:::

詳目顯示

回上一頁
題名:不同步態在足跟著地時下肢運動學與撞擊能量之關係
書刊名:華人運動生物力學期刊
作者:梁日蕾邱宏達 引用關係
作者(外文):Liang, Jih-leiChiu, Hung-ta
出版日期:2011
卷期:3:2
頁次:頁8-14
主題關鍵詞:撞擊測試著地策略最大負荷率有效質量Impact testingLanding strategyMaximum loading rateEffective mass
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(6) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:6
  • 共同引用共同引用:17
  • 點閱點閱:20
前言:本研究在預估不同步態下,人體足部與地面撞擊能量的大小,並探討下肢運動學與撞擊能量的相關性。方法:以不同的撞擊能量撞擊受測鞋,計算撞擊能量與地面反作用力之最大負荷率的線性迴歸關係。另招募 14名男性受試者,穿著與材料測試相同之慢跑鞋,進行快走、慢跑及快跑的動作,以 visualeyez動作捕捉系統拍攝並計算下肢的運動學參數,經由比較材料與人體測試的地面反作用力,以預估撞擊能量大小。結果:快走、慢跑及快跑著地時的撞擊能量分別為 0.81±0.45焦耳(0.45~1.85焦耳)、1.55±0.56焦耳(1.07~2.08焦耳),2.97±1.39焦耳(2.06~4.00 焦耳)。快跑著地瞬間的足跟速度最快,踝關節角度最大,膝關節角度最小,依序是慢跑及快走。撞擊能量與足跟速度(r=0.647, p<0.01)、踝關節角度 (r=0.396, p<0.01) 呈現顯著的正相關,而與膝關節角度(r=–0.478, p<0.01)呈顯著的負相關。結論與建議:未來如欲以材料測試評估慢跑鞋在不同步態下的避震效應,所採用的撞擊能量應設定在 0.45~4焦耳。人體在不同速度下的運動,為減少衝擊下肢會採取運動學上的調整,但著地時的撞擊能量仍會隨運動速度增加而增加。導致撞擊能量增加的原因,相較於有效質量,撞擊速度的影響似乎更為主要。
Purpose: The purpose of this study is to estimate the impact energy at the landing instant for walking, jogging and running with running shoe and to investigate the correlation between foot strike kinematic factors with impact energy. Methods: A portable impact tester was specifically designed to impact a running shoe (Nike air shox 318684-142) that was positioned on a force plate (AMTI BP400600) with 10 different impact energies (equally distributed from 0.61 to 6.08 joules). The linear regression equation between mean maximum loading rate and impact energy was calculated for this shoe. Fourteen male subjects wearing the same shoes of material test were asked to move across the force plate by walking, jogging and running. The heel velocity, ankle and knee angle at heel strike were measured by using 3D motion analysis system (VisualeyezTM, VZ4000). The impact energies were calculated with the comparison of the ground reaction forces of impact and subject testing. Results: The impact energy for walking, jogging, and running was 0.81±0.45 joule (0.45~1.85 joule), 1.55±0.56 joule (1.07~2.08 joule) and 2.97±1.39 joule (2.06~4 joule), respectively. The kinematic factors: heel velocity(r=0.647, p<0.01), ankle angle(r=0.396, p<0.01) and knee angle(r=–0.478, p<0.01) at heel strike were significantly correlated with impact energy. Conclusions: In future, as using impact testing method to evaluate the cushioning property of the sports shoes, the impact energies should be set at the range from 0.45 to 4.0 joule to simulate the shoe’s cushioning effect under subject walking, jogging and running. Base on the results, the subjects have seemed to adjust their landing strategy to reduce the effective mass at heel strike as the motion speed increased. However, the impact energy still increased because of the greater heel striking speed. In conclusion, impact velocity seemed to have a greater contribution to the increased impact energy than effective mass.
期刊論文
1.Henning, E. M.、Milani, T. L.、Lafortune, M. A.(1993)。Use of ground reaction force parameters in predicting peak tibial acceleration in running。Journal of Applied Biomechanics,9,306-314。  new window
2.Verdejo, R.、Mills, N. J.(2004)。Simulating the effects of long distance running on shoe midsole foam。Polymer Testing,23,567-574。  new window
3.Wright, I. C.、Neptune, R. R.、van den Bogert, A. J.、Nigg, B. M.(1998)。Passive regulation of impact forces in heel-toe running。Clinical Biomechanics,13,521-531。  new window
4.Wilson, J. F.(2007)。Impact-induced fatigue of foamed polymers。Internal Journal of Impact Engineering,23,1370-1381。  new window
5.邱宏達(20040100)。不同慢跑鞋與運動表面組合之避震特性。成大體育,37(1)=40,39-48。new window  延伸查詢new window
6.Chi, K.-J.、Schmitt, D.(2005)。Mechanical energy and effective foot mass during impact loading of walking and running。Journal of Biomechanics,38(7),1387-1395。  new window
7.Hennig, E. M.、Lafortune, M. A.(1991)。Relationships between ground reaction force and tibial bone acceleration parameters。Int. J. Sports Biomechanics,7,303-309。  new window
8.McNair, P. J.、Marshall, R. N.(1994)。Kinematic and kinetic parameters associated with running in different shoes。British Journal of Sports Medicine,28(4),256-260。  new window
9.邱宏達、相子元、林德嘉(20020300)。由地面反作用力評估鞋底避震能力--材料與人體測試之比較。體育學報,32,69-78。new window  延伸查詢new window
10.邱宏達(20021200)。赤足與穿鞋跑步之著地策略分析。大專體育學刊,4(2),101-108。new window  延伸查詢new window
11.Chiu,Hung-Ta、Shiang, Tzyy-Yuang(2009)。Effects of Insoles and Additional Shock Absorption Foam on the Cushioning Properties of Sport Shoes。Journal of Applied Biomechanics,23(2),119-127。  new window
會議論文
1.Chiu, H. T.(2003)。The effect of adding mass to runner's lower legs on impact energy and effective mass during impact phase。The 13th International Conference on Mechanics in medicine and Biology,(會議日期: November)。Tainan。  new window
研究報告
1.相子元(1998)。運動鞋與人體生物力學之研究計畫報告書。  延伸查詢new window
圖書論文
1.Frederick, E. C.、Clarke, T. E.、Hamill, C. L.(1984)。The effect of running shoe design on shock attenuation。Sport shoes and playing surfaces。Champaign, IL:Human Kinetics Publishers, Inc.。  new window
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top