:::

詳目顯示

回上一頁
題名:非隨機遺漏之結構方程模型估計─潛在變項選擇模型與組型混合模型
作者:鄭中平 引用關係
作者(外文):Chung-Ping Cheng
校院名稱:國立臺灣大學
系所名稱:心理學研究所
指導教授:翁儷禎
學位類別:博士
出版日期:2003
主題關鍵詞:結構方程模型不可忽略遺漏選擇模型組型混合模型EM算則structural equation modelingnonignorable missingnessselection modelpattern mixture modelEM algorithm
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(1) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:48
結構方程模型為心理學常用分析方法之一,研究者需收集實徵資料檢驗模型的適當性,在資料收集過程中難免得到不完整資料。結構方程模型現行之遺漏值處理法大多假設資料遺漏機制為完全隨機遺漏或隨機遺漏,均侷限於外顯變項對資料遺漏的影響,而文獻中討論之遺漏機制,包括選擇模型與組型混合模型,亦僅著眼於外顯變項與資料遺漏間的關係,對於心理學研究而言乃嫌不足。是故,本研究即將潛在變項引入選擇模型與組型混合模型,稱為潛在變項選擇模型與潛在變項組型混合模型。
針對潛在變項選擇模型,本研究採Muthén等人(1987)之遺漏機制模型,假設變項遺漏機率受潛在連續變項影響,為選擇模型之延伸。研究中以隨機EM算則配合捨選抽樣法,估計潛在變項選擇模型時結構方程模型之參數,稱之為潛在變項選擇模型最大概似估計。
潛在變項組型混合模型將潛在類別變項加入組型混合模型中,假設觀察變項的遺漏組型並非受訪者的分類,而是潛在類別的指標變項,此模型為Little組型混合模型擴充至潛在變項層次之延伸。本研究以EM算則估計結構方程模型參數,稱之為潛在變項組型混合模型最大概似估計。
本研究並以三個模擬研究,探討當資料遺漏符合潛在變項遺漏機制時,本研究建議之遺漏值處理法的表現。結果發現,在遺漏機制符合潛在變項選擇模型時,資料遺漏比率較高,且越偏離完全隨機遺漏,潛在變項選擇模型最大概似估計法的表現越好。若資料遺漏為潛在變項組型混合模型,潛在變項組型混合模型最大概似估計法的表現良好,對於遺漏機制參數估計表現亦良好。本研究並討論兩類遺漏值處理法之假設與未來研究方向。
Structural equation modeling (SEM) is a popular statistical method for social science research. Incomplete data are often encountered when researchers make an effort to collect empirical data for test of their hypothesized models. Most missing data treatment methods in SEM assume that data are missing completely at random or missing at random. These two missing patterns consider the impact of manifest variables on data missingness. Missing data mechanisms of selection model and pattern mixture model also focus on the relationship between missingness and manifest variables. For psychologists interested in latent variables, the missing data mechanisms that ignore the influences of latent variables tend to be insufficient. The research therefore introduced latent variables into selection model and pattern mixture model, referred to as latent variable selection model and latent variable pattern mixture model, respectively.
Latent variable selection models assume that missingness is affected by continuous latent variables, as suggested by Muthén et al. (1987). Stochastic EM algorithm with rejection/acceptance sampler was developed to estimate the parameters. The method was called “latent variable selection model maximum likelihood estimation (LVSM-ML)”.
Latent variable pattern mixture model assume that missing data patterns reflect latent classes. Categorical latent variables were added to the pattern mixture model. Maximum likelihood estimation using the EM algorithm was developed and referred to as “latent variable pattern mixture model maximum likelihood estimation (LVPM-ML)”.
Three Monte Carlo studies were employed to explore the performance of LVSM-ML and LVPM-ML when latent variables affected data missingness. Results of the present study showed that with missing data mechanism of latent variable selection model, LVSM-ML performed better than other missing data treatment methods at high degrees of data missingness and severe departure from missing completely at random. If the missing data mechanism is latent variable pattern mixture model, LVPM-ML also performed better than other methods. The assumptions of the two missing data treatment methods proposed and directions for future research were also discussed.
高惠璇(編著)(1995)。「統計計算」。北京:北京大學出版社。
鄭中平與翁儷禎(2001年十月)。「結構方程模型遺漏值分析法與適合度指標之關係」,發表於第五屆華人社會心理與教育測驗學術研討會,台北。
Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 243-277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Bartholomew, D. J. & Knott, M. (1999). Latent variable models and factor analysis. London: Arnold.
Bentler, P. M. (2001). EQS 6 structural equations program manual. Encino, CA: Multivariate Software. Manuscript in preparation.
Bentler, P. M., & Weeks, D. G. (1980). Linear structural equations with latent variables. Psychometrika, 45, 289-308.
Böckenholt, U., & Tsai, R. C. (2001). Individual differences in paired comparison data. British Journal of Mathematical and Statistical Psychology, 54, 265-277.
Chernick, M. R. (1999). Bootstrap Methods: A practitioner’s guide. New York: John Wiley & Sons.
Cohen, J. (1987). Statistical power analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
de Leeuw, J., Bijleveld, C. & Bijleveld, F. (1995). Latent variables, state spaces, and mixing. Http://ebook.stat.ucla.edu/papers/ preprints/181.ps.gz.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.
Diebolt, J., & Ip, E. H. S. (1996). Stochastic EM: method and application. In W. R. Gilks, S. Richardson & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice (pp. 259-273). London: Chapman & Hall.
Diggle, P., & Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics, 43, 49-94.
Dolan, V. C., & van der Maas, H. L. J. (1998). Fitting multivariate normal finite mixtures subject to structural equation modeling. Psychometrika, 63, 227-253.
Efron, B. (1994). Missing data, imputation, and the bootstrap. Journal of the American Statistical Association, 89, 463-479.
Enders, C. K. (2001). A primer on maximum likelihood algorithms available for use with missing data. Structural Equation Modeling, 8, 128-141.
Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430-457.
Everitt, B. S. (1984). An introduction to latent variable models. New York: Chapman and Hall.
Everitt, B. S. & Hand, D. J. (1981). Finite mixture distributions. New York: Chapman and Hall.
Finkbeiner, C. (1979). Estimation for the multiple factor model when data are missing. Psychometrika, 44, 409-420.
Frangakis, C. E. & Rubin, D. B. (1999). Addressing complications of intent-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes. Biometrika, 86, 365-379.
Gold, M. S., & Bentler, P. M. (2000). Treatments of missing data: A Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation-maximization. Structural Equation Modeling, 7, 319-355.
Goodman, L. A. (1974). Exploratory latent structure models using both identifiable and unidentifiable models. Biometrika, 61, 215-331.
Graham, J. W., & Hofer, S. M. (1993). EMCOV reference manual[Computer software]. Los Angels: University of Southern California, Institute for Prevention Research.
Griliches, Z. (1974). Errors in variables and other unobservables. Econometrika, 42, 971-998. (Reprinted in D. J. Aigner, & A. S. Goldberger (Eds), 1977, Latent variables in socio-economic models. Amsterdam: North-Holland.)
Groves, R. M. (1999). Survey error models and cognitive theories of response behavior. In M. G. Sirken, D. J. Herrmann, S. Schechter et al. (Eds.), Cognition and Survey Research (pp. 235-250). New York: John Wiley & Sons.
Hedeker, D., & Gibbons, R. D. (1997). Application of random-effect pattern-mixture models for missing data in longitudinal studies. Psychological Methods, 2, 64-78.
Hill, J. L. (2001). Accommodating missing data in mixture models for classification by opinion-changing behavior. Journal of Educational and Behavioral Statistics, 26, 233-268.
Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424-453.
Huisman, M., & Van der Zouwen, J. (1998). Item nonresponse in scale data from surveys: types, determinants, and measures. Http://www.ppsw.rug.nl/~huisman
/download/itemnr.pdf.
Jamshidian, M. & Bentler, P. M. (1999). ML estimation of mean and covariance structures with missing data using complete data routines. Journal of Educational and Behavioral Statistics, 24, 21-41.
Jamshidan, M. & Jennrich, R. J. (1997). Standard errors for EM estimation. Computing Science and Statistics, 29, 463-470.
Jedidi, K., Jagpal, H. S., & Desarbo, W. S. (1997a). STEMM:A general finite mixture structural equation model. Journal of Classification, 14, 23-50.
Jedidi, K., Jagpal, H. S., & Desarbo, W. S. (1997b). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 39-59.
Jenkins, G. D., & Taber, T. D. (1977). A Monte Carlo study of factors affecting three indices of composite scale reliability. Journal of Applied Psychology, 62, 392-398.
Johnson, N. L., & Kotz, S. (1972) Distributions in statistics: continuous multivariate distributions. New York: John Wiley & Sons.
Jöreskog, K. G., & Sörbom, D. (1984). LISREL VI user's guide. Mooresville, IN: Scientific Software, Inc.
Jöreskog, K. G., & Sörbom, D. (1993a). LISREL 8: Structural Equation Modeling with the SIMPLIS command language. Mooresville, IN: Scientific Software, Inc.
Jöreskog, K. G., & Sörbom, D. (1993b). New features in PRELIS 2. Mooresville, IN: Scientific Software, Inc.
Kim, K. H. & Bentler, P. M. (1999). Tests of homogeneity of means and covariance matrices for multivariate incomplete data. Http://www.stat.ucla.edu/papers
/preprints/265.PDF.
King, D. W., King, L. A., Bachrach, P. S., & McArdle, J. J. (2001). Contemporary approaches to missing dada: the Glass is really half full. PTSD Research Quarterly, 12, 1-8.
Knott, M., Albanese, M. T. & Galbraith, J. (1990). Scoring attitudes to abortion. The Statistician, 40, 217-223.
Knott, M., & Tzamourani, P. (1997). Fitting a latent trait model for missing observations to racial prejudice data. In J. Rost, R. Langeheine (Eds.) Applications of Latent Trait and Latent Class Models in the Social Sciences (pp. 244-252). Münster: WAXMANN Verlag.
Lessler, J. T., & Kalsbeek, W. D.(1997). Nonsampling error in surveys. [金勇進譯].北京:中國統計出版社. (original work published in 1992)
Lee, S. Y. (1986). Estimation for structural equation models with missing data. Psychometrika, 51, 93-99.
Lee, S. Y. & Poon, W. Y. (1986). Maximum likelihood estimation of polyserial correlations. Psychometrika, 51, 113-121.
Lee, S. Y., Poon, W. Y. & Bentler, P. M. (1990). Full maximum likelihood analysis of structural equation models with polytomous variables. Statistics and Probability Letters, 9, 91-97.
Lee, S. Y., Poon, W. Y. & Bentler, P. M. (1992). Structural equation models with continuous and polytomous variables. Psychometrika, 57, 89-105.
Lee, S. Y., Poon, W. Y. & Bentler, P. M. (1994). Covariance and correlation structure analyses with continuous and polytomous variables. In Multivariate Analysis and Its Application. IMS Lecture Notes-Monograph Series, Vol. 24, 347-358.
Lee, S. Y., Poon, W. Y. & Bentler, P. M. (1995). A two-stage estimation of structural equation models with continuous and polytomous variables. British Journal of Mathematical and Statistical Psychology, 48, 339-358.
Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88, 125-134.
Little, R. J. A. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika, 81, 471-483.
Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121.
Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis with missing data. New York: John Wiley & Sons.
MacCallum, R. C. & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51, 210-226.
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-251.
McCutcheon, A. L. (1987). Latent class analysis. Sage University Paper series on Quantitative Applications in the social Science, series no.07-064. Newbury Park, CA: Sage.
McLachlan, G. J., & Krishnan, T. (1997). The EM algorithm and extensions. New York: John Wiley & Sons.
Meng, X. L. & van Dyk, D. (1997). The EM algorithm - an old folk-song sung to a fast new tune. Journal of the Royal Statistical Society, Series B, 59, 511-567.
Meng, X. L., & Rubin, D. B.(1991). Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm. Journal of the American Statistical Association, 86, 899-909.
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115-132.
Muthén, B. (2001a). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling. (pp. 1-33). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Muthén, B. (2001b). Second-generation structural equation modeling with a combination of categorical and continuous latent variables. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change. (pp. 291-322). Washington, DC: American Psychological Association.
Muthén, B., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with data that are not missing completely at random. Psychometrika, 52 , 431-462.
Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using EM algorithm. Biometrics, 55, 463-469.
Neale, M. C. (2001). Individual fit, heterogeneity, and missing data in multigroup structural equation modeling. In T. D. Little, K U. Schnabel, et al. (Eds.), Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples (pp. 269-281). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (1999). Mx: Statistical Modeling (5th ed.) [Computer software]. Richmond, VA: Department of Psychiatry, Medical College of Virginia, Virginia Commonwealth University.
Nielsen, S. F. (2000). The stochastic EM algorithm: Estimation and asymptotic results. Bernoulli, 6, 457—489.
Newcomb, M. D., & Bentler, P. M. (1988). Consequences of adolescent drug use: Impact on the lives of young adults. Newbury Park, CA: Sage.
Niaura, R., Spring, B., Borrelli, B., Hedeker, D., Goldstein, M. G., Keuthen, N., DePue, J., Kristeller, J., Ockene, J., Prochazka, A., Chiles, J. A., & Abrams, D. B. (2002). Multicenter trial of fluoxetine as an adjunct to behavioral smoking cessation treatment. Journal of Consulting and Clinical Psychology, 70, 887-896.
Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44 , 443-460.
Omura, G. S. (1983). Correlates of item nonresponse. Journal of the Market Research Society, 25, 321-330.
Poon, W. Y., & Lee, S. Y. (1987). Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficient. Psychometrika, 52, 409-430.
Ruud, P. A. (1991). Extensions of estimation methods using the EM algorithm. Journal of Econometrics, 49, 305-341.
Schafer, J. L. & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
Tanner, M. A. (1996). Tools for statistical inference. NY: Springer.
Teicher, H. (1967). Identifiability of mixtures of product measures. Annals of Mathematical Statistics, 38, 1300-1302.
Titterington, D. M., Smith, A. F. M. & Markov, U. E. (1985). Statistical analysis of finite mixture distributions. New York: John Wiley & Sons.
Tourangeau, R., Rips, L. J., Rasinski, R. (2000). The psychology of survey response. New York: Cambridge University Press.
Van Zwet, E. (2001). Perfect stochastic EM. In M. de Gunst, C. Klaassen & A. van der Vaart (Eds.), State of the art in probability and statistics (pp. 607-616). Ohio: Institute of Mathematical Statistics.
Wei, G. C. G., & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithm. Journal of the American Statistical Association, 85, 699-704.
Wothke, W. (1993). Nonpositive definite matrices in structural modeling. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 10-39). Newbury Park, CA: Sage.
Yung, Y. F. (1997). Finite mixtures in confirmatory factor-analysis models. Psychometrika, 62, 297-330.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE