:::

詳目顯示

回上一頁
題名:低劑量L-Name與耐力性運動訓練對大鼠肝醣儲存的影響
書刊名:成大體育
作者:蘇易廷林嘉志 引用關係謝伸裕 引用關係
出版日期:2006
卷期:39:3=50
頁次:頁26-35
主題關鍵詞:一氧化氮耐力性運動訓練肝醣骨骼肌NOEndurance trainingGlycogenSkeletal muscleL-NAME
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:25
  目的:觀察低劑量一氧化氣合成時非選擇性抑制劑L-NAME 與耐力性運動訓練對大鼠骨骼肌肝醣與肝臟肝醣的影響。方法:23隻Wistar品系六週齡公鼠隨機分為四組:Control組(n=6),L-NAME組(n=6),Exercise組(n=6)及L-NAME + Exercise組(n=5)。大鼠的耐力訓練方式以原地跑步機進行五週:由第一週15 公尺/分鐘(18分鐘)逐漸增強至第五週為24公尺/分鐘(60 分鐘)。L-NAME(5 毫克/公斤/日,5 天/週)的餵食則在運動訓練前一小時完成。測量項目包括平均動脈壓、比目魚肌檸檬酸合成酶活性、腓腸紅肌與比自魚肌及肝臟之肝醣。統計方法以獨立樣本雙因子變異數分析檢定,顯著水準至少須達p≦.05 。測量數據以平均數±標準誤表示。結果:耐力運動訓練及低劑量L-NAME 對大鼠平均動脈壓及腓腸肌白肌肝醣含量緣無顯著影響(p>.05),但耐力運動訓練能顯著增加檸檬酸合成酶活性、腓腸紅肌與比目魚肌肝醣及肝臟肝醣含量(p<.001), 而低劑量L-NAME 亦能顯著增加霏腸肌紅肌肝醣含量(p<.05),並顯著降低肝臟肝醣含量(p<.05)。結論:耐力運動訓練能增加骨骼肌紅肌肝醣含量及檸檬酸合成酶活性,低劑量L-NAME 則對骨骼肌紅肌肝醣含量有加成的影響,並降低肝臟肝醣含量,顯示低劑量L-NAME能影響肝醣儲存的位置。
  PURPOSE: To investigate the effects of low-dosage L-NAME and endurance training on skeletal muscle and liver glycogen storage in rats. METHODS: Twenty-three male Wistar rats (6-week old) were randomly divided into four groups: Control (n = 6), L-NAME (n = 6), Exercise (n = 6) and L-NAME + Exercise (n = 5). Rats were training on treadmill at a belt speed 15 m/min for 18 min during the 1st week, and increased to 24 m/min for 60 min during the 5th week. L-NAME(5 mg/kg/day, 5 days/wk) was fed one hour before the training. After 5 wks, rats were analyzed for mean blood pressure, citrate synthase activity(CS), and the glycogen contents of soleus, gastrocnemius and liver. Independent 2×2 ANOVA was used to evaluate the mean difference. The significance was set at p ~ .05. Data were expressed at MEAN ± SEM. RESULTS: The analysis indicated mean blood pressure and the glycogen content of gastrocnemius white muscle was not significantly affected in endurance trained rats and L-NAME treated rats(p> .05), but CS activity and glycogen content of gastrocnemius red muscle, soleus muscle and liver was significant enhanced in endurance trained rats (p < .001). Also, gastrocnemius red muscle glycogen in L-NAME treated rats were significantly increased(p <.05), Analysis also shows L-NAME treatment significantly decreased liver glycogen (p < .05). CONCLUSION: Endurance training could increase skeletal red muscle glycogen content and CS activity of rat. Low-dose L-NAME treatment could increase skeletal red muscle but decrease liver glycogen content in endurance trained rat. It is evident that low-dose L-NAME treatment could affect the location of storage.
期刊論文
1.Jobgen, W. S.、Fried, S. K.、Fu, W. J.、Meininger, C. J.、Wu, G.(2006)。Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates。Journal of Nutritional Biochemistry,17(9),571-588。  new window
2.Nisoli, E.、Clementi, E.、Paolucci, C.、Cozzi, V.、Tonello, C.、Sciorati, C.、Bracale, R.、Valerio, A.、Francolini, M.、Moncada, S.、Carruba, M. O.(2003)。Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide。Science,299(5608),896-899。  new window
3.Somani, S. M.、Frank, S.、Rybak, L. P.(1995)。Responses of antioxidant system to acute and trained exercise in rat heart subcellular fractions Pharmacology。Biochemistry, and Behavior,51,627-634。  new window
4.Spina, R. J.、Chi, M. M. Y.、Hopkins, M. G.、Nemeth, P. M.、Lowry, O. H.、Holloszy, J. O.(1996)。Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise。Journal of Applied Physiology,80(6),2250-2254。  new window
5.Nielsen, J. N.、Derave, W.、Kristiansen, S.、Ralston, E.、Ploug, T.、Richter, E. A.(2001)。Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content。Journal of Physiology,531(3),757-769。  new window
6.Ploug, T.、Van Deurs, B.、Ai, H.、Cushman, S. W.、Ralston, E.(1998)。Analysis of GLUT4 distribution in whole skeletal muscle fibers: Identification of distinct compartments that are recruited by insulin and muscle contractions。The Journal of Cell Biology,142(6),1429-1446。  new window
7.Leek, B. T.、Mudaliar, S. R.、Henry, R.、Mathieu-Costello, O.、Richardson, R. S.(2001)。Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle。American Journal of Physiology--Regulatory, Integrative and Comparative Physiology,280(2),R441-R447。  new window
8.Roberts, C. K.、Barnard, R. J.、Jasman, A.、Balon, T. W.(1999)。Acute exercise increases nitric oxide synthase activity in skeletal muscle。American Journal of Physiology--Endocrinology and Metabolism,277(2),E390-E394。  new window
9.Balon, T. W.、Nadler, J. L.(1997)。Evidence that nitric oxide increases glucose transport in skeletal muscle。Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology,82,359-363。  new window
10.Blackmore, R. S.、Greenwood, C.、Gibson, Q. H.(1991)。Studies of the primary oxygen intermediate in the reactions of fully reduced cytochrome c oxidase。The Journal of Biological Chemistry,266,19245-19249。  new window
11.Boelens, R.、Wever, R.、Van, B.、Gelder, F.、Rademaker, H.(1983)。An electron-paramagnetic-resonance study of. the photo-dissociation reactions of oxidised cytochrome c oxidase NO complex。Biochimica et Biophysica Acta,724,176-183。  new window
12.Chan, T. M.、Exton, J. H.(1976)。A rapid method for the determination of glycogen content and radioactivity in small quantities of tissue or isolated hepatocytes。Analytical Biochemistry,71,96-105。  new window
13.Derave, W.、Lund, S.、Holman, G. D.、Wojtaszewski, J.、Pedersen, O.、Richter, E. A.(1999)。Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content。American Journal of Physiology,277,E1103-E1110。  new window
14.Evans, J. L.、Goldfine, I. D.、Maddux, B. A.、Grodsky, G. M.(2002)。Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes。Endocrine Reviews,23(5),599-622。  new window
15.Fryer, L. G.、Hajduch, E.、Rencurel, F.、Salt, I. P.、Hundal, H. S.、Hardie, D. G.、Carling, D.(2000)。Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase。Diabetes,49,1978-1985。  new window
16.Hargreaves, M.(2004)。Muscle glycogen and metabolic regulation。Proceedings of the Nutrition Society,63,217-220。  new window
17.Kawanaka, K.、Han, D.-H.、Nolte, L. A.、Hansen, P. A.、Nakatani, A.、Holloszy, J. O.(1999)。Decreased insulin-stimulated GLUT-4 translocation in glycogen-supercompensated muscles of exercised rats。American Journal of Physiology,276,E907-E912。  new window
18.Lin, C. C.、Lee, W. Y.、Lee, S. H.、Chi, H. C.、Lin, M. N.、Hsu, M. W.(2003)。Prolonged L-NAME treatment enhances eNOS expression of skeletal muscle in trained rats。Medicine & Science in Sport & Exercise,35(5),S94。  new window
19.Roberts, C. K.、Barnard, R. J.、Scheclc, S. H.、Balon, T. W.(1997)。Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent。The American Journal of Physiology,273,E220-E225。  new window
20.Sessa, W. C.、Pritchard, K.、Seyedi, N.、Wang, J.、Hintze, T. H.(1994)。Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression。Circulation Research,74,349-353。  new window
21.Srere, P. A.(1969)。Citrate synthase。Methods in Enzymology,13,3-5。  new window
22.Sprangers, F.、Sauerwein, H. P.、Romijn, J. A.、Woerkom, G. M.、Meijer, A. J.(1998)。Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes。The Biochemical Journal,330,1045-1049。  new window
23.Perseghin, G.、Price, T. B.、Petersen, K. F.、Roden, M.、Cline, G. W.、Gerow, K.、Rothman, D. L.、Shulman, G. I.(1996)。Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects。New England Journal of Medicine,335(18),1357-1362。  new window
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE