:::

詳目顯示

回上一頁
題名:應用空載全波形光達資料於波形分析與地物分類
書刊名:航測及遙測學刊
作者:林郁珊張智安
作者(外文):Lin, Yu-shanTeo, Tee-ann
出版日期:2014
卷期:19:2
頁次:頁75-91
主題關鍵詞:空載光達全波形光達波形擬合地物分類支持式向量機隨機森林Airborne LidarFull-waveformWaveform fittingLand cover classificationSupport vector machineSVMRandom forestsRF
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
全波形光達記錄回波的連續波形,藉由波形分析得到更多的地表反射物理特性、地表細節及變化,提供較豐富及完整的地表資訊,有助於地形重建及地物判識。本研究分別使用對稱函數(高斯函數)與不對稱函數(韋伯函數)進行擬合波形,並進行原始資料與擬合成果兩者間的精度評估,分析不同擬合函數對於全波形光達訊號處理的適用性。研究中萃取的波形參數包含波寬、振幅、背向散射參數,光達幾何參數則包含高程、高程差、回波數、多重回波百分比,結合波形及幾何參數進行地物分類。本研究以光達特徵配合人工判識選取訓練區,並使用支持式向量機(Support Vector Machine, SVM)與隨機森林(Random Forest)兩種分類器進行地物分類,並就地物分類成果進行精度評估,藉此比較使用全波形光達及多重回波光達進行分類之精度。研究結果顯示,雖然使用韋伯函數之波形擬合殘差較小,但在波形峰值位置的萃取成果與高斯函數之差異有限,因此高斯函數為一個簡易有效之擬合函數。在地物分類方面,全波形光達所提供的背向散射參數為一顯著性高的特徵,另隨機森林分類法的成果相較於支持式向量機為佳。
Full-waveform (FWF) lidar receives one dimensional continuous signal. It offers useful information about the structure of the target. Therefore, the analysis of received signal of FWF lidar and obtaining the implicit information is helpful for land cover classification. In the processing of full waveform Lidar data, the waveform parameter extraction and analysis are the important steps. The major objective of this study is to analyze the received waveform and extract its parameters. We select Gaussian distribution as a symmetric function and Weibull distribution as an asymmetric function in waveform decomposition. Then, we calculate several accuracy assessment indicators between raw waveform data and fitting function for quality assessment. We use echo width, amplitude, backscatter cross-section coefficient, elevation, elevation difference, echo number, and echo ratio as waveform parameter of classification. After waveform parameter extraction, we employ Support Vector Machine (SVM) and Random Forests (RF) as classifier for land cover classification. This study employs echo width, amplitude, backscatter cross-section coefficients and other features for classification. Error matrix is used to compare the performance of the classifiers. The experimental results indicate that the accuracy of asymmetric function is slightly better than symmetric function. However, the extracted peak positions from the Gaussian and Weibull are very close. Moreover, Gaussian distribution is relatively simple and easy to implement in the waveform analysis. The result of land cover classification shows that waveform parameters are helpful for classification and Random Forests classifier is slightly better than SVM in our study cases.
期刊論文
1.Burges, Christopher J. C.(1998)。A tutorial on support vector machines for pattern recognition。Data mining and knowledge discovery,2(2),121-167。  new window
2.Alexander, C.、Tansey, K.、Kaduk, J.、Holland, D.、Tate, N. J.(2010)。Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas。ISPRS Journal of Photogrammetry and Remote Sensing,65(5),423-432。  new window
3.Briese, C.、Höfle, B.、Lehner, H.、Wagner, W.、Pfennigbauer, M.、Ullrich, A.(2008)。Calibration of full-waveform airborne laser scanning data for object classification。Proceedings of SPIE - The International Society for Optical Engineering,6950,1-8。  new window
4.Chauve, A.、Bretar, F.、Durrieu, S.、Deseilligny, M. P.、Puech, W.(2007)。Processing full-waveform lidar data: modelling raw signals。International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,36(3/W52),102-107。  new window
5.Coops, N. C.、Hilker, T.、Wulder, M. A.、St-Onge, B.、Newnham, G.、Siggins, A.、Trofymow, J. A.(2007)。Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR。Trees-Structure and Function,21(3),295-310。  new window
6.Guo, L.、Chehata, N.、Mallet, C.、Boukir, S.(2011)。Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests。ISPRS Journal of Photogrammetry and Remote Sensing,66(1),56-66。  new window
7.Heinzel, J.、Koch, B.(2011)。Exploring full-waveform LiDAR parameters for tree species classification。International Journal of Applied Earth Observation and Geoinformation,13(1),152-160。  new window
8.Hofton, M. A.、Minster, J. B.、Blair, J. B.(2000)。Decomposition of laser altimeter waveforms。IEEE Transactions on Geoscience and Remote Sensing,38(4),1989-1996。  new window
9.Jutzi, B.、Stilla, U.(2005)。Measuring and processing the waveform of laser pulses。Optical,3,194-203。  new window
10.Jutzi, B.、Stilla, U.(2006)。Range determination with waveform recording laser systems using a Wiener Filter。ISPRS Journal of Photogrammetry and Remote Sensing,61(2),95-107。  new window
11.Laky, S.、Zaletnyik, P.、Toth, C.(2010)。Land classification of wavelet-compressed full-waveform LiDAR data。International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences,38(3),115-119。  new window
12.Mallet, C.、Bretar, F.(2009)。Full-waveform topographic lidar: State-of-the-art。ISPRS Journal of Photogrammetry and Remote Sensing,64(1),1-16。  new window
13.Pal, M.(2009)。Kernel methods in remote sensing: a review。ISH Journal of Hydraulic Engineering,15,194-215。  new window
14.Reitberger, J.、Krzystek, P.、Stilla, U.(2008)。Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees。International Journal of Remote Sensing,29(5),1407-1431。  new window
15.Roncat, A.、Bergauer, G.、Pfeifer, N.(2011)。B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data。ISPRS Journal of Photogrammetry and Remote Sensing,66(4),418-428。  new window
16.Üstün, B.、Melssen, W.、Buydens, L.(2006)。Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel。Chemometrics and Intelligent Laboratory Systems,81(1),29-40。  new window
17.Wagner, W.、Ullrich, A.、Ducic, V.、Melzer, T.、Studnicka, N.(2006)。Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner。ISPRS Journal of Photogrammetry and Remote Sensing,60(2),100-112。  new window
18.Breiman, Leo(2001)。Random Forests。Machine Learning,45(1),5-32。  new window
會議論文
1.Höfle, B.、Hollaus, M.、Lehner, H.、Pfeifer, N.、Wagner, W.(2008)。Area-based parameterization of forest structure using full-waveform airborne laser scanning data229-235。  new window
圖書
1.Vapnik, Vladimir Naumovich(1995)。The Nature of Statistical Learning Theory。Springer-Verlag。  new window
其他
1.Chauve, A.,Durrieu, S.,Bretar, F.,Pierrot Deseilligny, M.,Puech, W.(2007)。Processing full-waveform lidar data to extract forest parameters and digital terrain model: Validation in an Alpine Coniferous Forest,http://hal-lirmm.ccsd.cnrs.fr/docs/00/29/31/32/PDF/p168_Chauve.pdf。  new window
2.Machine Learning Group at University of Waikato(2012)。Weka 3: Data Mining Software in Java,http://www.cs.waikato.ac.nz/ml/weka/。  new window
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE