:::

詳目顯示

回上一頁
題名:基於城鎮化率、土地循環、水資源循環視角下的中國新型城鎮化效率研究
作者:林一諾
作者(外文):LIN, LI-NUO
校院名稱:東吳大學
系所名稱:經濟學系
指導教授:邱永和
學位類別:博士
出版日期:2023
主題關鍵詞:數據包絡分析法新型城鎮化建築業效率城鎮土地循環效率水系統循環效率Data envelopment analysis (DEA)New-type urbanizationConstruction efficiencyUrban land cycle efficiencyUrban water cycle efficiency
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:5
新型城鎮化的提出標誌著中國城鎮化發展的重大轉型,其意指解決由高速的擴張產生的城市病,如「土地城鎮化」快於人口城鎮化、建成區人口密度偏低、城市佈局不盡合理、環境承載壓力加大等問題,以城鄉統籌、城鄉一體、產城互動、節約集約、生態宜居、和諧發展為發展重點。本研究意欲通過城鎮化率、土地配置、水資源循環三個不同的視角,依次針對城鎮化進程中面臨的突出問題進行分析探討。
在第二章中,本研究使用Undesirable SBM Dynamic Exogenous DEA模型,在考慮中國東中西三區域城鎮化水準差異後,對與人口流動密切相關的建築業的盈利能力、資源配置、能源消耗和碳排放效率進行評估並加以闡釋。實證結果顯示:首先,中國各地區間的建築效率存在差異:呈現東部高,中部次之,西部低的狀態。其次,中國各地區間的建築效率的變化趨勢存在差異。東部地區效率值最高點位於研究期間之初,此後一直下降;中部在2012年前後達到峰值,此後一直下降;東部則是逐年上升,直到2017年達到峰值。最後,城鎮化會對建築業能源效率起到促進作用,但依據城鎮化的深化程度,其作用力亦有差異。當城鎮化率約為60%時,建築業效率值改善最高。
在第三章中,本研究建立了一個可循環的Two stage Undesirable Dynamic Recycle SBM-DEA模型,以衡量中國各省份的中國城鎮土地循環效率。土地系統包括土地使用子系統(S1)和土地流轉子系統(S2)。實證結果顯示:首先,土地循環系統綜合效率呈現西部最高,東部次之,中部最低的態勢;土地使用子系統(S1)效率呈現西部最高,東部次之,中部最低的態勢;土地流轉子系統(S2)效率呈西部最高,中部次之,西部最低的狀態。其次,土地使用子系統(S1)效率和土地流轉子系統(S2)效率恆為1的省份共有4個,分別為內蒙古、雲南、寧夏、和新疆,皆為西部地區省份。最後,土地征收指標(Id1)效率大多數省份表現都不錯,唯北京市的土地征收指標效率距離效率前沿有高達70%的提升空間;土地違法指標(Id2)整體表現不佳,僅有內蒙古、雲南、寧夏、和新疆的效率值為1;天津、上海、福建、湖南、內蒙古、貴州、雲南、青海、寧夏、和新疆的土地劃撥(Id3)和土地出讓(Id4)指標效率恆為1,山東、湖北、遼寧、和重慶需注重提升土地劃撥(Id3)指標效率,浙江和廣東省需注重提升土地出讓(Id4)指標效率,北京和海南在兩指標效率上皆有較大提升空間。
在第四章中,本研究採用Three stage Recycle Dynamic Undesirable DDF-DEA模型,將水系統劃分為可循環的用水子系統(S1)、汙水處理子系統(S2)、和水再生子系統(S3),評估2017年至2020年黃河流域42城的水系統效率。實證結果顯示:首先,42城三個子系統效率值整體呈現用水子系統(S1)、汙水處理子系統(S2)高,水再生子系統(S3)效率低的態勢。其次,2017年至2020年期間,42個城市的綜合水系統循環效率的平均值僅為0.76。研究期間三階段效率值恆為1的城市共有4個,分別為四川省成都市、河南省鄭州市、山東省棲霞市、和山東省安丘市。最後,受平均再生水管道長度指標(Id1)和再生水生產能力指標(Id2)的效率偏低的影响,水再生子系統(S3)的效率在三個子系統中最低。城市可以嘗試通過改善平均再生水管道長度指標(Id1)效率和再生水生產能力指標(Id2)效率來進一步提升水再生子系統(S3)效率。
The proposal of new-type urbanization marks a major transition in the development of China's urbanization, and solves the problems caused by rapid expansion, such as "land urbanization" faster than population urbanization, low population density in built-up areas, unreasonable urban layout, and environmental problems. New-type urbanization focuses on urban-rural integration, urban-rural integration, industry-city interaction, conservation and intensification, ecological livability, and harmonious development. This study intends to analyze the problems in the process of urbanization from the perspective of urbanization rate, land allocation, and water resource cycle.
In the second chapter, this study considers the differences in the urbanization levels of China's eastern, central and western regions and uses the Undesirable SBM Dynamic Exogenous DEA model to evaluate the profitability, resource allocation, energy consumption and carbon emission efficiency of the construction industry that is closely related to population mobility. The empirical results show that: first, there are differences in construction efficiency among different regions in China. The efficiency is high in the east, followed by the center, and low in the west. Second, there are differences in the changing trends of building efficiency among different regions in China. The highest efficiency value in the eastern region was at the beginning of the study period and has been declining since then. The central part peaked around 2012 and has been declining since then. In the east, it rose year by year until it reached its peak in 2017. Finally, urbanization will play a role in promoting the energy efficiency of the construction industry, but its effect will vary according to the degree of urbanization. When the urbanization rate is about 60%, the efficiency value of the construction industry improves the most.
In the third chapter, this study builds a recyclable Two stage Undesirable Dynamic Recycle SBM-DEA model to measure China's urban land cycle efficiency in various provinces of China. The land system includes the land use subsystem (S1) and the land flow subsystem (S2). The empirical results show that: first, the overall efficiency of the land circulation system is the highest in the west, followed by the east, and the lowest in the center; the efficiency of the land use subsystem (S1) is the highest in the west, followed by the east, and the lowest in the center; the land flow rotor system ( S2) The efficiency is the highest in the west, followed by the center, and the lowest in the west. Secondly, there are four provinces in which the efficiency of the land use subsystem (S1) and the efficiency of the land flow rotor system (S2) are constant at 1, namely Inner Mongolia, Yunnan, Ningxia, and Xinjiang, all of which are provinces in the western region. Finally, the efficiency of land expropriation index (Id1) is performed well in most provinces, but the efficiency of land expropriation index in Beijing has a room for improvement of up to 70% from the efficiency frontier. The overall performance of the land illegal index (Id2) is not good, and only Inner Mongolia, Yunnan, Ningxia, and Xinjiang have an efficiency value of 1. The index efficiency of land allocation (Id3) and land transfer (Id4) in Tianjin, Shanghai, Fujian, Hunan, Inner Mongolia, Guizhou, Yunnan, Qinghai, Ningxia, and Xinjiang is always 1. Shandong, Hubei, Liaoning, and Chongqing need to focus on improving the efficiency of land allocation (Id3) indicators. Zhejiang and Guangdong provinces need to focus on improving the efficiency of land transfer (Id4) indicators. Both Beijing and Hainan have a large room for improvement in the efficiency of these two indicators.
In the fourth chapter, this study uses the Three stage Recycle Dynamic Undesirable DDF-DEA model to divide the water system into a recyclable water subsystem (S1), a sewage treatment subsystem (S2), and a water regeneration subsystem (S3 ), assessing the water system efficiency of 42 cities in the Yellow River Basin from 2017 to 2020. The empirical results show that: firstly, the 42 cities present a trend of high efficiency of water subsystem (S1) and sewage treatment subsystem (S2), and low efficiency of water regeneration subsystem (S3). Second, from 2017 to 2020, the average value of the circulation efficiency of the comprehensive water system in 42 cities is only 0.76. During the study period, there were 4 cities with the efficiency value of the three stages being 1, namely Chengdu in Sichuan Province, Zhengzhou in Henan Province, Qixia in Shandong Province, and Anqiu in Shandong Province. Finally, affected by the low efficiency of the average recycled water pipeline length index (Id1) and the recycled water production capacity index (Id2), the efficiency of the water regeneration subsystem (S3) is the lowest among the three subsystems. The city can further improve the efficiency of the water regeneration subsystem (S3) by improving the efficiency of the average recycled water pipeline length indicator (Id1) and the recycled water production capacity indicator (Id2) efficiency.
中文文獻
王仁宏(2021),住建部:“十四五”期間 我國將基本完成21.9萬個城鎮老舊社區改造目標,Available from: http://finance.people.com.cn/n1/2021/0831/c1004-32213701.html,取用日期2023年3月13日。
中國水利部(2018),水利部關於印發第一批通過全國水生態文明建設試點驗收城市名單的通知,Available from: http://www.mwr.gov.cn/zw/tzgg/tzgs/201803/t20180315_1033264.html,取用日期2022年5月10日。
中國水利部(2019),水利部關於印發第二批通過全國水生態文明建設試點驗收城市名單的通知,Available from: http://www.mwr.gov.cn/zwgk/gknr/201906/t20190605_1440942.html,取用日期2022年5月10日。
中國水利部(2021),2020年中國水資源公報,Available from: http://www.mwr.gov.cn/sj/tjgb/szygb/202107/t20210709_1528208.html,取用日期2022年5月10日。
中國國務院(2014),國家新型城鎮化規劃(2014-2020年),Available from: http://www.gov.cn/gongbao/content/2014/content_2644805.htm,取用日期2022年5月12日。
中國國務院(2021),黃河流域生態保護和高品質發展規劃綱要,Available from: http://www.gov.cn/zhengce/2021-10/08/content_5641438.htm,取用日期2022年5月10日。
中國國家統計局(2016),2014主要河流基本情況,Available from: http://www.stats.gov.cn/ztjc/ztsj/hjtjzl/2014/201608/t20160831_1395004.html,取用日期2022年5月10日。
中國發改委(2019),2019年新型城鎮化建設重點任務,Available from: http://www.gov.cn/xinwen/2019-04/08/content_5380457.htm,取用日期2022年5月12日。
李克強(2021),2021年政府工作報告,Available from: http://www.gov.cn/zhuanti/2021lhzfgzbg/index.htm,取用日期2022年11月30日。
薑凱凱(2021),城市更新背景下土地產權的退出障礙與治理對策——基於空間要素迴圈的視角, 城市發展研究(08),100-106. doi:10.3969/j.issn.1006-3862.2021.08.020
陸大道 & 陳明星(2015),關於“國家新型城鎮化規劃(2014-2020)”編制大背景的幾點認識, 地理學報,02,179-185。
單丁潔 & 徐勉(2016),以供給側結構性改革推動城市土地供應制度創新, 中國土地,(08),12-14。 doi:10.13816/j.cnki.cn11-1351/f.2016.08.004.
彭沖、陳樂一 & 韓峰(2014),新型城鎮化與土地集約利用的時空演變及關係,地理研究,11,2005-2020.
新華社(2021),中華人民共和國國民經濟和社會發展第十四個五年規劃和2035年遠景目標綱要,Available from: http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm,取用日期2022年5月12日。
趙勇、何凡、何國華、李海紅、王麗珍、常奐宇 & 朱永楠(2020),全域視角下黃河斷流再審視與現狀缺水識別,人民黃河,04,42-46。
劉昌明、劉小莽、田巍 & 謝佳鑫(2020),黃河流域生態保護和高品質發展亟待解決缺水問題,人民黃河,09,6-9。
潘世炳(2005),中國城市國有土地產權研究,華中農業大學土地資源管理博士學位論文。https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD9908&filename=2005153652.nh
盧為民(2008),土地政策促進產業結構調整的路徑分析, 上海經濟研究,(03),43-46+71。 doi:10.19626/j.cnki.cn31-1163/f.2008.03.008.
盧為民(2016),推動供給側結構性改革的土地制度創新路徑, 城市發展研究,(06),66-73。
英文文獻
Ahmad, M., Zhao, Z. Y., & Li, H. (2019). Revealing stylized empirical interactions among construction sector, urbanization, energy consumption, economic growth and CO2 emissions in China. Science of the Total Environment, 657, 1085-1098.
Amirteimoori, A. (2006). Data envelopment analysis in dynamic framework. Applied Mathematics and Computation, 181(1), 21-28.
Bairoch, P. (1988). Cities and economic development: from the dawn of history to the present. Chicago: University of Chicago Press.
Banker, R. D., & Morey, R. C. (1986). Efficiency analysis for exogenously fixed inputs and outputs. Operations Research, 34(4), 513-521.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092.
Bao, Z., & Lu, W. (2021). A decision-support framework for planning construction waste recycling: A case study of Shenzhen, China. Journal of Cleaner Production, 309, 127449.
Benito, B., Faura, U., Guillamón, M. D., & Ríos, A. M. (2019). The efficiency of public services in small municipalities: The case of drinking water supply. Cities, 93, 95-103.
Bian, Y., Yan, S., & Xu, H. (2014). Efficiency evaluation for regional urban water use and wastewater decontamination systems in China: A DEA approach. Resources, Conservation and Recycling, 83, 15-23.
Cao, K., & Guan, H. (2007). Brownfield redevelopment toward sustainable urban land use in China. Chinese Geographical Science, 17, 127-134.
Cao, Y., Zhang, W., & Ren, J. (2020). Efficiency analysis of the input for water-saving agriculture in China. Water, 12(1), 207.
Carley, M. (2000). Urban partnerships, governance and the regeneration of Britain's cities. International Planning Studies, 5(3), 273-297.
Charnes, A. A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
Chen, F., Zhao, T., & Wang, J. (2019b). The evaluation of energy–environmental efficiency of China’s industrial sector: based on Super-SBM model. Clean Technologies and Environmental Policy, 21, 1397-1414.
Chen, J., Shen, L., Shi, Q., Hong, J., & Ochoa, J. J. (2019a). The effect of production structure on the total CO2 emissions intensity in the Chinese construction industry. Journal of Cleaner Production, 213, 1087-1095.
Chen, W., Chen, W., Ning, S., Liu, E. N., Zhou, X., Wang, Y., & Zhao, M. (2019c). Exploring the industrial land use efficiency of China's resource-based cities. Cities, 93, 215-223.
Chen, Y., Chen, Z., Xu, G., & Tian, Z. (2016b). Built-up land efficiency in urban China: insights from the general land use plan (2006–2020). Habitat International, 51, 31-38.
Chen, Y., Li, C., Li, X., Zhang, X., & Tan, Q. (2022). Efficiency of Water Pollution Control Based on a Three-Stage SBM-DEA Model. Water, 14(9), 1453.
Chen, Y., Liu, B., Shen, Y., & Wang, X. (2016a). The energy efficiency of China’s regional construction industry based on the three-stage DEA model and the DEA-DA model. KSCE Journal of Civil Engineering, 20(1), 34-47.
Chen, Y., Ma, L., & Zhu, Z. (2021). The environmental-adjusted energy efficiency of China’s construction industry: A three-stage undesirable SBM-DEA model. Environmental Science and Pollution Research, 28, 58442-58455.
Chen, Y., & Zhu, J. (2004). Measuring information technology's indirect impact on firm performance. Information Technology and Management, 5, 9-22.
Cheng, L., Song, S., & Xie, Y. (2022b). Evaluation of Water Resources Utilization Efficiency in Guangdong Province Based on the DEA–Malmquist Model. Frontiers in Environmental Science, 17.
Cheng, M., Lu, Y., Zhu, H., & Xiao, J. (2022a). Measuring CO2 emissions performance of China's construction industry: A global Malmquist index analysis. Environmental Impact Assessment Review, 92, 106673.
Cheng, Y., Lv, K., Wang, J., & Xu, H. (2019). Energy efficiency, carbon dioxide emission efficiency, and related abatement costs in regional China: a synthesis of input–output analysis and DEA. Energy Efficiency, 12, 863-877.
Chiu, C. R., Chang, M. C., & Hu, J. L. (2022). Energy intensity improvement and energy productivity changes: an analysis of BRICS and G7 countries. Journal of Productivity Analysis, 57(3), 297-311.
Cong, D., Liang, L., Jing, S., Han, Y., Geng, Z., & Chu, C. (2021). Energy supply efficiency evaluation of integrated energy systems using novel SBM-DEA integrating Monte Carlo. Energy, 231, 120834.
Couch, C., & Dennemann, A. (2000). Urban regeneration and sustainable development in Britain: The example of the Liverpool Ropewalks Partnership. Cities, 17(2), 137-147.
Cui, X., Fang, C., Wang, Z., & Bao, C. (2019). Spatial relationship of high-speed transportation construction and land-use efficiency and its mechanism: Case study of Shandong Peninsula urban agglomeration. Journal of Geographical Sciences, 29(4), 549-562.
Dai, B., Gu, X., & Xie, B. (2020). Policy framework and mechanism of life cycle management of industrial land (LCMIL) in China. Land Use Policy, 99, 104997.
Deilmann, C., Hennersdorf, J., Lehmann, I., & Reißmann, D. (2018). Data envelopment analysis of urban efficiency—Interpretative methods to make DEA a heuristic tool. Ecological Indicators, 84, 607-618.
Deng, G., Li, L., & Song, Y. (2016). Provincial water use efficiency measurement and factor analysis in China: based on SBM-DEA model. Ecological Indicators, 69, 12-18.
Ding, T., Wu, H., Jia, J., Wei, Y., & Liang, L. (2020). Regional assessment of water-energy nexus in China’s industrial sector: An interactive meta-frontier DEA approach. Journal of Cleaner Production, 244, 118797.
Ding, T., Yang, J., Wu, H., & Liang, L. (2022). Land use efficiency and technology gaps of urban agglomerations in China: An extended non-radial meta-frontier approach. Socio-Economic Planning Sciences, 79, 101090.
Dong, F., Li, Y., Li, K., Zhu, J., & Zheng, L. (2022). Can smart city construction improve urban ecological total factor energy efficiency in China? Fresh evidence from generalized synthetic control method. Energy, 241, 122909.
Du, J., & Peiser, R. B. (2014). Land supply, pricing and local governments' land hoarding in China. Regional Science and Urban Economics, 48, 180-189.
Du, Q., Deng, Y., Zhou, J., Wu, J., & Pang, Q. (2022). Spatial spillover effect of carbon emission efficiency in the construction industry of China. Environmental Science and Pollution Research, 29(2), 2466-2479.
Fan, X., Qiu, S., & Sun, Y. (2020). Land finance dependence and urban land marketization in China: The perspective of strategic choice of local governments on land transfer. Land Use Policy, 99, 105023.
Färe, R., & Grosskopf, S. (1996). Productivity and intermediate products: A frontier approach. Economics Letters, 50(1), 65-70.
Färe, R., & Grosskopf, S. (2009). A comment on weak disposability in nonparametric production analysis. American Journal of Agricultural Economics, 91(2), 535-538.
Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American Economic Review, 66-83.
Fei, R., Lin, Z., & Chunga, J. (2021). How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy, 103, 105300.
Feng, B., Wang, X., & Liu, B. (2014). Provincial variation in energy efficiency across China’s construction industry with carbon emission considered. Resources Science, 36(6), 1256-1266.
Fu, Y., Zhou, T., Yao, Y., Qiu, A., Wei, F., Liu, J., & Liu, T. (2021). Evaluating efficiency and order of urban land use structure: An empirical study of cities in Jiangsu, China. Journal of Cleaner Production, 283, 124638.
Gao, J. X., Song, J. B., & Wu, L. F. (2022). A new methodology to measure the urban construction land-use efficiency based on the two-stage DEA model. Land Use Policy, 112, 105799.
Gao, J., Song, G., & Sun, X. (2020). Does labor migration affect rural land transfer? Evidence from China. Land Use Policy, 99, 105096.
Glaeser, E. (2011). Triumph of the city: How urban spaces make us human. Pan Macmillan.
Güngör-Demirci, G., Lee, J., & Keck, J. (2018). Assessing the performance of a California water utility using two-stage data envelopment analysis. Journal of Water Resources Planning and Management, 144(4), 05018004.
Han, X., Cao, T., & Sun, T. (2019). Analysis on the variation rule and influencing factors of energy consumption carbon emission intensity in China’s urbanization construction. Journal of Cleaner Production, 238, 117958.
He, S., Yu, S., Li, G., & Zhang, J. (2020). Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy, 95, 104576.
Henderson, V. (2002). Urbanization in developing countries. The World Bank Research Observer, 17(1), 89-112.
Horta, I. M., Camanho, A. S., & Moreira da Costa, J. (2012). Performance assessment of construction companies: A study of factors promoting financial soundness and innovation in the industry. International Journal of Production Economics, 137(1), 84–93.
Hu, J. L., & Chang, T. P. (2016). Total-factor energy efficiency and its extensions: Introduction, computation and application. Data envelopment analysis: A handbook of empirical studies and applications, 45-69.
Hu, J. L., Honma, S., & Chen, Y. K. (2021). Total‐factor energy and emission efficiencies of ASEAN and other Asian economies. Asian Economic Policy Review, 16(1), 92-112.
Hu, J. L., & Wang, S. C. (2006). Total-factor energy efficiency of regions in China. Energy Policy, 34(17), 3206-3217.
Hu, X., & Liu, C. (2016). Profitability performance assessment in the Australian construction industry: a global relational two-stage DEA method. Construction Management and Economics, 34(3), 147–159.
Hu, Z., Yan, S., Yao, L., & Moudi, M. (2018). Efficiency evaluation with feedback for regional water use and wastewater treatment. Journal of hydrology, 562, 703-711.
Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36-44.
Huang, L., Shahtahmassebi, A., Gan, M., Deng, J., Wang, J., & Wang, K. (2020). Characterizing spatial patterns and driving forces of expansion and regeneration of industrial regions in the Hangzhou megacity, China. Journal of Cleaner Production, 253, 119959.
IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available from: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_1_Ch1_Introduction.pdf
Jacobs, J. (2016). The Economy of Cities. New York : Vintage.
Jiang, H., Hua, M., Zhang, J., Cheng, P., Ye, Z., Huang, M., & Jin, Q. (2020). Sustainability efficiency assessment of wastewater treatment plants in China: A data envelopment analysis based on cluster benchmarking. Journal of Cleaner Production, 244, 118729.
Jiang, X., Lu, X., Liu, Q., Chang, C., & Qu, L. (2021). The effects of land transfer marketization on the urban land use efficiency: An empirical study based on 285 cities in China. Ecological Indicators, 132, 108296.
Kang, L., Wu, C., Liao, X., & Wang, B. (2020). Safety performance and technology heterogeneity in China’s provincial construction industry. Safety Science, 121, 83-92.
Kao, C. (2009). Efficiency decomposition in network data envelopment analysis: A relational model. European Journal of Operational Research, 192(3), 949-962.
Kao, C., & Hwang, S. N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418-429.
Kim, G., Newman, G., & Jiang, B. (2020). Urban regeneration: Community engagement process for vacant land in declining cities. Cities, 102, 102730.
Klopp, R. W., Clifton, R. J., & Shawki, T. G. (1985). Pressure-shear impact and the dynamic viscoplastic response of metals. Mechanics of Materials, 4(3-4), 375-385.
Kuang, B., Lu, X., Zhou, M., & Chen, D. (2020). Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technological Forecasting and Social Change, 151, 119874.
Lalbakhsh, E. (2012). The impact of recycling urban space in sustainable development in developing countries. APCBEE Procedia, 1, 331-334.
Li, B., & Yao, R. (2009). Urbanisation and its impact on building energy consumption and efficiency in China. Renewable Energy, 34(9), 1994-1998.
Li, C., Jiao, Y., Sun, T., & Liu, A. (2021c). Alleviating multi-dimensional poverty through land transfer: Evidence from poverty-stricken villages in China. China Economic Review, 69, 101670.
Li, H., Yang, W., Zhou, Z., & Huang, C. (2013). Resource allocation models’ construction for the reduction of undesirable outputs based on DEA methods. Mathematical and Computer Modelling, 58(5-6), 913-926. doi:10.1016/j.mcm.2012.10.026
Li, J., Liang, J., Zuo, J., & Guo, H. (2020). Environmental impact assessment of mobile recycling of demolition waste in Shenzhen, China. Journal of Cleaner Production, 263, 121371.
Li, K., Zhang, S., Gong, H., Zhang, X., Zhou, Y., Xiong, Y., & Chen, R. (2021d). Evaluation of Water Resource Utilization Efficiency Based on Super-Efficiency DEA: A Case of Hubei Province. Advancements in Mechatronics and Intelligent Robotics, 1220, 181-189.
Li, L. B., Zhang, C. C., Hu, J. L., & Chiu, C. R. (2021b). Disaggregate productivity growth sources of regional industries in China. Empirical Economics, 60, 1531-1557.
Li, L., Cai, Y., & Liu, L. (2019a). Research on the Effect of Urbanization on China’s Carbon Emission Efficiency. Sustainability, 12(1), 1-1.
Li, W., Wang, D., Li, H., Wang, J., Zhu, Y., & Yang, Y. (2019b). Quantifying the spatial arrangement of underutilized land in a rapidly urbanized rust belt city: The case of Changchun City. Land Use Policy, 83, 113-123.
Li, W., Xu, J., Ostic, D., Yang, J., Guan, R., & Zhu, L. (2021a). Why low-carbon technological innovation hardly promote energy efficiency of China?–Based on spatial econometric method and machine learning. Computers & Industrial Engineering, 160, 107566.
Li, X. (2011). Brownfields in China: How cities recycle industrial land (Doctoral dissertation, Massachusetts Institute of Technology).
Liang, X., Li, J., Guo, G., Li, S., & Gong, Q. (2021). Evaluation for water resource system efficiency and influencing factors in western China: A two-stage network DEA-Tobit model. Journal of Cleaner Production, 328, 129674.
Lin, X., Zhu, X., Han, Y., Geng, Z., & Liu, L. (2020). Economy and carbon dioxide emissions effects of energy structures in the world: Evidence based on SBM-DEA model. Science of the Total Environment, 729, 138947.
Lin, Y. J., Hsueh, S. L., & Chen, H. Y. (2018). A DEA-Based Performance Evaluation of Ecological Land Development of Cities. Ekoloji, 27(106), 25-30.
Liu, G., Hu, J., Chen, C., Xu, L., Wang, N., Meng, F., ... & Casazza, M. (2021). LEAP-WEAP analysis of urban energy-water dynamic nexus in Beijing (China). Renewable and Sustainable Energy Reviews, 136, 110369.
Liu, J., & Fukushige, M. (2020). Efficiency and pricing of water supply and sewerage services in Japan. Utilities Policy, 62, 100984.
Liu, L., Liu, Z., Gong, J., Wang, L., & Hu, Y. (2019). Quantifying the amount, heterogeneity, and pattern of farmland: Implications for China’s requisition-compensation balance of farmland policy. Land Use Policy, 81, 256-266.
Liu, Q., Wang, S., Zhang, W., Li, J., Zhao, Y., & Li, W. (2017). China's municipal public infrastructure: Estimating construction levels and investment efficiency using the entropy method and a DEA model. Habitat International, 64, 59-70.
Liu, T., & Liu, T. (2020). Making Sense of China’s Urban Construction Land Development: Towards Dual-Track Political Ecology. China’s Urban Construction Land Development: The State, Market, and Peasantry in Action, 61-97.
Liu, Y., Zhang, Z., & Zhou, Y. (2018). Efficiency of construction land allocation in China: An econometric analysis of panel data. Land Use Policy, 74, 261-272
López, J. I. M., Kim, G., Lei, Y., Newman, G., & Suppakittpaisarn, P. (2021). An assessment method and typology for the regeneration of vacant land in Quito, Ecuador. Urban Forestry & Urban Greening, 62, 127130.
Lu, C., Ji, W., Hou, M., Ma, T., & Mao, J. (2022). Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China. Agricultural Water Management, 266, 107605.
Lu, X. H., Jiang, X., & Gong, M. Q. (2020c). How land transfer marketization influence on green total factor productivity from the approach of industrial structure? Evidence from China. Land Use Policy, 95, 104610.
Lu, X., & Xu, C. (2019). The difference and convergence of total factor productivity of inter-provincial water resources in China based on three-stage DEA-Malmquist index model. Sustainable Computing: Informatics and Systems, 22, 75-83.
Lu, X., Chen, D., Kuang, B., Zhang, C., & Cheng, C. (2020a). Is high-tech zone a policy trap or a growth drive? Insights from the perspective of urban land use efficiency. Land Use Policy, 95, 104583.
Lu, X., Qu, Y., Sun, P., Yu, W., & Peng, W. (2020b). Green transition of cultivated land use in the Yellow River Basin: A perspective of green utilization efficiency evaluation. Land, 9(12), 475.
Ma, H., Geng, B., Fu, Y., Sun, Y., & Sun, Z. (2021). Efficiency Analysis of Industrial Water Treatment in China Based on Two-stage Undesirable Fixed-sum Output DEA Model. Journal of Systems Science and Information, 9(6), 660-680.
Ma, S., Li, Z., Li, L., & Yuan, M. (2022). Coupling coordination degree spatiotemporal characteristics and driving factors between new urbanization and construction industry: Evidence from China. Engineering, Construction and Architectural Management, (ahead-of-print).
Macharia, K. K., Gathiaka, J. K., & Ngui, D. (2022). Energy efficiency in the Kenyan manufacturing sector. Energy Policy, 161, 112715.
Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos De Estadística, 4(2), 209-242.
Martínez-Zarzoso, I., & Maruotti, A. (2011). The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecological Economics, 70(7), 1344-1353.
Mavi, N. K., & Mavi, R. K. (2019). Energy and environmental efficiency of OECD countries in the context of the circular economy: Common weight analysis for malmquist productivity index. Journal of Environmental Management, 247, 651-661.
Meng, M., & Qu, D. (2022). Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis. Energy, 239, 121912.
Mocholi-Arce, M., Sala-Garrido, R., Molinos-Senante, M., & Maziotis, A. (2022). Performance assessment of the Chilean water sector: A network data envelopment analysis approach. Utilities Policy, 75, 101350.
Nahangi, M., Chen, Y., & McCabe, B. (2019). Safety-based efficiency evaluation of construction sites using data envelopment analysis (DEA). Safety Science, 113, 382–388.
National Bureau of Statistics of China. (2006-2017). China energy statistical yearbook. Beijing: China Statistics Press.
National Bureau of Statistics of China. (2006-2017). China statistical yearbook. Beijing: China Statistics Press.
National Bureau of Statistics of China. (2011). Division Method of East, West, Central and Northeast Regions. Available from: http://www.stats.gov.cn/ztjc/zthd/sjtjr/dejtjkfr/tjkp/201106/t20110613_71947.htm
National Bureau of Statistics of China. (2013-2017). China city statistical yearbook. Beijing: China Statistics Press.
National Bureau of Statistics of China. (2013-2017). China land and resources statistical yearbook. Beijing: China Statistics Press.
National Bureau of Statistics of China. (2013-2017). China statistical yearbook. Beijing: China Statistics Press.
Nemoto, J., & Goto, M. (1999). Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies. Economics Letters, 64(1), 51-56.
Nemoto, J., & Goto, M. (2003). Measurement of dynamic efficiency in production: an application of data envelopment analysis to Japanese electric utilities. Journal of Productivity Analysis, 19(2), 191-210.
Ngo, T. Q. (2022). How do environmental regulations affect carbon emission and energy efficiency patterns? A provincial-level analysis of Chinese energy-intensive industries. Environmental Science and Pollution Research, 29(3), 3446-3462.
Pang, R. Z., Deng, Z. Q., & Chiu, Y. H. (2015). Pareto improvement through a reallocation of carbon emission quotas. Renewable and Sustainable Energy Reviews, 50, 419-430.
Paramati, S. R., Shahzad, U., & Doğan, B. (2022). The role of environmental technology for energy demand and energy efficiency: Evidence from OECD countries. Renewable and Sustainable Energy Reviews, 153, 111735.
Park, J. L., Yoo, S. K., Lee, J. S., Kim, J. H., & Kim, J. J. (2015). Comparing the efficiency and productivity of construction firms in China, Japan, and Korea using DEA and DEA-based Malmquist. Journal of Asian Aarchitecture and Bbuilding Engineering, 14(1), 57-64.
Peng, J., Wen, L., Fu, L., & Yi, M. (2020). Total factor productivity of cultivated land use in China under environmental constraints: temporal and spatial variations and their influencing factors. Environmental Science and Pollution Research, 27(15), 18443-18462.
Qiu, T., Luo, B., Li, S., & He, Q. (2019). Does the basic farmland preservation hinder land transfers in rural China?. China Agricultural Economic Review, 12(1), 39-56.
Qiu, Y., Sheng, J., & He, X. (2021, April). An Analysis on Urban Land Use Efficiency Based on Super-efficiency DEA. Journal of Physics: Conference Series , 1873, No. (1), 012051.
Ren, C., Li, R., & Guo, P. (2016). Two-stage DEA analysis of water resource use efficiency. Sustainability, 9(1), 52.
Ren, F. R., Tian, Z., Chen, H. S., & Shen, Y. T. (2021). Energy consumption, CO2 emissions, and agricultural disaster efficiency evaluation of China based on the two-stage dynamic DEA method. Environmental Science and Pollution Research, 28, 1901-1918.
Salazar-Adams, A. (2021). The efficiency of post-reform water utilities in Mexico. Utilities Policy, 68, 101153.
Shah, W. U. H., Hao, G., Yan, H., Yasmeen, R., Padda, I. U. H., & Ullah, A. (2022). The impact of trade, financial development and government integrity on energy efficiency: An analysis from G7-Countries. Energy, 255, 124507.
Shang, Y., Liu, H., & Lv, Y. (2020). Total factor energy efficiency in regions of China: An empirical analysis on SBM-DEA model with undesired generation. Journal of King Saud University-Science, 32(3), 1925-1931.
Shi, Z., Huang, H., Chiu, Y. H., Zhang, B., & Zhang, C. (2021a). Linkage analysis of water resources, wastewater pollution, and health for regional sustainable development—using undesirable three-stage dynamic data envelopment analysis. Environmental Science and Pollution Research, 28(15), 19325-19350.
Shi, Z., She, Z., Chiu, Y. H., Qin, S., & Zhang, L. (2021b). Assessment and improvement analysis of economic production, water pollution, and sewage treatment efficiency in China. Socio-Economic Planning Sciences, 74, 100956.
Singh, A., & Misra, S. C. (2021). Safety performance & evaluation framework in Indian construction industry. Safety science, 134, 105023.
Su, Q., & Jiang, X. (2021). Evaluate the economic and environmental efficiency of land use from the perspective of decision-makers’ subjective preferences. Ecological Indicators, 129, 107984.
Su, Q., Chen, K., & Liao, L. (2021). The impact of land use change on disaster risk from the perspective of efficiency. Sustainability, 13(6), 3151.
Sun, H., Edziah, B. K., Kporsu, A. K., Sarkodie, S. A., & Taghizadeh-Hesary, F. (2021). Energy efficiency: The role of technological innovation and knowledge spillover. Technological Forecasting and Social Change, 167, 120659.
Sun, J., & Yi, R. (2010). Research on the Efficiency of Urban Public Transit and Road Land Utilization Based on Data Envelopment Analysis (DEA) and the Malmquist Index, Taking Zhejiang Province as an Example. In ICCTP 2010: Integrated Transportation Systems: Green, Intelligent, Reliable (pp. 2553-2559).
Sun, J., Li, G., & Wang, Z. (2019). Technology heterogeneity and efficiency of China’s circular economic systems: A game meta-frontier DEA approach. Resources, Conservation and Recycling, 146, 337-347.
Sun, Y. N., Ren, F. R., Liu, J. W., & Shi, N. X. (2020b). Associated Effects and Efficiency Evaluation between Wastewater Pollution and Water Disease Based on the Dynamic Two-Stage DEA Model. Healthcare, 8(3), 279.
Sun, Y., Li, H., Lei, S., Semple, K., Coulon, F., Hu, Q., ... & Jones, K. C. (2022). Redevelopment of urban brownfield sites in China: Motivation, history, policies and improved management. Eco-Environment & Health.
Sun, Y., Ma, A., Su, H., Su, S., Chen, F., Wang, W., & Weng, M. (2020a). Does the establishment of development zones really improve industrial land use efficiency? Implications for China’s high-quality development policy. Land Use Policy, 90, 104265.
Tajudeen, I. A. (2021). The underlying drivers of economy-wide energy efficiency and asymmetric energy price responses. Energy Economics, 98, 105222.
Tang, Y., Wang, K., Ji, X., Xu, H., & Xiao, Y. (2021). Assessment and spatial-temporal evolution analysis of urban land use efficiency under green development orientation: Case of the yangtze river delta urban agglomerations. Land, 10(7), 715.
Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498-509.
Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197(1), 243-252.
Tone, K., & Tsutsui, M. (2010). Dynamic DEA: A slacks-based measure approach. Omega-International Journal of Management Science, 38(3), 145–156.
Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach. Omega, 42(1), 124-131.
Tsolas, I. E. (2011). Modelling profitability and effectiveness of Greek-listed construction firms: an integrated DEA and ratio analysis. Construction Management and Economics, 29(8), 795-807.
United Nations. (2015). UN Sustainable Development Goal. Available from: https://www.un.org/sustainabledevelopment/sustainable-development-goals/
Wang, M., Huang, Y., & Li, D. (2021c). Assessing the performance of industrial water resource utilization systems in China based on a two-stage DEA approach with game cross efficiency. Journal of Cleaner Production, 312, 127722.
Wang, M., Sun, C., & Wang, X. (2019). Analysis of the water-energy coupling efficiency in China: Based on the three-stage SBM-DEA model with undesirable outputs. Water, 11(4), 632.
Wang, P., Shao, Z., Wang, J., & Wu, Q. (2021b). The impact of land finance on urban land use efficiency: A panel threshold model for Chinese provinces. Growth and Change, 52(1), 310-331.
Wang, R., Wang, Q., & Yao, S. (2021a). Evaluation and difference analysis of regional energy efficiency in China under the carbon neutrality targets: Insights from DEA and Theil models. Journal of Environmental Management, 293, 112958.
Wang, S., Zhou, L., Wang, H., & Li, X. (2018). Water use efficiency and its influencing factors in China: based on the Data Envelopment Analysis (DEA)—Tobit Model. Water, 10(7), 832.
Wei, J., Lei, Y., Yao, H., Ge, J., Wu, S., & Liu, L. (2021). Estimation and influencing factors of agricultural water efficiency in the Yellow River basin, China. Journal of Cleaner Production, 308, 127249.
Wen, Q., Chen, Y., Hong, J., Chen, Y., Ni, D., & Shen, Q. (2020). Spillover effect of technological innovation on CO2 emissions in China's construction industry. Building and Environment, 171, 106653.
Williams, J. (2019). Circular cities. Urban Studies, 56(13), 2746-2762.
Wu, H. Q., Shi, Y., Xia, Q., & Zhu, W. D. (2014). Effectiveness of the policy of circular economy in China: A DEA-based analysis for the period of 11th five-year-plan. Resources, Conservation and Recycling, 83, 163-175.
Xi, Q., & Mei, L. (2022). How did development zones affect China’s land transfers? The scale, marketization, and resource allocation effect. Land Use Policy, 119, 106181.
Xian, Y., Yang, K., Wang, K., Wei, Y. M., & Huang, Z. (2019). Cost-environment efficiency analysis of construction industry in China: A materials balance approach. Journal of Cleaner Production, 221, 457-468.
Xie, H., & Wang, W. (2015). Spatiotemporal differences and convergence of urban industrial land use efficiency for China’s major economic zones. Journal of Geographical Sciences, 25(10), 1183-1198.
Xie, H., Chen, Q., Wang, W., & He, Y. (2018). Analyzing the green efficiency of arable land use in China. Technological Forecasting and Social Change, 133, 15-28.
Xu, C., Bin, Q., & Shaoqin, S. (2021). Polycentric spatial structure and energy efficiency: Evidence from China's provincial panel data. Energy Policy, 149, 112012.
Xu, D., Yong, Z., Deng, X., Zhuang, L., & Qing, C. (2020). Rural-urban migration and its effect on land transfer in rural China. Land, 9(3), 81.
Xu, M., & Bao, C. (2022). Quantifying the spatiotemporal characteristics of China's energy efficiency and its driving factors: A Super-RSBM and Geodetector analysis. Journal of Cleaner Production, 356, 131867.
Xu, X., Wang, Y. and Li, T. (2019). Comprehensive evaluation of sustainable development of regional construction industry in China. Journal of Cleaner Production, 211, 1078-1087.
Xue, X., Wu, H., Zhang, X., Dai, J., & Su, C. (2015). Measuring energy consumption efficiency of the construction industry: the case of China. Journal of Cleaner Production, 107, 509-515.
Yang, F., & Liu, G. (2022). Research on Spillover Effect of Urbanization on Rural Land Transfer Based on the SDM Model of Intelligent Computing. Mobile Information Systems, 2022.
Yang, F., Wang, D., Zhao, L., & Wei, F. (2021). Efficiency evaluation for regional industrial water use and wastewater treatment systems in China: a dynamic interactive network slacks-based measure model. Journal of Environmental Management, 279, 111721.
Yang, J., Liu, X., Ying, L., Chen, X., & Li, M. (2020). Correlation analysis of environmental treatment, sewage treatment and water supply efficiency in China. Science of the Total Environment, 708, 135128.
Yang, T., Guan, X., Qian, Y., Xing, W., & Wu, H. (2019). Efficiency evaluation of urban road transport and land use in Hunan Province of China based on hybrid data envelopment analysis (DEA) models. Sustainability, 11(14), 3826.
Yang, Y. (2021). Evaluation of China's water-resource utilization efficiency based on a DEA-Tobit two-stage model. Water Supply, 21(4), 1764-1777.
Yang, Z., & Fang, H. (2020). Research on green productivity of chinese real estate companies—Based on SBM-DEA and TOBIT models. Sustainability, 12(8), 3122.
Yang, Z., Fang, H., & Xue, X. (2022a). Sustainable efficiency and CO2 reduction potential of China’s construction industry: Application of a three-stage virtual frontier SBM-DEA model. Journal of Asian Architecture and Building Engineering, 21(2), 604-617.
Yang, Z., Xia, J., Zou, L., Qiao, Y., Xiao, S., Dong, Y., & Liu, C. (2022b). Efficiency and driving force assessment of an integrated urban water use and wastewater treatment system: Evidence from spatial panel data of the urban agglomeration on the middle reaches of the Yangtze River. Science of the Total Environment, 805, 150232.
Yao, X., Feng, W., Zhang, X., Wang, W., Zhang, C., & You, S. (2018). Measurement and decomposition of industrial green total factor water efficiency in China. Journal of Cleaner Production, 198, 1144-1156.
Yu, C. (1998). The effects of exogenous variables in efficiency measurement—a Monte Carlo study. European Journal of Operational Research, 105(3), 569-580.
Yu, J., Zhou, K., & Yang, S. (2019). Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy, 88, 104143.
Zakari, A., Khan, I., Tan, D., Alvarado, R., & Dagar, V. (2022). Energy efficiency and sustainable development goals (SDGs). Energy, 239, 122365.
Zhang, C., & Chen, P. (2022). Applying the three-stage SBM-DEA model to evaluate energy efficiency and impact factors in RCEP countries. Energy, 241, 122917.
Zhang, C., & Lin, Y. (2012). Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China. Energy Policy, 49, 488-498.
Zhang, J., Ouyang, Y., Ballesteros-Pérez, P., Li, H., Philbin, S. P., Li, Z., & Skitmore, M. (2021a). Understanding the impact of environmental regulations on green technology innovation efficiency in the construction industry. Sustainable Cities and Society, 65, 102647.
Zhang, J., Zhang, D., Huang, L., Wen, H., Zhao, G., & Zhan, D. (2019). Spatial distribution and influential factors of industrial land productivity in China's rapid urbanization. Journal of Cleaner Production, 234, 1287-1295.
Zhang, L., Zhang, H., Chiu, Y. H., Shi, Z., & Pang, Q. (2021c). Assessing integrated industrial water use and healthcare systems: efficiencies and its dynamic evolution. Environmental Geochemistry and Health, 43(5), 1839-1854.
Zhang, L., Zhuang, Y., Chiu, Y. H., Pang, Q., Chen, Z., & Shi, Z. (2021d). Measuring urban integrated water use efficiency and spatial migration path in China: A dynamic two-stage recycling model within the directional distance function. Journal of Environmental Management, 298, 113379.
Zhang, M., Tan, S., Zhang, Y., He, J., & Ni, Q. (2022a). Does land transfer promote the development of new-type urbanization? New evidence from urban agglomerations in the middle reaches of the Yangtze River. Ecological Indicators, 136, 108705.
Zhang, N., Yu, K., & Chen, Z. (2017). How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy, 107, 678–687
Zhang, S., Li, Z., Ning, X., & Li, L. (2021b). Gauging the impacts of urbanization on CO2 emissions from the construction industry: Evidence from China. Journal of Environmental Management, 288, 112440.
Zhang, T., & Xu, Y. (2019). Evaluation on the efficiency of water-energy-food nexus based on data envelopment analysis (DEA) and Malmquist in different regions of China. International Journal of Computational Intelligence Systems, 12(2), 1649.
Zhang, T., Guna, A., Yu, W., & Shen, D. (2022b). The recycled water use policy in China: Evidence from 114 cities. Journal of Cleaner Production, 344, 131038.
Zhang, X., Kong, Y., & Ding, X. (2020). How high-quality urbanization affects utilization efficiency of agricultural water resources in the Yellow River basin under double control action?. Sustainability, 12(7), 2869.
Zhao, L., Sun, C., & Liu, F. (2017). Interprovincial two-stage water resource utilization efficiency under environmental constraint and spatial spillover effects in China. Journal of Cleaner Production, 164, 715-725.
Zhao, W., Leeftink, R. B., & Rotter, V. S. (2010). Evaluation of the economic feasibility for the recycling of construction and demolition waste in China—The case of Chongqing. Resources, Conservation and Recycling, 54(6), 377-389.
Zhao, W., Ren, H., & Rotter, V. S. (2011). A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center–The case of Chongqing, China. Resources, Conservation and Recycling, 55(11), 933-944.
Zhao, Y., Huang, X., Zhong, T., Zhang, X., Du, G., & Zhang, B. (2012). Effects of land supervision on cultivated land requisition-compensation balance in China. Transactions of the Chinese Society of Agricultural Engineering, 28(1), 1-7.
Zhao, Y., Wang, Y., & Wang, Y. (2021). Comprehensive evaluation and influencing factors of urban agglomeration water resources carrying capacity. Journal of Cleaner Production, 288, 125097.
Zheng, L., Wu, H., Zhang, H., Duan, H., Wang, J., Jiang, W., ... & Song, Q. (2017). Characterizing the generation and flows of construction and demolition waste in China. Construction and Building Materials, 136, 405-413.
Zhou, A., & Li, J. (2021). Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data. Energy, 228, 120562.
Zhou, Q., Wu, X., Zhang, X., & Song, Y. (2021). Investigating the Spatiotemporal Disparity and Influencing Factors of Urban Construction Land Utilization Efficiency: Empirical Evidence from Panel Data of China. Advances in Civil Engineering, 2021.
Zhou, S., & Xu, Z. (2022). Energy efficiency assessment of RCEP member states: a three-stage slack based measurement DEA with undesirable outputs. Energy, 253, 124170.
Zhou, X., Luo, R., Yao, L., Cao, S., Wang, S., & Lev, B. (2018). Assessing integrated water use and wastewater treatment systems in China: A mixed network structure two-stage SBM DEA model. Journal of Cleaner Production, 185, 533-546.
Zhou, Y., Liu, W., Lv, X., Chen, X., & Shen, M. (2019). Investigating interior driving factors and cross-industrial linkages of carbon emission efficiency in China's construction industry: Based on Super-SBM DEA and GVAR model. Journal of Cleaner Production, 241, 118322.
Zhu, X., Li, Y., Zhang, P., Wei, Y., Zheng, X., & Xie, L. (2019a). Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency. Land Use Policy, 88, 104083.
Zhu, X., Zhang, P., Wei, Y., Li, Y., & Zhao, H. (2019b). Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model—A case study of 35 large and medium-sized cities in China. Sustainable Cities and Society, 50, 101646.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
QR Code
QRCODE