:::

詳目顯示

回上一頁
題名:肘屈肌群和膝伸肌群間之同側重複訓練交叉轉移效應
作者:謝忠展
作者(外文):Hsieh, Chung-Chan
校院名稱:國立臺灣師範大學
系所名稱:體育與運動科學系
指導教授:陳忠慶
曾國維
學位類別:博士
出版日期:2023
主題關鍵詞:重複訓練交叉轉移效應離心運動本體感覺聲輻射力脈衝彈性影像肌酸激酶contralateral repeated bout effecteccentric exerciseproprioceptionacoustic radiation force impulsecreatine kinase
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
目的:(1)肘屈肌群進行第一回合離心運動(the first bout of maximal isokinetic eccentric contraction, MaxEC1),隨後改換成同側膝伸肌群進行第二回合最大離心運動(the second bout of MaxEC, MaxEC2)產生交叉轉移效應。(2)膝伸肌群進行MaxEC1,隨後改換成同側肘屈肌群進行MaxEC2產生交叉轉移效應。方法:招募32名健康成年女性(20-30歲)為研究對象,分配至下肢離心組(non-dominant upper limb / non-dominant lower limb group, NU/NL)、下肢控制組(control / non-dominant lower limb group, C/NL)、上肢離心組(non-dominant lower limb / non-dominant upper limb group, NL/NU)、上肢控制組(control / non-dominant upper limb group, C/NU)(8人/組)。NU/NL組以非慣用側肘屈肌群(30次)和非慣用側膝伸肌群(60次)進行MaxEC1, MaxEC2。NL/NU組以非慣用側膝伸肌(60次)和非慣用側肘屈肌群(30次)進行MaxEC1, MaxEC2。C/NU組以非慣用側肘屈肌群(30次)進行MaxEC1,C/NL組以慣用側膝伸肌群(60次)進行MaxEC1。NU/NL組和NL/NU組在第一、第二回合均間隔14天。在MaxEC1前、MaxEC2後立即及其後第1~5天 (每次間隔24小時) 各進行一次依變項檢測:血液肌酸激酶活性(CK)、肌肉酸痛(DOMS)、肢體圍(CIR)、關節活動度(ROM)、關節釋放角度(JRA)、最大自主等長肌力(MVC)、向心肌力(ISOK)、聲輻射力脈衝彈性影像(ARFI)。以二因子混合設計變異數分析,考驗各依變項於組別 x 時間是否達顯著差異。結果:NU/NL組CK、DOMS、ROM、JRA、MVC、ISOK、ARFI恢復速度均比C/NL組快。NL/NU組所有依變項恢復速度均比C/NU組快。NU/NL組和C/NL組之間DOMS在離心運動後第2天達顯著差異(p<.05)。MVC在離心運動後0、1、2天達顯著差異(p<.05)。ISOK在離心運動後0、1、2天達顯著差異(p<.05)。JRA 45。、60。在離心運動後3天達顯著差異(p<.05)。CK在離心運動後1、2天達顯著差異(p<.05)。NL/NU組和C/NU組之間ROM在離心運動後第3、4、5天組間達顯著差異(p<.05)。ARFI在離心運動後第0、1、2天組間達顯著差異(p<.05)。MVC在離心運動後第0、1、4天組間達顯著差異(p<.05)。ISOK在離心運動後0、1、2、3、4、5天達顯著差異(p<.05)。CK在離心運動後1、2天達顯著差異(p<.05)。結論:本研究發現介入第一回合肘屈肌群或膝伸肌群離心運動可能可以降低第二回合同側異源肌群離心運動造成的肌肉損傷。上述研究結果可提供給教練、運動防護員與物理治療師,作為未來運動員於臨床復健治療時之參考與應用。
Purpose: (1) To induce a contralateral repeated bout effect by performing the first bout of maximal isokinetic eccentric contraction (MaxEC1) in elbow flexors and then performing the second bout of maximal isokinetic eccentric contraction (MaxEC2) in knee extensors of the same side. (2) To induce a contralateral repeated bout effect by performing MaxEC1 in knee extensors and then performing MaxEC2 in elbow flexors of the same side.Method: A number of thirty-two healthy women aged 20–30 years were recruited and divided into the non-dominant upper limb / non-dominant lower limb group (NU/NL), control / non-dominant lower limb group (C/NL), non-dominant lower limb / non-dominant upper limb group (NL/NU), and control / non-dominant upper limb group (C/NU) for eight women each group. NU/NL performed 30 MaxEC1 and 60 MaxEC2 using the nondominant elbow flexors and nondominant knee extensors, respectively. NL/NU performed 60 MaxEC1 and 30 MaxEC2 using the nondominant knee extensors and nondominant elbow flexors, respectively. C/NU performed 30 MaxEC1 using the nondominant elbow flexors. C/NL performed 60 MaxEC1 using the dominant knee extensors. NU/NL and NL/NU performed MaxEC2 14 days after MacEC1. Dependent variables: Plasma creatine kinase(CK)activity, muscle soreness(DOMS), limb’s circumference(CIR), joint range of motion(ROM), maximal voluntary isometric contraction(MVC)torque, maximal isokinetic concentric strength(ISOK), acoustic radiation force impulse(ARFI)and joint release angle(JRA)were measured before MaxEC1, immediately after MaxEC2, and Days 1–5 after MaxEC2 (every 24 hours). A two-way mixed-design analysis of variance was performed to test whether significant differences occurred between each group in the dependent variables over time.
Results: NU/NL showed faster recovery for CK, DOMS, ROM, JRA, MVC, ISOK, and ARFI compared with C/NL. NL/NU exhibited faster recovery for all dependent variables compared with C/NU. The DOMS of NU/NL and C/NL differed significantly on Day 2 after MaxEC2 (p < .05); their MVC differed significantly on Days 0–2 after MaxEC2 (p < .05); their ISOK differed significantly on Days 0–2 after MaxEC2 (p < .05); their JRA45° and JRA60° differed significantly on Day 3 after MaxEC2 (p < .05); and their CK differed significantly on Days 1 and 2 after MaxEC2 (p < .05). The ROM of NL/NU and C/NU differed significantly on Days 3–5 after MaxEC2 (p < .05); their ARFI differed significantly on Days 0–2 after MaxEC2 (p < .05); their MVC differed significantly on Days 0, 1, and 4 after MaxEC2 (p < .05); their ISOK differed significantly on Days 0–5 after MaxEC2 (p < .05); and their CK differed significantly on Days 1 and 2 after MaxEC2 (p < .05).Conclusions: This study found that intervening in the MaxEC1 of the elbow flexors or knee extensors may reduce the muscle damage caused by the MaxEC2 of the same-side heterologous muscle group. Thus, the results of the present study may have provided useful information to coaches, athletic trainers, and physical therapists in the future as a reference and application for athletes in clinical rehabilitation treatment.
白鑫長,唐誌陽, 洪暐 (2022)。交叉教育效應機制與效益之探討。 中華體育季刊, 36(1), 1-12。

何智巧,陳信良,陳忠慶,林明儒。 (2015)。離心運動引起不同程度延遲性肌肉酸痛與肌肉損傷指標反應之間的關係。嘉大體育健康休閒期刊,14(2),140-152。

林正常(2004):肌力與體能訓練。台北縣新店市:藝軒。

林正常。運動生理學實驗指引。台北市:師大書苑,1996。

林明儒,藍宇斌,吳昶潤,吳慧君,林正常。 (2013)。不同最大等速離心運動對膝伸肌群引起肌肉損傷的影響。成大體育學刊,45(1),69-87。

林瑞馨(2015)。離心運動引起肌肉損傷對不同本體感覺測量方式之比較(未出版碩士論文)。國立嘉義大學,嘉義市。

林瑞馨, 林明儒 (2016)。離心運動對本體感覺影響之探討。嘉大體育健康休閒期刊, 15(1),149-160。

林麗娟(1994)。不同比例之等速離心和向心聯合收縮對肱三頭肌肌力和肌耐力之影響。體育學報,(18),255-266。

陳忠慶,陳信良 (2005)。 離心運動對血液肌肉蛋白質評估指標的反應。 運動生理暨體能學報,1-17。

陳忠慶、陳信良、鍾承融、吳昶潤 (2007)。不同肌力測驗方式對評估離心運動引起肌肉損傷反應的比較。大專體育學刊,9 (2),117-129。

陳忠慶 (2004)。運動引起肌肉損傷的原因之探討。 運動生理暨體能學報, 19-32。

曾暐晉,陳忠慶,陳信良 (2012)。最大等速離心運動引起肌肉損傷對速度發展率的影響。體育學報,45(1),19-30。

曾暐晉,陳冠傑,陳信良,游慧宜,陳忠慶 (2016)。反覆性離心運動對神經適應與重複訓練效應之影響。體育學報,49(1),15-26。

曾暐晉,曾國維,陳信良,陳忠慶。 (2016)。 低強度離心運動對重複訓練效應及表層肌電訊號活性之影響。物理治療,41(3),189-198。

黃泯珏,陳忠慶 (2017)。預先不同強度離心運動對產生重複訓練效應之探討。嘉大體育健康休閒期刊,16(1),121-135。

黃冠菱,陳信良,陳忠慶 (2016)。左右二側肘屈肌群進行二回合離心運動順序對降低誘發動脈血管硬化之影響。體育學報,49(2),143-155。

Aagaard, P., Andersen, J. L., Dyhre‐Poulsen, P., Leffers, A. M., Wagner, A., Magnusson, S. P., ... & Simonsen, E. B. (2001). A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. The journal of physiology, 534(2), 613-623.

Armstrong, R. B. (1984). Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Medicine and science in sports and exercise, 16(6), 529-538.

Armstrong, R. B. (1990). Initial events in exercise-induced muscular injury. Medicine and science in sports and exercise, 22(4), 429-435.

Ben Othman, A., Behm, D. G., & Chaouachi, A. (2018). Evidence of homologous and heterologous effects after unilateral leg training in youth. Applied Physiology, Nutrition, and Metabolism, 43(3), 282-291.

Ben Othman, A., Chaouachi, A., Chaouachi, M., Makhlouf, I., Farthing, J. P., Granacher, U., & Behm, D. G. (2019). Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children. Applied Physiology, Nutrition, and Metabolism, 44(9), 973-984.

Bruce, C. D., Ruggiero, L., Dix, G. U., Cotton, P. D., & McNeil, C. J. (2021). Females and males do not differ for fatigability, muscle damage and magnitude of the repeated bout effect following maximal eccentric contractions. Applied Physiology, Nutrition, and Metabolism, 46(3), 238-246.

Chen, H. L., Nosaka, K., & Chen, T. C. (2012). Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. European journal of applied physiology, 112, 555-565.

Chen, T. C., & Nosaka, K. (2006). Responses of elbow flexors to two strenuous eccentric exercise bouts separated by three days. The Journal of Strength & Conditioning Research, 20(1), 108-116.

Chen, T. C., Chen, H. L., Cheng, L. F., Chou, T. Y., & Nosaka, K. (2021). Effect of Leg Eccentric Exercise on Muscle Damage of the Elbow Flexors after Maximal Eccentric Exercise. Medicine and Science in Sports and Exercise, 53(7), 1473-1481.

Chen, T. C., Chen, H. L., Lin, M. J., Wu, C. J., & Nosaka, K. (2009). Muscle damage responses of the elbow flexors to four maximal eccentric exercise bouts performed every 4 weeks. European journal of applied physiology, 106, 267-275.

Chen, T. C., Chen, H. L., Lin, M. J., Yu, H. I., & Nosaka, K. (2016). Contralateral Repeated Bout Effect of Eccentric Exercise of the Elbow Flexors. Medicine and Science in Sports and Exercise, 48(10), 2030-2039.

Chen, T. C., Chen, H. L., Liu, Y. C., & Nosaka, K. (2014). Eccentric exercise-induced muscle damage of pre-adolescent and adolescent boys in comparison to young men. European journal of applied physiology, 114, 1183-1195.

Chen, T. C., Huang, T. H., Tseng, W. C., Tseng, K. W., Hsieh, C. C., Chen, M. Y., ... & Nosaka, K. (2021). Changes in plasma C1q, apelin and adropin concentrations in older adults after descending and ascending stair walking intervention. Scientific reports, 11(1), 17644.

Chen, T. C., Lin, K. Y., Chen, H. L., Lin, M. J., & Nosaka, K. (2011). Comparison in eccentric exercise-induced muscle damage among four limb muscles. European journal of applied physiology, 111, 211-223.

Chen, T. C., Nosaka, K., & Sacco, P. (2007). Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. Journal of applied physiology, 102(3), 992-999.

Chen, T. C., Tseng, W. C., Chen, H. L., Tseng, K. W., Chou, T. Y., Huang, Y. C., & Nosaka, K. (2021). Striking muscle adaptations induced by volume-dependent repeated bouts of low-intensity eccentric exercise of the elbow flexors. Applied Physiology, Nutrition, and Metabolism, 46(8), 897-905.

Chen, T. C., Huang, Y. C., Chou, T. Y., Hsu, S. T., Chen, M. Y., & Nosaka, K. (2023). Effects of far-infrared radiation lamp therapy on recovery from muscle damage induced by eccentric exercise. European Journal of Sport Science, 1-9.

Clarkson, P. M., Kearns, A. K., Rouzier, P., Rubin, R., & Thompson, P. D. (2006). Serum creatine kinase levels and renal function measures in exertional muscle damage. Medicine & Science in Sports & Exercise, 38(4), 623-627.

Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine and science in sports and exercise, 24(5), 512-520.

Coratella, G., Beato, M., Bertinato, L., Milanese, C., Venturelli, M., & Schena, F. (2022). Including the eccentric phase in resistance training to counteract the effects of detraining in women: a randomized controlled trial. Journal of Strength and Conditioning Research, 36(11), 3023-3031.

Devaney, J. M., Hoffman, E. P., Gordish-Dressman, H., Kearns, A., Zambraski, E., & Clarkson, P. M. (2007). IGF-II gene region polymorphisms related to exertional muscle damage. Journal of applied physiology, 102(5), 1815-1823.

Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2017). Eccentric exercise: physiological characteristics and acute responses. Sports Medicine, 47, 663-675.

Feinstein, B., Lindegård, B., Nyman, E., & Wohlfart, G. (1955). Morphologic studies of motor units in normal human muscles. Cells Tissues Organs, 23(2), 127-142.

Gollnick, P. D., & Matoba, H. (1984). The muscle fiber composition of skeletal muscle as a predictor of athletic success: An overview. The American journal of sports medicine, 12(3), 212-217.

Hellebrandt, F. A. (1947). Cross education: the influence of bilateral exercise on the contralateral limb. Arch Phys Med Rehabili, 28, 76-85.

Hody, S., Rogister, B., Leprince, P., Laglaine, T., & Croisier, J. L. (2013). The susceptibility of the knee extensors to eccentric exercise‐induced muscle damage is not affected by leg dominance but by exercise order. Clinical physiology and functional imaging, 33(5), 373-380.

Hotfiel, T., Kellermann, M., Swoboda, B., Wildner, D., Golditz, T., Grim, C., ... & Heiss, R. (2018). Application of acoustic radiation force impulse elastography in imaging of delayed onset muscle soreness: a comparative analysis with 3T MRI. Journal of sport rehabilitation, 27(4), 348-356.

Howatson, G., & Van Someren, K. A. (2007). Evidence of a contralateral repeated bout effect after maximal eccentric contractions. European journal of applied physiology, 101, 207-214.

Hubal, M. J., Devaney, J. M., Hoffman, E. P., Zambraski, E. J., Gordish-Dressman, H., Kearns, A. K., ... & Clarkson, P. M. (2010). CCL2 and CCR2 polymorphisms are associated with markers of exercise-induced skeletal muscle damage. Journal of applied physiology, 108(6), 1651-1658.

Hyldahl, R. D., Chen, T. C., & Nosaka, K. (2017). Mechanisms and mediators of the skeletal muscle repeated bout effect. Exercise and sport sciences reviews, 45(1), 24-33.

Hyldahl, R. D., & Hubal, M. J. (2014). Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise. Muscle & nerve, 49(2), 155-170.

Jamurtas, A. Z., Theocharis, V., Tofas, T., Tsiokanos, A., Yfanti, C., Paschalis, V., ... & Nosaka, K. (2005). Comparison between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage. European journal of applied physiology, 95, 179-185.

Janecki, D., Jarocka, E., Jaskólska, A., Marusiak, J., & Jaskólski, A. (2011). Muscle passive stiffness increases less after the second bout of eccentric exercise compared to the first bout. Journal of science and medicine in sport, 14(4), 338-343.

Jeon, S., Ye, X., Miller, W. M., & Song, J. S. (2022). Effect of repeated eccentric exercise on muscle damage markers and motor unit control strategies in arm and hand muscle. Sports Medicine and Health Science, 4(1), 44-53.

Jones, E. J., Bishop, P. A., Woods, A. K., & Green, J. M. (2008). Cross-sectional area and muscular strength. Sports Medicine, 38(12), 987-994.

Kroon, G. W., & Naeije, M. (1991). Recovery of the human biceps electromyogram after heavy eccentric, concentric or isometric exercise. European journal of applied physiology and occupational physiology, 63(6), 444-448.

LaStayo, P., Marcus, R., Dibble, L., Frajacomo, F., & Lindstedt, S. (2014). Eccentric exercise in rehabilitation: safety, feasibility, and application. Journal of Applied Physiology, 116(11), 1426-1434.
Lau, W. Y., Blazevich, A. J., Newton, M. J., Wu, S. S. X., & Nosaka, K. (2015). Reduced muscle lengthening during eccentric contractions as a mechanism underpinning the repeated-bout effect. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 308(10), R879-R886.

Lavender, A. P., & Nosaka, K. (2006). Changes in fluctuation of isometric force following eccentric and concentric exercise of the elbow flexors. European Journal of Applied Physiology, 96, 235-240.

Leonard, W. J. (2001). Cytokines and immunodeficiency diseases. Nature Reviews Immunology, 1(3), 200-208.

Lee, A., Baxter, J., Eischer, C., Gage, M., Hunter, S., & Yoon, T(2017). Sex differences in neuromuscular function after repeated eccentric contractions of the knee extensor muscles. European journal of applied physiology, 117, 1119-1130.

Lin, M. J., Chen, T. C., Chen, H. L., Wu, B. H., & Nosaka, K. (2015). Low-intensity eccentric contractions of the knee extensors and flexors protect against muscle damage. Applied Physiology, Nutrition, and Metabolism, 40 (10) , 1004-1011. doi: 10.1139/apnm-2015-0107

Mackey, A. L., Brandstetter, S., Schjerling, P., Bojsen-Moller, J., Qvortrup, K., Pedersen, M. M., ... & Langberg, H. (2011). Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. The FASEB Journal, 25(6), 1943.

McHugh, M. P. (2003). Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scandinavian journal of medicine & science in sports, 13(2), 88-97.

Minahan, C., Joyce, S., Bulmer, A. C., Cronin, N., & Sabapathy, S. (2015). The influence of estradiol on muscle damage and leg strength after intense eccentric exercise. European journal of applied physiology, 115, 1493-1500.

Newton, M. J., Morgan, G. T., Sacco, P., Chapman, D. W., & Nosaka, K. (2008). Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. The Journal of Strength & Conditioning Research, 22(2), 597-607.
Nosaka, K., Newton, M.J., & Sacco, P. Attenuation of protective effect against eccentric exercise induced muscle damage. Can J Appl Physiol, 30(5):529-542, 2005.

Nosaka, K., Sakamoto, K., Newton, M., & Sacco, P. (2001). The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. European journal of applied physiology, 85, 34-40.

Othman, A. B., Chaouachi, M., Makhlouf, I., Farthing, J. P., Granacher, U., Behm, D. G., & Chaouachi, A. (2020). Unilateral Elbow Flexion and Leg Press Training Induce Cross–Education But Not Global Training Gains in Children. Pediatric exercise science, 32(1), 36-47.

Park, S., Toole, T., & Lee, S. (1999). Functional roles of the proprioceptive system in the control of goal-directed movement. Perceptual and motor skills, 88(2), 631-647.

Paschalis, V., Nikolaidis, M. G., Giakas, G., Jamurtas, A. Z., Owolabi, E. O., & Koutedakis, Y. (2008). Position sense and reaction angle after eccentric exercise: the repeated bout effect. European journal of applied physiology, 103, 9-18.

Paschalis, V., Nikolaidis, M. G., Giakas, G., Jamurtas, A. Z., Pappas, A., & Koutedakis,Y. (2007). The effect of eccentric exercise on position sense and joint reaction angle of the lower limbs. Muscle and Nerve, 35 (4) , 496-503. doi: 10.1002/mus.20723

Paschalis, V., Nikolaidis, M. G., Theodorou, A. A., Panayiotou, G., Fatouros, I. G., Koutedakis, Y., & Jamurtas, A. Z. (2011). A weekly bout of eccentric exercise is sufficient to induce health-promoting effects. Med Sci Sports Exerc, 43(1), 64-73.

Power SK, Howley ET. Exercise Physiology: Theory and Application to Fitness and Performance (9th Ed.). McGraw-Hill: NY, USA, 2015.

Power, G. A., Dalton, B. H., Rice, C. L., & Vandervoort, A. A. (2013). Peak power is reduced following lengthening contractions despite a maintenance of shortening velocity. Applied Physiology, Nutrition, and Metabolism, 38(12), 1196-1205.

Prochazka, A. (2010). Proprioceptive feedback and movement regulation. Comprehensive Physiology, 89-127.

Raastad, T., Owe, S. G., Paulsen, G., Enns, D., Overgaard, K., Crameri, R., ... & Hallén, J. (2010). Changes in calpain activity, muscle structure, and function after eccentric exercise.

Sewright, K. A., Hubal, M. J., Kearns, A., Holbrook, M. T., & Clarkson, P. M. (2008). Sex differences in response to maximal eccentric exercise. Medicine and science in sports and exercise, 40(2), 242-251.

Smith, L. L., McKune, A. J., Semple, S. J., Sibanda, E., Steel, H., & Anderson, R. (2007). Changes in serum cytokines after repeated bouts of downhill running. Applied physiology, nutrition, and metabolism, 32(2), 233-240.

Starbuck, C., & Eston, R. G. (2012). Exercise-induced muscle damage and the repeated bout effect: evidence for cross transfer. European journal of applied physiology, 112, 1005-1013.

Tseng, K. W., Tseng, W. C., Lin, M. J., Chen, H. L., Nosaka, K., & Chen, T. C. (2016). Protective effect by maximal isometric contractions against maximal eccentric exercise-induced muscle damage of the knee extensors. Research in Sports Medicine, 24(3), 228-241.

Tseng, W. C., Nosaka, K., Tseng, K. W., Chou, T. Y., & Chen, T. C. (2020). Contralateral effects by unilateral eccentric versus concentric resistance training. Med Sci Sports Exerc, 52(2):474-483. doi: 10.1249/MSS.0000000000002155.

Warren, G. L., Hermann, K. M., Ingalls, C. P., Masselli, M. R., & Armstrong, R. B. (2000). Decreased EMG median frequency during a second bout of eccentric contractions. Medicine and science in sports and exercise, 32(4), 820-829.

Ye, X., Miller, W. M., Jeon, S., Song, J. S., & West, T. J.(2021). Effect of arm eccentric exercise on muscle damage of the knee flexors after high-intensity eccentric exercise. Frontiers in Physiology, 12, 464.

Yaginuma, Y., Abe, T., Thiebaud, R. S., Kitamura, T., Kawanishi, M., & Fukunaga, T. (2017). Can handgrip strength improve following body mass-based lower body exercise?. BioResearch open access, 6(1), 19-27.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE