:::

詳目顯示

回上一頁
題名:土壤碳儲量長時距時間尺度下的變動及其在地形面對比之意義
作者:徐進將
校院名稱:國立彰化師範大學
系所名稱:地理學系
指導教授:蔡衡
學位類別:博士
出版日期:2021
主題關鍵詞:階地對比土壤時間序列加權剖面化育指數土壤有機碳碳儲存Terrace correlationSoil chronosequenceWeighted profile development indexSoil organic carbonCarbon stock
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:3
土壤化育過程與地形演育的歷史密切相關,若土壤能提供時間在地形上相關的訊息,在地形學應用上具有重大的意義。本研究目的在探討更新世晚期河階地形土壤之碳儲量、累積速率、深層碳封存與土壤化育程度及土壤年齡之關聯性,並檢視深層碳封存與時間之關係,以提供作為相對定年的工具與參考依據。此外,本研究並於臺灣中部全新世高山土壤,探討土壤剖面複層序堆積層之碳儲量及累積速率與環境變遷之關係。
研究結果顯示,臺灣中部八卦台地南段紅壤碳儲量的累積速率與時間呈現指數函數,且土壤之間符合土壤時間序列關係。由於淺層部分的土壤易受到外在環境因素影響,碳儲量與時間的關係沒有固定模式。相較之下,深層土壤的碳儲量會隨土壤深度增加而快速減少,且隨深度遞減的速率不同。透過負指數函數擬合,在土壤深層(>100 cm) 有機碳密度減少遞減的量會趨於定值。就八卦台地南段河階而言,土壤深層趨於穩定有機碳密度(OCD)的變化,與土壤的年齡成反比關係。以其變化速率估計缺乏年代資料的八卦台地中、北段河階土壤,亦符合前人在地形或土壤對比的結果。深層土壤有機碳封存量(CSV)與加權土壤剖面化育指數(WPDI)或土壤年齡(Age)高度的相關性,亦可以在湖口台地(TY)與大肚台地(TD)不同地形面土壤的碳封存量得到驗證,意味著土壤深層碳封存量可以提供作為相對定年的工具與參考依據,因此對比土壤剖面底層的碳密度含量可作為初步而快速的地形對比方法。土壤碳封存過程隨土壤演育時間變化的規律性及其模型,將可應用於臺灣階地地形的對比以及土壤化育相關研究參考。
此外,臺灣中部高山海拔在3,000 m左右的高山地區,現代植被為高山箭竹林的環境下出現一些複層序的土壤,配合土壤的年代證實了氣溫變暖,碳的累積速率降低的理論。透過土壤剖面有機碳密度(OCD)的擬合分布顯示高山土化育程度低,深層碳封存量尚未穩定,且複層序或土壤層淺(<100 cm)的土壤剖面並不適合負指數函數擬合方法的應用。
The soil development process and the geomorphic evolution of the terrain are closely related. It is of great significance if soil may indicate the age of the surface. This study compares the soils of the terrace surface for the properties of carbon storage, accumulation rate, carbon sequestration, in which the soils developed since late Pleistocene. In addition, the relationship between the carbon storage and the accumulation rate of carbon sequence along soil profile in respond to the environmental change over the Holocene alpine area are discussed.
The results of this study show that the accumulation rate of carbon stock is an exponential function with the time of red soil carbon stock in the southern part of Pakua in central Taiwan. However, shallow soil carbon stock is susceptible to environmental factors and the relationship between carbon stock and age has no fixed pattern. The Application negative exponential function fitting of the carbon stock of deep soil suggests that the carbon stock decreases rapidly with the increase of soil depth and reaches a steady-state at depths below 100 cm. The deep soils on the terraces in the southern Pakua tableland tend to stabilize their carbon sequestration values in inverse proportion to age. In addition, the SOC tended to be highest in the surface soil horizons, and decreased with the soil depth. The continuous pattern of the carbon content, in terms of its vertical distribution, was considered in terms of a negative exponential function, which showed that the SOC was highest in the shallowest soil layers and decreased rapidly with the soil depth. This trend was mitigated at a depth of 50–100 cm, which approached a fixed value, denoted as the carbon sequestration value (CSV), below a certain depth. We show here that the values of the CSV, as approximated by exponential fitting, are closely related to soil age. The CSV linearly decreases with age. These findings point to the potential of using carbon storage for chronometric applications. The high correlation between deep soil organic CSV and WPDI or soil age can also be used for carbon sequestration in different geomorphic surfaces of the Hukou and Dadu tableland. However, the fitting curve relationship between the carbon sequestration value and the weighted soil profile development index of the Pleistocene soil in Taiwan inferred the regularity of soil carbon sequestration with the soil development steps and established its conceptual model.
王秀雲和孫玉軍 (2008) “森林生態系統碳儲量估測方法及其研究進
展”,世界林業研究,第21期,第5卷,頁24-29。
田娜、王義祥和翁伯琦 (2010) “土壤碳儲量估算研究進展”,亞熱帶農
業研究,第3期,第6卷,頁193-198。
石再添和楊貴三 (1985) “八卦台地的活斷層與地形面”,國立臺灣師範
大學地理研究報告,第11期,頁173-186。
石再添、張瑞津、鄧國雄和黃朝恩 (1996) 重修臺灣省通志卷二土地志
地形篇,南投縣,國史館臺灣文獻館,頁958。
何信昌和陳勉銘 (2000) 五萬分之一臺灣地質圖說明書圖幅第二十四號
台中,新北市,經濟部中央地質調查所。
何春蓀 (1997) 臺灣地質概論,新北市,經濟部中央地質調查所,頁
164。
周揚震和徐恆文 (2016) “失序的碳循”,環科學發展,第519期,頁
56-62。
林文智 (1990) “玉山箭竹的世界”,大地地理雜誌 ,第22期。
林朝棨 (1957) 臺灣地形,臺灣通志稿卷一土地誌地理篇,台灣省文獻
會,南投縣,頁424。
林溫惠 (2008) “八卦台地北部紅壤化育程度及其在階地對比之研究”,
彰化縣,國立彰化師範大學地理學系碩士論文。
孫稜翔 (2007) “八卦山背斜西翼地形計測及其紅土對比之研究”,彰
化縣,國立彰化師範大學地理學系碩士論文。
張克榮 (2015) “發現土壤有機碳影響氣候新證據”,中國科學院,網
址:https://read01.com/keO0EN.html
張朝婷、邱祈榮和王巧萍 (2005)“臺灣不 同氣候區天然林枝葉層與表
土層碳儲存 量”,森林經營對二氧化碳吸存之貢獻研討會論文集,
臺北,國立臺灣 大學森林系,頁 109-120。
張朝婷、杜清澤、邱祈榮和王巧萍 (2007) “臺灣森林土壤有機碳庫文
獻回顧”,中華林學季刊,第40期,第2卷,頁261-273。
張珊珊、齊士崢、謝孟龍和林建偉 (2013) “臺灣高山崩積層剖面特徵
與焦炭年代指示的環境變遷意義”,地理學報,第70期,頁 1-
22。
許正一、蔡呈奇和陳尊賢 (2017) 土壤—在腳底下的科學,台北市,五
南。
陳佳宏 (2011) “合歡與奇萊山區第四紀冰川地形”,臺灣,太魯閣國家
公園管理處,頁1-45。
陳俊宏 (2015) “臺灣高山土壤母質來源及其在古環境之意義-以中部高
海拔山區為例”,彰化縣,國立彰化師範大學地理學系碩士論文。
陳鳳華、陳明義、陳文民和陳恩倫 (2007) “八卦山台地植群分類與製
圖”,林業研究季刊,第29期,第3卷,頁1-14。
陳華玟、陳勉銘和石同生 (2004) “五萬分之一臺灣地質圖說明書圖幅第三十一號,南投”, 臺北市,經濟部中央地質調查所。
郭魁士 (1977) 土壤學,臺灣,中國書局。
黃文樹、蔡衡和許正一 (2006) “土壤化育指數在濁水溪流域階地對比之應用”,臺灣大學地理學報,第45期,頁:1-20。
黃文樹、林溫惠、許正一和蔡衡 (2011) “八卦台地北部階地土壤化育及其在地形對比之應用”,地理學報,第61期,頁 123-145。
黃琨源 (2009) “臺灣地區不同類型土壤有機碳儲量估算”,屏東縣,屏東科技大學環境工程與科學系碩士論文。
楊建夫 (2006) “合歡山第四紀冰川地貌初探”,台北市,第七屆海峽兩岸地貌學研討會,頁57-69。
楊貴三 (1986) “臺灣活動層的地形學研究-特論活動層與地形面的關係”,台北市,中國文化大學地學研究所博士論文,頁178。
齊士崢 (1995) “立霧溪流域的地形演育”,台北市,國立台灣大學地理研究所博士論文,頁187。
齊士崢和黃美璇 (2001) “荖濃溪的河階地和地形演育”,環境與世界,第5期,頁123-140。
廖敏君 ( 2004) “玉山箭竹繁殖生物學之探討”,台中市,國立中興大學森林系碩士論文。
廖慶添 (2012) “臺灣西北部台地表面紅壤及地形面之對比”,彰化縣,國立彰化師範大學地理學系碩士論文。
趙珮儀 (2001) “八卦地區的土地利用變遷”,台北市,國立臺灣師範大學地理學系碩士論文,頁106。
蔡呈奇、胡庭恩、林國銓和陳尊賢 (2009) “臺灣北部地區人工林土壤碳存量的估算”,臺灣林業科學,第24期,第2卷,頁103-115。
蔡衡和宋國城 (2000) “論八卦台地南部階地之成因”,中國地理學會會刊,第28期,頁239-253。
Abril, A., P. Barttfeld, and E. H. Bucher (2005) "The effect of fire and overgrazing disturber on soil carbon balance in the Dry Chaco forest," Forestry Ecology and Management, 206: 399-405.
Alonso, P., C. Sierra, E. Ortega, C. Dorronsoro (1994) "Soil development indices of soils developed on fluvial terraces (Peňaranda de Bracamonte, Salamanca, Spain)," Catena, 23: 295-308.
Álvaro-Fuentes J., D. Plaza-Bonilla, J. L. Arrúe, J. Lampurlanés and C. Cantero-Martínez (2012) "Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions," Plant Soil, Springer Science.
Arduino, E., E. Barberis, F. Carraro and M. G. Forno (1984) "Estimating relative ages from iron-oxide/total-iron ratio of soil in the western Po Valley, Italy," Geoderma, 33: 39-52.
Bai, J., G. Zhang, Q. Zhao, Q. Lu, J. Jia, B. Cui, and X. Liu (2016) "Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers," Scientific Reports, 6: 34835.
Basile-Doelsch, I., R. G. Amundson, W. Stone, C. A. Masiello, J. Bottero, F. Colin, F. Masin, D. Borschneck, and J. Meunier (2005) "Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Reunion," European Journal of Soil Science, 56: 689-703.
Batjes, N. H. (2014) "Total carbon and nitrogen in the soils of the world," British Society of Soil Science, European Journal of Soil Science, 65: 4-21.
Bilzi, A. F. and E. J. Ciolkosz (1977) "A field morphology rating for evaluating pedological development," Soil Science, 124(1): 45-48.
Bonfatti, B. R., A. E. Hartemink, and E. Giasson (2016) "Comparing Soil C Stocks from Soil Profile Data Using Four Different Methods," Digital Soil Morphometrics, 315-330.
Birkeland, P. W. (1999) Soil and Geomophology (3rd ed.), University Press, New York, Oxford.
Birkeland, P. W., R. R. Shroba, S. F. Burns, A. B. Price, and P. J. Tonkin (2003) "Integrating soils and geomorphology in mountains—an example from the Front Range of Colorado," Geomorphology, 55: 329-344.
Blake, G. R. and K. H. Hartge. (1986) Bulk density, In Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9, ed. A. Klute, Madison WI: American Society of Agronomy, pp. 363-75.
Bockheim, J. G., H. M. Kelsey and J. G. Marshall III (1992) "Soil development, relative dating, and correlation of late Quaternary marine terraces in Southwestern Oregon," Quaternary Research, 37: 60-74.
Borren, W., W. Bleuten, and E. D. Lapshina (2004) "Holocene peat and carbon accumulation rates in the southern taiga of western Siberia," Quaternary Research, 61: 42- 51.
Bohn, H. L. (1976) "Estimate of organic carbon in world soils," Soil Science Society of America Journal, 40: 468-470.
Borchard, N., M. Bulusu, N. Meyer, A. Rodionov, H. Herawati, S. Blagodatsky, G. Cadisch, G. Welp, W. Amelung, and C. Martius (2019) "Deep soil carbon storage in tree-dominated land use systems in tropical lowlands of Kalimantan," Geoderma, 354: 113864.
Brady, N. C. and R. R. Weil (2008) "The nature and properties of soil," 14 ed. Prentice-Hall, Upper Saddle River, New Jersey.
Chen, Z. S. and Z. Y. Hseu (1997) "Total organic carbon pool in soils of Taiwan," Proceedings of National Science Council ROC(B): Life Science, 21: 120-127.
Chen, J. S. and C. Y. Chiu (2000) "Effect of topography on the composition of soil organic substances in a perhumid sub-tropical montane forest ecosystem in Taiwan," Geoderma, 96: 19-30.
Chen, C. P., K. W. Juang, C. H. Cheng, and C. W. Pai (2016) "Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan," Botanical Studies, 57: 32.
Chesworth, W. (1973) "The parent rock effect on the genesis of soil," Geoderma, 10: 215–225.
Chorover, J., R. Kretzschmar, G. P. Ferran, L. Donald, and Sparks (2007) "Soil Biogeochemical Processes within the Critical Zone," Elements, 3: 321-326.
Costantini, E.A.C., S. Carnicelli, D. Sauer, S. Priori, A. Andreetta, A. Kadereit, and R. Lorenzetti (2018) "Loess in Italy: Genesis, characteristics and occurrence," Catena, 168: 14-33.
Delgado-Baquerizo, M., D. J. Eldridge, F. T. Maestre, S. B. Karunaratne, P. Trivedi, P. B. Reich, and B. K. Singh (2017) "Climate legacies drive global soil carbon stocks in terrestrial ecosystems," Science Advances, 3: e1602008.
Dieleman, W. I. J., M. Venter, A. Ramachandra, A. K. Krockenberger, and M. I. Bird (2013) "Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage," Geoderma, 204-205: 59-67.
Dorji, T., I. O. A. Odeh, and D. J. Field (2014) "Vertical Distribution of Soil Organic Carbon Density in Relation to Land Use/Cover, Altitude and Slope Aspect in the Eastern Himalayas," Land, 3: 1232-1250.
Earl-Goulet, J. R., W. C. Mahaney, K. Sanmugadas, V. Kalm, and R. G. V. Hancock (1998) "Middle-Holocene timberline fluctuation: influence on the genesis of Podzols (Spodosols), Norra Storfjället Massif, northern Sweden," The Holocene, 8: 705-718.
Emerson, W. W., R. C. Foster, and J. M. Oades (1986) "Organo-mineral complexes in relation to soil aggregation and structure," Soil Science Society of America Journal Special Publish, 17: 521-548.
Engel, S. A., T. W. Gardner and E. J. Ciokosz (1996) "Quaternary soil chronosequence on terraces of the Susquehanna river, Pennsylvania," Geomorphology, 17: 273-294.
Fearnside, P. M. and R. I. Barbosa (1998) "Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia," Forest Ecology and Management, 108: 147-66.
Fontaine, S., S. Barot, P. Barré, N. Bdioui, M. Bruno, and C. Rumpel (2007) "Stability of organic carbon in deep soil layers controlled by fresh carbon supply," Nature, 450: 277-280.
Franzmeier, D. P., G. D. Lemme, and R. J. Miles (1985) "Organic carbon in soi1s of north central United States," Soil Science Society of America Journal, 49: 702-708.
Franzluebbers, A. J. (2010) "Depth distribution of soil organic carbon as a signature of soil quality," 19th World Congress of Soil Science.
Giardina, C. P., C. M. Litton, S. E. Crow, and G. P. Asner (2014) "Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux," Nature Climate Change, 4: 822-827.
Gorham, E., C. Lehman, A. Dyke, D. Clymoc, and J. Janssens (2012) "Long-term carbon sequestration in North American peatlands," Quaternary Science Reviews, 58: 77-82.
Griffiths, R. P., M. D. Madritch, and A. K. Swanson (2009) "The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties," Forest Ecology and Management, 257: 1-7.
Harden, J. W. (1982) "A quantitative index of soil development from field descriptions, examples from a chronosequence in Central California," Geoderma, 28: 1-28.
Hartley, I. P. (2014) "Resisting climate change," Nature climate change, 4: 760-761.
Hengl, T. and R. A. MacMillan (2019) Predictive Soil Mapping with R., Wageningen, the Netherlands: OpenGeoHub foundation, pp. 1-370.
Hicks Pries, C. E., E. A. G. Schuur, and K. G. Crummer (2012) "Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw," Ecosystems, 15: 162-73.
Hribljan, J. A., D. j. Cooper, J. Sueltenfuss, E. C. Wolf, K. A. Heckman, E. A. Lilleskov and R. A. Chimner (2014) "Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia," Mires and Peat, 15: 1-14.
Huggett (1998) "Soil Chronosequences," Soil Development, and Soil Evolution: A Critical Review, Catena, 32(3): 155-172.
IPCC (2014) "Climate Change 2014 Synthesis Report Revised Intergovernmental Panel in Climate Change," United Nations Environment Programme, Organization for Economic Co-Operation and Development, International Energy Agency, Paris: 73-74.
IPCC (2018) "Special report on global warming of 1.5 °C (SR15)," United Nations Environment Programme, Organization for Economic Co-Operation and Development, International Energy Agency, Paris: 6-7.
Jenny, H. (1941) Factors of soil formation, New York: McGraw-Hill.
Jobbágy, E. G. and R. B. Jackson (2000) "The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation," Ecological Applications, 10(2): 423-436.
Kaiser, K. and K. Kalbitz (2012) "Cycling downwards — dissolved organic matter in soils," Soil Biol. Biochem, 52: 29-32.
King, H. B., K. J. Tan, M. J. Kan, J. L. Hwong, and Lee, S. Y. (1991) "Genesis and classification of soils developed under Taiwan FIR (Abies kawakamii) forest in the western Taroko nationalpark," Taiwan, Taroko Nationalpark Management Office.
King, H. B. (1993) "Genesis and classification of soils developed under Yushan Cane (Yushania niitakayamensis) grassland in the Ho-huan mountain area," Bulletin of Taiwan Forestry Research Institute, 8(1): 21-38.
Kramer, C. and G. Gleixner (2008) "Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation," Soil Biology and Biochemistry, 40: 425-433.
Lal, R. (2004) "Soil carbon sequestration to mitigate climate change," Geoderma, 123: 1-22.
Lal, R. (2008) "Carbon sequestration," Philosophical transactions of the royal Society biological sciences, 363: 815-830.
Lal, R., W. Negassa, and K. Lorenz (2015) "Carbon sequestration in soil," Science Direct, Current Opinion in Environmental Sustainability, 15: 79-86.
Lawrence, C. R., J. W. Harden, X. Xu, M. S. Schulz, and S. E. Trumbore (2015) "Long-term controls on soil organic carbon with depth and time: A case study from the Cowlitz River Chronosequence, WA USA," Geoderma, 247: 73-87.
Lee, C. Y. and P. M. Liew (2010) "Late Quaternary vegetation and climate changes inferred from a pollen record of Dongyuan Lake in southern Taiwan," Palaeogeography Palaeoclimatology, 287: 58-66.
Lee, C. Y., P. M. Liew, and T. Q. Lee (2010) "Pollen records from southern Taiwan: implications for East Asian summer monsoon variation during the Holocene," The Holocene, 20: 81-89.
Leigh, D. S. (1996) "Soil chronosequence of Brasstown Creek, Blue Ridge Mountain, USA," Catena, 26: 99-114.
Liew, P. M., C. Y. Lee, and C. M. Kuo (2006) "Holocene optimal and climate variability of East Asian monsoon, interfered from forest reconstruction of a subalpine pollen sequence, Taiwan," Earth and Planetary Science Letters, 250: 596-605.
Liew, P. M. and S. Y. Huang (1994) "A 5000-year pollen record from Chitsai Lake, central Taiwan," Terrestrial Atmospheric and Oceanic Sciences, 5: 411-419.
Lilienfein, J., R. Qualls, S. Uselman, and S. Bridgham (2003) "Soil formation and organic matter accretion in a young andesitic chronosequence at Mt. Shasta, California," Geoderma, 116: 249-264.
Lundström, N., V. Breemen, and D. Bain (2000) "The podzolization process, A review," Geoderma, 94: 91-107.
Marcos, J. M. G. and F. S. Frances (1997) "Relationship between the characteristic of Mediterranean Red siol and the age of the geomorphological surfaces in central-western Spain," Catena, 28: 231-245.
McFadden, L. D. and P. L. K. Knuepfe (1990) "Soil geomorphology: the linkage of pedology and surficial processes," Geomorphology, 3: 197-205.
Mclean, E. O. (1982) Soil PH and lime requirement, In A. L. Page et al.t (ed.) Methods of soil analysis, Part 2. Chemical and microbiological properties, Madison WI: Agronomy monograph No. 9, pp. 199-244.
Minasny, B., A. B. McBratney, M. L. Mendonça-Santos, I. O. A. Odeh, and B. Guyon (2006) "Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley," Australian Journal of Soil Research, 44: 233-244.
Minasny, B., B. P. Malone, A. B. McBratney, D. A. Angers, D. Arrouays, A. Chambers, V. Chaplot, Z. S. Chen, K. Cheng, B. S. Das, D. J. Field, A. Gimona, C. B. Hedley, S. Y. Hong, B. Mandal, B. P. Marchant, M. Martin, B. G. McConkey, V. L. Mulder, S. O'Rourke, A. C. Richer-de-Forges, I. Odeh, J. Padarian, K. Paustian, G. Pan, L. Poggio, I. Savin, V. Stolbovoy, U. Stockmann, Y. Sulaeman, C. C. Tsui, T. G. Vågen, B. V. Wesemael, and L. Winowiecki (2017) "Soil carbon 4 per mille," Geoderma, 292: 59-86.
MOEA (1993) Geologic Map of Taiwan, Scale 1:50,000, Sheet 27, Tayuling, USA: East View Companies.
Nelson, D. W. and L. E. Sommers (1982) Total carbon, organic carbon, and organic matter, In A. L. Page et al. (ed.) Methods of soil analysis, Part 2. Chemical and microbiological properties. Madison WI: Agronomy monograph No. 9, pp. 539-577.
Paul, E. A. (1984) "Dynamics of soil organic matter," Plant and Soil, 76: 275-285.
Paul, E. A., R. F. Follet, S. W. Leavitt, A. Halvorson, G. A. Peterson, and D. J. Lyon. (1997) "Radiocarbon dating for determination of soil organic pool sizes and dynamics, " Soil Science Society of America Journal, 61: 1058-1067.
Powlson D. S. and A. P. Whitmore (2011) "Soil carbon sequestration to mitigate climate change: a critical reexamination to identify the true and the false," European Journal of Soil Science, 62: 42-55.
Proctor, J. T. A., R. L. Watson, and J. J. Landsberg (1976) "The carbon budgets of a young apple tree," Journal of the American Society for Horticultural Science, 101: 579-582.
Rumpel and Kögel-Knabner (2010) "Deep soil organic matter-a key but poorly understood component of terrestrial C cycle," Plant Soil, 338: 143-158.
Rumpel, C. (2014) "Opportunities and threats of deep soil organic matter storage," Carbon Management, 5(2): 115-117.
Rubey, W. W. (1951) "Geologic history of sea water," Bulletin of the Geological Society of America, 62: 1111-1148.
Saidy, A. R., R. J. Smernik, J. A. Baldock, K. Kaiser, and J. Sanderman (2013) "The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide," Geoderma, 209-210: 15-21.
Schmidt, M. W. I., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Ko¨gel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, and S. E. Trumbore (2011) "Persistence of soil organic matter as an ecosystem property," Nature, 478: 49-56.
Schlesinger, W. H. (1990) "Evidence from chronosequence studies for a low carbon storage potential of soils," Nature, 348: 232-234.
Simoes, M., P. J. Avouac, Y. G. Chen, A. K. Singhvi, C. Y. Wang, M. Jaiswal, Y. C. Chan, and S. Bernard (2007) "Kinematic analysis of the Pakuashan fault tip fold, west central Taiwan: shortening rate and age of folding inception," Journal of Geophysical Research, 112.
Soil Survey Staff (2014) Keys to Soil Taxonomy, 12th ed, Washington D.C.: U.S. 80 Government Printing Office D.C.
Sung, Q. C., M. T. Lu, H. Tsai, P. M. Liew (1997) "Discussion on the genetics and the correlation of river terraces in Taiwan," Journal of the Geological Society of China, 40(1): 31-46.
Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov (2009) "Soil organic carbon pools in the northern circumpolar permafrost region," Global Biogeochem Cycles, 23.
Tiessen, H., E. Cuevas, and P. Chacon (1994) "The role of soil organic matter in sustaining soil fertility," Nature, 371: 783-785.
Toma, Y., J. Clifton-Brown, S. Sugiyama, M. Nakaboh, R. Hatano, F. Fernández, J. R. Stewart, A. Nishiwaki, and T. Yamada (2013) "Soil carbon stocks and carbon sequestration rates in seminatural grassland in Aso region, Kumamoto, Southern Japan," Global Change Biology, 19: 1676-1687.
Torn, M. S., S. E. Trumbore, O. A. Chadwick, P. M. Vitousek, and D. M. Hendricks (1997) "Mineral control of soil organic carbon storage and turnover," Nature, 389: 170-173.
Torres-Sallan, G., R. P. O. Schulte, G. J. Lanigan, K. A. Byrne, B. Reidy, I. Simó, J. Six, and R. E. Creamer (2017) "Clay illuviation provides a longterm sink for C sequestration in subsoils," Scientific Reports, 7: 45635.
Trumbore, S. E. (2000) "Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics," Ecological Applications, 10: 399–411.
Tsai, H., Z. Y. Hseu, W. S. Huang, and Z. S. Chen (2006) "A river terrace soil chronosequence of the Pakua tableland in central Taiwan," Soil Science, 171: 161-179.
Tsai, H., W. S. Huang, Z. Y. Hseu, and Z. S. Chen (2007a) "Pedogenic approach to resolving the geomorphic evolution of the Pakua river terraces in central Taiwan," Geomorphology, 83: 14-28.
Tsai, H., W. S. Huang, and Z. Y. Hseu (2007b) "Pedogenic correlation of lateritic river terraces in central Taiwan," Geomorphology, 88: 201-213.
Tsai, C. C., T. E. Hu, K. C. Lin, and Z. S. Chen (2009) "Estimation of Soil Organic Carbon Stocks in Plantation Forest Soils of Northern Taiwan, Research paper Taiwan Journal For Science, 24(2): 103-15.
Tsai, H., Z. Y. Hseu, S. T. Huang, W. S. Huang, and Z. S. Chen (2010) "Pedogenic properties of surface deposits used as evidence for the type of landform formation of the Tadu tableland in central Taiwan," Geomorphology, 114: 590-600.
Tsai, H., Z. Y. Hseu, H. Y. Kuo, W. S. Huang, and Z. S. Chen (2016) "Soil scape of west-central Taiwan: Its pedogenesis and geomorphic implications," Geomorphology, 55: 81-94.
Tsai, H., J. H. Chena, W. S. Huang, S. T. Huang, Z. Y. Hseu, and C. F. You (2021) "Aeolian additions of podzolic soils on the high-altitude mountains in central Taiwan-sediment origin and pedological implications," Geoderma, 383: 114726.
Tsui, C. C., C. C. Tsai, and Z. S. Chen (2013) " Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan," Geoderma, 209-210: 119-127.
Vreeken, W. J. (1975) "Principal kinds of chronosequences and their significance in soil history," Journal of Soil Science, 26(4): 378-394.
Wenske, D., M. Böse, M. Frechen, and C. Lüthgens (2009) "Late Holocene mobilisation of loess-like sediments in Hohuan Shan, high mountains of Taiwan," Quaternary International, 234: 174-181.
Wibbe, M. L., M. M. Blanke, and F. Lenz (1993) "Effect of fruiting on carbon budgets of apple tree canopies," Trees, 8: 56-60.
Zhang, Z., J. Li, C. C. Tsui, and Z. S. Chen (2020) " The study of gaining more detailed variability information of soil organic carbon in surface soils and its significance to enriching the existing soil database," Sustainability, 12(4866): 1-17.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE