A, Goncharov A, et al. Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors. npj Digital Medicine. 2020/05/07 2020;3(1):66. doi:10.1038/s41746-020-0274-y
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top