:::

詳目顯示

回上一頁
題名:以局部穩定條件率定之邊坡土壤厚度估測模式
書刊名:地理學報
作者:姜壽浩徐美玲 引用關係
作者(外文):Chiang, Shou-haoHsu, Mei-ling
出版日期:2006
卷期:44
頁次:頁23-38
主題關鍵詞:土壤生成函數擴散模式簡單潛移局部穩定平衡參數率定Soil production functionDiffusion modelSimple creepLocal steady stateParameter calibration
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(1) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:41
土壤乃集水區地區的基質,土壤厚度更常為各種水文,暴坡模式所需的基本資訊,然而臺灣山區的土壤厚度資料卻極為不足,亟需有效土壤厚度做測模式的發展。由於地形扮演著控制種邊坡作用的主要角色其與土壤化育的結果和表徵密相關,因此本研究以地形作用模式為基礎,結合土壤生成函數(soil production function)與擴散模式(diffusion model)建構土壤厚度的做測模式,並以陽明山國家公園七星山地區作為試驗區,透過數值高程模型(DEM)來進行土壤厚度的值模擬。 究在假設模擬其間地表形貌無明顯改變,試驗區邊坡土壤的搬運得以簡單潛移(simple creep)加以描述,且搬運速率在稜線、山脊等坡頂處與土壤生成速率維持局部穩定平衡狀態(local steady state)的條件下,率定土壤厚度估測模式所需參數。試驗區的模擬土壤厚度約在0至2公尺之間,主要受到地形曲率控制,呈現高度空間變異性。野外實測的土壤厚度在凸坡、平緩處與模式估計值較為吻合,在坡度較陡、集水面積較大的區域則呈現較大的估計誤差,此證實其他邊坡作用在此等地形區的影響。整體而言,利用局部穩定平衡假設所率定的參數,可以有效估測以移為主要地形作用地區的邊坡土壤厚度。對於顯著受到其他邊坡的作用影響地區,其土壤厚度的估計,則須進一步釐清各種作用的物理機制,並將其納入考量,方有效進行模式推估。
Soil thick ness is one of the fundamental components in many hydrological and slope stability models. Since landform critically influences many slope processes, soil thickness which is related to various slope processes is also highly affected by topography. In this study, a soil production function is also highly affected by topography. In this study, a soil production function is coupled with a simple diffusion model to form a soil-thickness prediction model. The Chiching Shan area in the Yuan-Ming-Shan National Park is chosen as a study area to test the validity of the model. It is assumed that the topography has not had any drastic change during the simulation time period, the soil is moving downhill according to simple creep law, which sets the transport flux equal to a linear function of local slope gradient, and its transport rate is in equilibrium with the soil production rate at ridge lines. Model parameters are calibrated under this local steady-state assumption, and used to estimate the soil thickness within the study area. The simulated soil depths in the study area range from 0 to 2 meters, and their spatial variations are controlled by topographic curvature. Field verification shows that the model performs well on the upper parts of hillslope where low gradient convex slope forms dominate. It is discovered that in area where slope processes other than diffusion prevail, significant disparity appears between model simulated and the measured soil depth. Generally speaking, the adoption of the local steady state assumption facilitates parameter calibration and model application. However, in order to further improve the model’s applicability, mechanisms involved in other hillslope processes must be incorporated in future model development.
期刊論文
1.Dietrich, W. E.、Reiss, R.、Hsu, M. L.、Montgomery, D. R.(1995)。A process-based model for colluvial soil depth and shallow landsliding using digital elevation data。Hydrological Processes,9(3/4),383-400。  new window
2.陳文恭、蔡清彥(19831200)。陽明山國家公園之氣候。國立臺灣大學理學院大氣科學系研究報告,4,1-58。  延伸查詢new window
3.宋聖榮、曹恕中、羅煥記(2000)。大屯火山群的噴發特徵:隱含沉陷火山口的形成及火山演化。中國地質學會會刊,43(2),361-378。  延伸查詢new window
4.王文祥、陳正宏(1990)。臺灣北部大屯火山群火山碎屑岩之火山學及核分裂飛跡定年研究。國立臺灣大學理學院地質學系研究報告,28,1-30。  延伸查詢new window
5.Ahnert, F.(1970)。Functional Relationships between Denudation, Relief, and Uplift in Large Mid-latitude Drainage Basine。American Journal of Science,268,243-263。  new window
6.Braun, J.、Heimsath, A. M.、Chappell, J.(2001)。Sediment Transport Mechanisms on Soil Mantled Hillslopes。Geology,29,683-686。  new window
7.Culling, W. E. H.(1963)。Soil Creep and Development of Hillside Slopes。Journal of Geology,71,127-161。  new window
8.Furbish, D. J.、Fagherazzi, S.(2001)。Stability of Creeping Soil and Implications for Hillslope Evolution。Water Resources Research,37,2607-2618。  new window
9.Gilbert, G. K.(1909)。The Convexity of Hilltops。Journal of Geology,17,344-350。  new window
10.Heimsath, A. M.、Dirtrich, W. E.、Nishiizumi, K.、Finkel, R. C.(1997)。The Soil Production Function and Landscape Equilibrium。Nature,388,358-361。  new window
11.Heimsath, A. M.、Dirtrich, W. E.、Nishiizumi, K.、Finkel, R. C.(1999)。Cosmogenic Nuclides, Topography, and the Spatial Variation of Soil Depth。Geomorphology,27,151-172。  new window
12.Heimsath, A. M.、Chappell, J.、Dietrich, W. E.、Nishiizumi, K.、Finkel, R. C.(2000)。Soil Production on a Retreating Escarpment in Southeastern Australia。Geology,28,787-790。  new window
13.Heimsath, A. M.、Chappell, J.、Dietrich, W. E.、Nishiizumi, K.、Finkel, R. C.(2001)。Late Quaternary Erosion in Southeastern Australia: A Field Example Using Cosmogenic Nuclides Radionuclides。Quaternary International,83-85,169-185。  new window
14.Heimsath, A. M.、Dietrich, W. E.、Nishiizumi, K.、Finkel, R. C.(2001)。Stochastic Process of Soil Production and Transport: Erosion Rates, Topographic Variation and Cosmogenic Nuclides in the Oregon Coast Range。Earth Surface Processes and Landforms,26,531-552。  new window
15.Kirkby, M. J.(1971)。Hillslope Process-response Models Based on the Continuity Equation。Institute of British Geographers,3,15-30。  new window
16.Martin, Y.(2000)。Modeling Hillslope Evolution: Linear and Nonlinear Transport Relations。Geomorphology,34,1-21。  new window
17.McKean, J. A.、Dietrich, W. E.、Finkel, R. C.、Southon, J. R.、Caffee, M. W.(1993)。Quantification of Soil Production and Downslope Creep Rates from Cosmogenic 10Be accumulations on a hillslope profile。Geology,21,343-346。  new window
18.Moore, I. D.、Burch, J. R.(1986)。Sediment Transport Capacity of Sheet and Rill Flow: Application of Unit Stream Power Theory。Water Resources Research,22,1350-1360。  new window
19.Prosser, I.、Rustomji, P.(2000)。Sediment Transport Capacity Relations for Overland Flow。Progress in Physical Geography,24,179-193。  new window
20.Rantz, S. E.(1971)。Precipitation Depth-duration Frequency Relations for the San Francisco Bay Region, California。U.S. Geological Survey Professional Paper, C,750,237-241。  new window
21.Roering, J. J.、Kirchner, J. W.、Dietrich, W. E.(1999)。Evidence for Nonlinear, Diffusive Sediment Transport on Hillslope and Implications for Landscape Morphology。Water Resources Research,35,853-870。  new window
22.Roering, J. J.、Kirchner, J. W.、Sklar, L. E.、Dietrich, W. E.(2001)。Hillslope Evolution by Nonlinear Creep and Landsliding: An Experimental Study。Geology,29,143-146。  new window
23.Small, E. E.、Anderson, R. S.、Hancock, G. S.(1999)。Estimates of the Rate of Regolith Production Using Be-10 and A1-26 from a Alpine Slope。Geomorphology,27,131-150。  new window
24.Tucker, G. E.、Bras, R. L.(2000)。A Stochastic Approach to Modeling the Role of Rainfall Variability in Drainage Basin Evolution。Water Resources Research,36,1953-1964。  new window
會議論文
1.雷鴻飛(2005)。坡腳遭受下切的坡地與風化岩屑剖面的發育。0。100-108。  延伸查詢new window
研究報告
1.王鑫(1986)。陽明山國家公園地質及地形景觀。臺北市。  延伸查詢new window
2.陳宏宇(2002)。建置陽明山國家公園地質災害資料庫之調查研究-I。臺北市。  延伸查詢new window
3.劉聰桂(1980)。夢幻湖及附近窪地之剖面分析及定年研究。臺北市。  延伸查詢new window
學位論文
1.蔡呈奇(2002)。應用地域分析與地理資訊系統繪製土壤圖:以臺灣北部火山灰土壤為例(博士論文)。國立臺灣大學。  延伸查詢new window
2.Reneau, S. L.(1988)。Depositional and Erosional History of Hollows: Application to Landslide Location and Frequency, Long-term Erosion Rates, and the Effects of Climatic Change,Berkeley。  new window
圖書
1.Carson, M. A.、Kirkby, M. J.(1972)。Hillslope Form and Process。Hillslope Form and Process。Cambridge。  new window
2.Kirkby, M. J.(1985)。A Model for the Evolution of Regolith-mantled Slopes。Models in Geomorphology。London, UK。  new window
3.Refsgaard, J. C.、Storm, B.(1996)。Construction, Calibration and Validation of Hydrological Model Codes。Distributed Hydrological Modeling。0。  new window
4.Thornes, J. B.(1990)。The Interaction of Erosional and Vegetational Dynamics in Land Degradation: Spatial Outcomes。Vegetation and Erosion。New York。  new window
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top