:::

詳目顯示

回上一頁
題名:應用田口方法於刀具磨耗的可靠度分析與玻璃纖維切斷製程最佳化之研究
作者:楊昭烈
作者(外文):Chao-Lieh Yang
校院名稱:國立臺灣科技大學
系所名稱:管理研究所
指導教授:徐世輝
學位類別:博士
出版日期:2008
主題關鍵詞:磨耗韋伯分佈薄型刀片田口方法可靠度最佳化玻璃纖維切斷加工WearWeibull distributionThin-edge bladeTaguchi methodReliabilityOptimalGlass fiberCutting
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:45
本論文之研究目的是期望藉由切斷參數之最佳選擇、刀具磨耗量之正確掌握及刀具磨耗之可靠度分析,以確保纖維之切斷品質,並以可靠度韋伯模數分析與田口方法的結合,來達成切斷製程參數最佳化。在切斷玻璃纖維時,以確實掌握刀具之磨耗與壽命並進行可靠度分析,由實驗結果顯示刀具磨耗之累積機率密度函數趨近於韋伯分佈,由刀具之磨耗量推估刀具壽命,作為是否更換刀具之參考。為了確保切斷品質及刀具磨耗之極小化,並應用田口方法進行實驗規劃,針對切斷速度、切斷量及切斷壓力實驗因子之加工特性,求得各加工參數對切斷品質及刀具磨耗之影響程度,進而求得最佳組合參數,透過刀具磨耗與韋伯模數之可靠度分析,最後實驗加以驗證。本論文得知對刀具磨耗之較佳條件為低切斷速度、高切斷量及中切斷壓力,而切斷量則較不顯著。刀具切斷玻璃纖維時其磨耗量變異分析之結果顯示,較顯著的參數有切斷速度佔49.17%,切斷壓力佔20.33%。透過韋伯模數對切斷參數之分析得到切斷速度為5.7m/s、切斷量150piece和切斷壓力27kgf/cm2為較佳條件。綜合刀具磨耗和韋伯模數之結論,發現最佳之切斷參數條件為A1B3C3,即低切斷速度、高切斷量及低切斷壓力。最後本論文結果顯示田口方法對玻璃纖維切斷製程參數最佳化具有刀具磨耗改善63.54%,及提高產量36.00%之效益。
Based on reliability analysis, this paper describes a new approach for optimizing the cutting process using the Taguchi method. This approach uses optimized cutting parameters, such as the cutting speed, the cutting volume, and the cutting load for cutting glass fibers, with the application of the Weibull modulus to the blade wear. According to the experimental results, the thin-edge blade wear distribution approximated to a Weibull distribution, and the cumulative probability could be determined after 12 iterations. The minimum blade wear, using the Taguchi method, was found to be the lowest cutting speed, and the medium cutting load. The cutting volume had little effect on blade wear. An analysis of the variance of the blade wear indicated that the cutting speed (49.17 per cent) and load (20.33 per cent) were the most significant parameters in the cutting process of glass fibers. The optimum cutting conditions for the Weibull modulus were found to be as follows: speed, 5.7 m/s; volume, 150 piece; load, 27 kgf/cm2. Comparing the wear with Weibull modulus, the most optimal cutting parameter is A1B3C3. The experimental results reveal that the Taguchi method provides the optimum parameters for the cutting of glass fibers.
[1] An, S.O., Lee, E.S. and S.L. Noh, “A study on the cutting characteristics of glass fiber reinforced plastics with respect to tool materials and geometries,” J. Mater. Proc. Technol., 68:60–67(1997).

[2] Lau, K.H., Mei, D., Yeung, C.F. and H.C. Man, “Wear characteristics and mechanisms of a thin edge cutting blade,” J Mater Proc. Technol., 102:203-207(2000).

[3] Casto, S.L., Valvo, E.L., Lucchini, E., Maschio, S. and V.F. Ruisi, “Wear rates and wear mechanisms of alumina-based tools cutting steel at a low cutting speed,” Wear, 208:67-72(1997).

[4] Lin, T.R., “Reliability and failure of face-milling tools when cutting stainless steel,” J. Mater. Proc. Technol., 79:41-46(1998).

[5] Lin, T.R., Chiu, H.C. and M.F. Huang, “Optimizing removal rate and reliability of polishing of ceramic blocks using a combination of Taguchi and Grey method,” Institute of materials, Minerals an Mining, Aug (2004).

[6] Klim, Z., Ennajimi, E., Balazinski, M. and C. Fortin, “Cutting tool reliability analysis for variable feed milling of 17-4PH stainless steel,” Wear, 195:206-213(1996).

[7] Ross, P.J., Taguchi techniques for quality engineering, McGraw-Hill Book Company, New York(1996).

[8] Kang, J. and M. Hadfield, “Parameter optimization by Taguchi methods for finishing advanced ceramic balls using a novel eccentric lapping machine,” Proc. Inst. Mech. Eng., 215:69–78(2001).

[9] Lin, T.R., “The use of reliability in the Taguchi method for the optimization of the polishing ceramic gauge block,” Int. J. Adv. Manufact. Technol., 22: 237–242(2003).

[10] Shigley, J.E. and C.R. Mischke, Mechanical engineering design 5th ed., McGraw-Hill, New York (1989).

[11] Tobias, P.A. and Trindade, D.C., Applied reliability 2nd ed., A division of international thomson publishing inc. New York (1995).

[12] Shaw, M.C., Metal cutting principles, Oxford Science, New York (1984).

[13] Phadke, M.S., Quality engineering using robust design, Prentice-Hall (1989).

[14] Tsai, H.T., Moskowitz, H. and L.H. Lee, “Human resource selection for software development projects using Taguchi’s parameter design,” European Journal of Operational Research, 151:167-180(2003).

[15] Rao, S.S., Reliability-based design, School of mechanical engineering purdue university, McGraw-Hill (1992).

[16] 王士賢,「矽溶膠表面處理增進玻纖強化酚醛樹脂複合材料接著性之研究」,國立台灣科技大學纖維及高分子工程技術研究所碩士論文,民國八十九年。

[17] 原一高、朱世根,「纖維切割過程中切斷刀鋒利性能分析」,東華大學機械工程學院紡織學報,Vol.25,No.6,Dec 2004,中國上海。

[18] 原一高、朱世根,「化纖切斷刀的鋒利度與刃口半徑的關係」,東華大學機械工程學院紡織學報,Vol.26,No.2,Apr 2005,中國上海。

[19] 刀具的磨損與破損刀具壽命及刀具狀態監控,西安交通大學先進製造技術研究所,Sep 2004,中國西安。

[20] 廖健隆,「碳鋼材料在二氧化硫環境下之腐蝕可靠度行為之探討」,國立中央大學碩士論文,民國八十九年。

[21] 先鋒品管研究會,實用可靠度,台北,先鋒企業管理發展中心,民國八十七年。

[22] 陳耀茂,可靠性分析與管理,台北,五南圖書出版公司,民國八十五年。

[23] 石逸群,「累積失效與可靠度關係之探討」,國立中央大學碩士論文,民國八十九年。

[24] 廖曉強,「機電系統的壽命可靠度評估」,國立交通大學碩士論文,民國九十一年。

[25] 蘇朝墩,產品穩健設計,台北,中華民國品質學會,民國八十九年。

[26] 蘇朝墩,品質工程,台北,中華民國品質學會,民國九十一年。

[27] 江可達,「使用田口法與灰色關聯分析於塑膠射出成型之模流分析」,第七屆灰色系統理論與應用研討會,民國九十一年。

[28] 徐世輝,品質管理,台北,三民書局,民國八十五年。

[29] 陳耀茂,品質工程計算法入門,台北,全華科技圖書公司,民國九十三年。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE