:::

詳目顯示

回上一頁
題名:以衛星影像評估不同林相碳儲量之研究—以新竹林區南庄事業區為例
作者:王瑞源
作者(外文):Wang, Ruei-Yuan
校院名稱:中國文化大學
系所名稱:地學研究所
指導教授:王義仲、朱子豪
學位類別:博士
出版日期:2010
主題關鍵詞:植被指數碳儲量複廻歸分析倒傳遞類神經網路分析Vegetation Index(VI)Carbon StockMultiple Regression Analysis(MRA)Back-Propagation Networks(BPN)
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:59
因全球暖化現象日益嚴重,引起全球各國正視二氣化碳的遽增問題,並於1997年在日本京都簽約國會議中達成「京都議定書」簽署共識,以共同推動全球節能減碳任務。協約中明訂造林及森林採伐之二氧化碳吸收或排放之淨值,可併入排放減量值計算,並列為該國之抵減量,所以森林擔任二氧化碳儲存和吸收的重要角色,對減緩溫室效應有相當大的貢獻。據研究顯示,森林調查資料與遙測技術的結合,成為碳儲量、碳庫及碳吸存量的主要方法,尤其依據聯合國跨政府組織間氣候變遷專門委員會良好做法指南(Intergovernmental Panel on Climate Change Good Practice Guidance, IPCC GPG)(2003)指出,遙測技術特別適用於國家土地使用、土地使用變遷的實證及林業碳庫的評估(the national Land Use, Land-Use Change, and Forestry Carbon pool, LULUCF),特別是地上部生物量的估算。因此,IPCC提出建議可整合遙測資源及生態模式(ecological models),用以提供「聯合國氣候變遷綱要」之評估需求。
職是之故,本研究即採用地面調查資料與遙測影像結合之方式,來估測森林的碳儲量之變化情況。實驗中,選用福衛2號及IKONOS-2衛星影像為研究素材,並採用統計「複迴歸(MRA)」與「倒傳遞類神經網路(BPN)」、CBMRA及CBBPN等模式作為分析之技術,主要之探討重點為,不同解析度影像的碳儲存預測能力、MRA 、BPN 、CBMRA及CBBPN的預測精度差異。地面調查之林木資料係由林務局提供,共複查了55個永久樣區,推估之樣區材積總量為868.37 m3。另外,從福衛2號及IKONOS-2衛星影像中,則萃取了NDVI、TNDVI、RVI、DVI等植被指標,並與地面調查資料作MRA、BPN、CBMRA及CBBPN分析比較。依實驗RMSE的比較結果顯示,高解析度影像之判釋預測力優於低解析度影像,GBISC法對於資料的預測精度有提升效果,顯示遙測技術對於地方性尺度的森林監測,可以達到有效的監測效益,建議應予充分利用及推廣。
The increasing amount of carbon dioxide has exacerbated global warming and accordingly led to the whole world addressing the dramatic change of weather. Many countries reached a consensus, signing the Kyoto Protocol in 1997, in Kyoto, Japan, with an effort to reduce the mission of carbon. The treaty allows that the carbon dioxide absorption and emission together with afforestation and deforestation, can be incorporated into net value of reduction, and this refers to the amount of reduction for the country. Therefore, forests play an important role in terms of absorbing and storing carbon dioxide; this has enormously contributed to attenuating the greenhouse effect. Studies have shown that the combination of forest inventories and remote sensing has become the main method of assessment for carbon sink, carbon stocks, and carbon sequestration. Particularly, according to the International panel on Climate Change Good Practice Guidance(IPCC GPG)(2003), remote sensing methods are especially suitable for verifying the national Land Use, Land-Use Change, and Forestry (LULUCF)C pool estimates, specifically the aboveground biomass. Thus, IPCC has proposed integrating remote sensing and ecological models for the requirement of assessment of The United Nations Framework Convention on Climate Change(UNFCCC).
Therefore, this study aims at estimating the situation of changes in forests carbon stocks with the application of remote sensing, forest investigation data, and the combination of both methods. This experiment adopts FORMOSAT-2 and IKONOS-2 satellite imagery as materials, meanwhile, multiple regression analysis(MRA), back-propagation network(BPN), CBMRA and CBBPN analysis technology are also applied. The main ideas are the predicting capability of carbon stocks in different resolution images, and the precision degree of prediction in CBMRA, CBBPN, MRA and BPN. The forest ground survey data is provided by the Forestry Bureau of Taiwan, and this research has reviewed a total of 55 permanent sample plots and estimate total 868.37 m3 volume values. Furthermore, the vegetation indices of the NDVI, TNDVI, RVI, and DVI, have been extracted from FORMOSAT-2 and IKONOS-2 satellite images, and incorporated with the ancillary data for the analysis of MRA, BPN, CBMRA and CBBPN. The result of the comparison of RMSE indicates that the prediction capability of interpretation of high resolution imagery is superior to the coarse resolution imagery. The GBISC method has promoted the effectiveness of data predicting precision. Thus, overall, it revealed that remote sensing technology could effectively contribute to forest monitoring in terms of local scale. Hence, I propose that remote sensing should be widely applied and promoted.
參考文獻
一、中文文獻
王立志,1996,氣候變遷對台灣林業的衝擊與適應,氣候變遷衝擊評估與因應策略建議研討會論文集,第215-229頁。
王義仲,2003,林木對碳吸存效益評估,華岡農科學報,第10期,頁53-68。
王瑞閔,2007,台灣國有林地森林碳吸存估算方法之探討,台灣大學生物資源暨農學院森林環境暨資源學系,碩士論文。
王薏雯,2007,整合福衛二號高時間解析度和高空間解析度衛星影像與田間光譜資料監測水稻生長和預測產量,國立成功大學地球科學研究所,碩士論文。
王瑞源、王義仲、陳家堂、朱子豪,2009,運用RPC光束平差法於高解析度衛星影像之無地面控制點幾何精度改正,中華林學季刊,第42卷,第3期,頁363-379。
台灣大學全球變遷研究中心,2007,聯合國氣候變化綱要公約第10次締約國大會觀察報#6,http://www.gcc.ntu.edu.tw/
台灣環境資訊中心,2007a,2007國際回顧:IPCC報告:全球暖化人為造成與高爾同獲諾貝爾和平獎,http://e-info.org.t w/node/28469
台灣環境資訊中心,2007b,聯合國權威報告:人類導致全球暖化證據確鑿,http://e-info.org.tw/node/19423
交通部觀光局參山國家風景區管理處,2005,獅頭山風景區南庄遊憩系統自然資源調查,民享環境生態調查有限公司。
朱浤源,1999,撰寫博碩士論文實戰手冊,正中書局出版。
李國忠、林俊成、陳麗琴,2000,台灣杉人工林碳吸存潛力及其成本效益分析,台灣林業科學,第15卷,第1期,頁115-123。
李國忠,2005,大自然的空調系統—人造森林,科學發展月刊,第388期,頁29-35。
李建成,2005,一覽無遺—衛星遙測影像,科學發展月刊,第390期,頁14-17。
李宣德、馮豐隆,2008,森林碳吸存資源調查推估模式系統-以台灣樟樹為例,台灣林業科學,第23卷,頁15-26。
吳俊賢、林俊成、李國忠、陳溢宏、林麗貞、林瑞進,2005,森林能源作物之二氧化碳吸存效果與能源產出效率,臺大實驗林研究報告,第19卷,第1期,頁43-53。
邱志明,2006,疏伐撫育經營策略對森林碳吸存之影響,林業研究專訊,第13卷,第1期,頁6-9。
邱祈榮、王瑞閔、梁玉琦,2006,台灣森林碳量估算面面觀,森林碳吸存研討會論文集,頁79-97。
邱祈榮、林俊成、陳莉坪,2010,植林碳匯專案管理,邱祈榮出版。
林務局網站,2007,第四次全國森林資源調查,http://www.forest.gov.tw/
林金樹,1999,森林植生季節性光譜特性之研究,台灣林業科學,第14卷,第3期,頁289-305。
林裕仁、劉瓊霦、林俊成,2002,台灣地區主要用材比重與含碳量測定,台灣林業科學,第17卷,第3期,頁291-299。
林俊成、鄭美如、劉淑芬、李國忠,2002,全民造林運動二氧化碳吸存潛力之經濟效益評估,台灣林業科學,第17卷,第3期,頁311-21。
林俊成、李國忠,2005,京都議定書生效後之森林資源碳吸存策略,台灣林業,第31卷,第3期,頁12-19。
林俊成、王培蓉,2006,世界碳交易現況對臺灣森林經營之影響,林業研究專訊,第13卷,第1期,頁14-17。
林俊成,2009,森林碳管理與森林碳匯議題發展,全球變遷通訊雜誌,第61期,頁19-26。
林俊義,2007,國際推動生質能源作物之展望,林業研究專訊,第14卷,第3期,頁35-40。
林奇璋、余騰耀,2007,我國推行CO2排放交易之要件、利基與問題,碳經濟,第7期,頁2-10。new window
林叢禎,2007,我國推行碳排放交易的要件、利基與問題,碳經濟,第7期,頁11-19。
南庄鄉公所網站,2009,認識南庄—地理概況,http://www.nanchuang.gov.tw/nanjhuang_township/
施奕良,2006,知識表達方法於影像判釋之研究-以粗糙集合理論與主成分分析為例,逢甲大學環境資訊科技研究所,碩士論文。
柳中明、李國忠、林俊成、劉育慈,2001,造林復育對台灣環境二氧化碳減量之貢獻,台灣大學農學院實驗林研究報告,頁1-21。
許原瑞,2006,造林措施與大氣二氧化碳之移除,林業研究專訊,第13卷,第1期,頁2-5。
許晉嘉,2006,應用支援向量機法於高解析度衛星影像分類之研究,逢甲大學環境資訊科技研究所,碩士論文。
黃鼎松等,2001,苗栗縣河川誌專輯—農工並盛的中港溪,苗栗縣政府文化局。
黃意茹,2002,都市綠覆率與氣溫之相關性研究--衛星影像類神經網路分類法之應用,逢甲大學土地管理學系,碩士論文。
黃群修、林奐宇,2009,第4次全國森林資源調查規劃與推動情形,農政與農情,行政院農業委員會網站,http://www.coa.gov.tw/
陳萬淇,1995,個案研究法,華泰書局。
陳良健、林唐煌,2010,數位影像之遙測優勢,物理雙月刊,第32卷,第1期,頁18-23。
張鏡湖,2005,世界的資源與環境,文化大學出版社,頁1-6。new window
張斐章、張麗秋,2005,類神經網路,東華書局,頁136-138。
箕輪光博,1991,IPCC報告及森林二氧化碳固定能力,木材工業,第46期,頁434-437。
楊盛行,1997,台灣地區森林二氧化碳之涵容量計算,中華生質能源協會會誌,第16期,頁1-10。
楊榮啟、林文亮,1998,台灣省之國有林林木資源長期發展計畫─國立台灣大學及台灣省林務局三年合作研究計畫第一年報告,國立台灣大學森林學研究所,頁1-87。
楊龍士、周天穎,2000,遙感探測理論與分析實務,逢甲大學地理資訊系統研究中心。
廖紹安,2008,應用資料探勘技術及紋理分析於崩塌地變遷評估之研究-以九份二山為例,明道大學環境規劃暨設計研究所,碩士論文。
趙英時,2003,遙感應用分析原理與方法,科學出版社,頁372-394。
鄭祈全、許立達、陳燕章,1998,整合地理資訊系統與遙測技術於林分材積估測之研究,台灣林業科學,第13卷,第2期,頁155-167。
鄭祈全、許立達、賴玉菁,2001,應用地理資訊系統監測森林地景變遷之研究,台灣林業科學,第16卷,第1期,頁1-9。
鄭祈全、張哲彰、劉景國,2002,應用地理資訊系統於六龜試驗林生態系經營示範區植群分佈之研究,台灣林業科學,第17卷,第2期,頁195-203。
鄭雅文,2007,高解析度衛星影像分類應用於國土利用調查之研究,國立交通大學土木工程學系,碩士論文。
劉國忠,2007,我國CO2排放權的核配規劃與落實,碳經濟,第7期,頁20-28。new window
賴怡忠,2005,「全球環境變遷與永續發展趨勢」,新世紀二期國家建設計劃研擬--專輯研究系列I,行政院經濟部建設委員會,頁207-230。
謝漢欽、汪大雄、林俊成,2003,應用地理資訊系統估算六龜試驗林森林蓄積變動之二氧化碳吸存效應,台灣林業科學,第18卷,第3期,頁171-182。
謝漢欽,2006,從京都議定書看台灣的森林資源調查,林業研究專訊,第13卷,第1期,頁18-21。
蕭代基,2009,碳排放交易機制建置之研究,行政院經濟委員會,中華經濟研究院研究報告,頁8-12。
魏國棟,2003,氣候變遷與因應經濟政策工具:文獻回顧,經濟研究(Taipei Economic Inquiry),臺北大學經濟學系出版,第39卷,第1期,頁27-69。new window
魏國棟、何昇融,2004,不同市場結構下排放權交易機制分析,農業經濟半年刊,第75期,頁61-82。new window
顏瑋利,2004,以SPOT衛星影像探討墾丁國家公園植生指標之季節性變化,屏東科技大學森林系實務專題報告,頁1-38。
顏添明、黃凱洛,2006,杉木地上部碳儲存量之推估,台灣林業科學,第21卷,第2期,頁273-80。
羅時凡、陳朝圳,2007,應用衛星影像推估針葉樹之葉面積指數,第五屆數位地球國際研討會,頁106-117。
譚運籌,2007,新竹林區南庄事業區永久樣區之森林碳吸存效應,國立屏東科技大學森林系,碩士論文。
譚子健,2007,應用生光模式及福衛二號遙測影像研究曾文水庫水質之時空分佈,國立成功大學環境工程學系,碩士論文。

二、英文文獻
Atkinson, P. M., and Lewisb, P., 2000, Geostatistical classification for remote sensing: an introduction, Computers & Geosciences, Vol. 26, pp.361-371.
Beekhuizen, J., and Clarke, K. C., 2010, Toward accountable land use mapping: Using geocomputation to improve classification accuracy and reveal uncertainty, International Journal of Applied Earth Observation and Geoinformation, Vol. 12, pp.127-137.
Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., and Heynen, M., 2004, Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 58, pp. 239-258.
Bock, M., 2003, Remote sensing and GIS-based techniques for the classification and monitoring of biotopes—Case examples for a wet grass- and moor land area in Northern Germany, Journal for Nature Conservation, Vol.11, pp.145-155.
Bock, M., Xofis, P., Mitchley, J., Rossner, G., and Wissen, M., 2005, Object-oriented methods for habitat mapping at multiple scales – Case studies from Northern Germany and Wye Downs, UK, Journal for Nature Conservation, Vol. 13, pp.75-89.
Bouman, B. A. M., 1992, Accuracy of estimating the leaf area index from vegetation indices derived from crop reflectance characteristics, a simulation study, International Journal of Remote Sensing, Vol. 13, No.16, pp.3069-3084.
Bradshaw, G. A., 1990, Semivariograms of digital imagery for analysis of conifer canopy structure, Remote Sensing, Vol. 34, pp.167-178.
Chang, Y. H. O., and Ayyub, B. M., 2001, Fuzzy regression methods – a comparative assessment, Fuzzy Sets and Systems, Vol. 119, pp.187-203.
Chen, X., Tateishi, R., and Wang, C., 1999, Development of a 1-km landcover dataset of China using AVHRR data, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, pp.305-316.
Deering, D. W., Rouse, J. W., Haas, R. H., and Schell, J. A., 1975, Measuring Forage Production of Grazing Units from Landsat MSS Data, 10th Internatonal Symposium on Remote Sensing of Environment , pp.1169-1178.
Delbart, N., Le Toan, T., Kergoat, L., and Fedotova, V., 2006, Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data(1982-2004), Remote Sensing of Environment, Vol. 101, pp. 52-62.
Dousset, B., and Gourmelon, F., 2003, Satellite multi-sensor data analysis of urban surface temperatures and landcover, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 58, pp.43-54.
D’Urso, P., and Santoro, A., 2006, Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable, Computational Statistics & Data Analysis, Vol. 51, pp.287-313.
Eastaugh, C., 2008, Adaptations of Forests to Climate Change: A Multidisciplinary Review, IUFRO Occasional Paper, No. 21, pp.1-83.
Evans, T. P., and Kelley, H., 2004, Multi-scale analysis of household level angent-based model of landcover change, Journal of Environmental Management, Vol. 72, pp.57-72.
Fensholt, R., Sandholt, I., Stisen, S., and Tucker, C., 2006, Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor, Journal of Environmental Management, Vol. 101, pp.212-229.
Fried, M. A., Davis, F. W., Michaelsen, J., and Moritz, M. A., 1995, Scaling and Uncertainty in the Relationship between the NDVI and Land Surface Biophysical Variables: An Analysis Using a Scene Simulation Model and Data from FIFE, Remote Sensing of environment, Vol. 54, pp.233-246.
Gallo, K., Ji, L., Reed, B., Eidenshink, J., and Dwyer, J., 2005, Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data, Journal of Environmental Management, Vol. 99, pp.221-231.
Gibbs, H. K., Brown, S., Niles, J. O., and Foley, J. A., 2007, Monitoring and estimating tropical forest carbon stocks: making REDD a reality, Environmental Research Letters, Vol. 2, No. 4, pp.1-13.
Goovaerts, P., Jacquez, G. M., and Marcus, A., 2005, Geostatistical and local cluster analysis of high resolution hyperspectral imagery for detection of anomalies, Remote Sensing of Environment, Vol. 95, pp.351-367
Goward, S. N., Davis, P. E., Fleming, D., Miller, L., and Townshend, J. R, 2003a, Empirical comparison of Landsat 7 and IKONOS multispectral measurements for selected Earth Observation System(EOS) validation sites, Remote Sensing of Environment, Vol. 88, pp.80-99.
Goward, S. N., Townshend, J. R. G., Zanoni, V., Policelli, F., Stanley, T., and Ryan, R., 2003b, Acquisition of earth science remote sensing observations from commercial sources: lessons learned from the Space Imaging IKONOS example, Remote Sensing of Environment, Vol. 88, pp.209-219.
Hall, D. O., and Rao, K. K., 1987, Photosynthesis, Great Britain, Edward Arnold.
Hatfield, J. L., and Prueger, J. H., 2010, Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices, Remote Sensing, Vol. 2, No. 2, pp.562-578.
Hese, S., Lucht, W., Schmullius, C., Barnsley, M., Dubayah, R., and Knorr, D., 2005, Global biomass mapping for an improved understanding of the CO2 balance—the Earth observation mission Carbon-3D, Remote Sensing of Environment, Vol. 94, pp.94-104.
Hill, M. J., Senarath, U., Lee, A., Zeppel, M., Nightingale, J. M., Williams, R. J., and McVicar, T. R., 2006, Assessment of the MODIS LAI product for Australian ecosystems, Remote Sensing of Environment, Vol. 101, pp.495-518.
Houghton, R., Lawrence, K., Hackler, J., and Brown, S., 2001, The spatial distribution of forest biomass in the Brazilian Amazon: A comparison of estimates, Global Change Biology, Vol. 7, pp.731-746.
Huete, A. R., 1988, A soil-adjusted vegetation index(SAVI), Remote Sensing of Environment, Vol. 25, pp.295-309.
IPCC, 2003, Good practice guidance for land use, land-use change and forestry, IPCC/IGES, Hayama, Japan.
Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G., and Zhang, X., 2006, Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction, Remote Sensing of Environment, Vol. 101, pp. 366-378.
Jing, M. C., and Cihlar, J., 1996, Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images, Remote Sensing of Environment, Vol. 55, pp.153-162.
Jordan, C. F., 1969, Derivation of leaf area index from quality measurements of light on the forest floor, Ecology, Vol. 50, pp. 663-666.
Kaul, M., Hill, R. L., and Walthall, C., 2005, Artificial neural networks for corn and soybean yield prediction, Agricultural Systems, Vol. 85, pp.1-18.
Khashei, M., and Bijari, M., 2010, An artificial neural network(p, d, q)model for timeseries forecasting, Expert Systems with Applications, Vol. 37, pp.479-489.
Krankina, O. N., Harmon, M. E., Cohen, W. B., Oetter, D. R., Zyrina, O., and Duane, M. V., 2004, Carbon stores, sinks, and sources in forests of Northwestern Russia: Can we reconcile forest inventories with remote sensing results? Climatic Change, Vol. 67, pp.257-272.
Labrecque, S., Fournier, R. A., Luther, J. E., and Piercey, D., 2006, A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland, Forest Ecology and Management, Vol. 226, pp.129-144.
Leboeuf, A., Beaudoin, A., Fournier, R. A., Guindon, L., Luther, J. E., and Lambert, M. C, 2007, A shadow fraction method for mapping biomass of northern boreal black spruce forests using QuickBird imagery, Remote Sensing of Environment, Vol. 110, pp.488-500.
Lek, S., and Gue´gan, J. F., 1999, Artificial neural networks as a tool in ecological modelling, an introduction, Ecological Modelling, Vol. 120, pp.65-73.
Lehtonen, A., Ma¨kipa¨a¨, R., Heikkinen, J., Sieva¨nen, R., and Liski, J., 2004, Biomass expansion factors(BEFs)for Scots pine, Norway spruce and birch according to stand age for boreal forests, Forest Ecology and Management,Vol.188, pp.211-224.
Leonard, B., Chen, J. M., Leblanc, S. G., and Cihlar, J., 2000, A Shortwave Infrared Modification to the Simple Ratio for LAI Retrieval in Boreal Forests- An Image and Model Analysis, Remote Sensing of Environment., Vol. 71, pp.16-25.
Li, G., and Weng, Q., 2005, Using Landsat ETM_ imagery to measure population density in Indianapolis, Indiana, USA, Photogrammetric Engineering & Remote Sensing, Vol. 71, No. 8, pp.947-958.
Liao, S. H., and Wen, C. H., 2007, Artificial neural networks classification and clustering of methodologies and applications – literature analysis from 1995 to 2005, Expert Systems with Applications, Vol. 32, pp.1-11.
Lillesand, T. M., and Kiefer, R. W., 2000, Remote Sensing and Image Interpretation, Fourth Edition, John Wiley & Sons, Inc.
Liu, D., Kelly, M., and Gong, P., 2006, Spatial-temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery, Journal of Environmental Economics and Management ,Vol. 101, pp.167-180.
Lubowskia, R. N., Plantingab, A. J., and Stavinsc, R. N., 2006, Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function, Journal of Environmental Economics and Management ,Vol. 51, pp.135-152.
Lucas, R. M., Cronin, N., Lee, A., Moghaddam, M., Witte, C., and Tickle, P., 2006, Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia, Remote Sensing of Environment, Vol. 100, pp.407-425.
Lymburner, L., Beggs, P. J., and Jacobson, C. R., 2000, Estimation of Canopy-Average Surface-Specific Leaf Area Using Landsat TM Data, Photogrammetry Engineering and remote sensing, Vol.66, pp.183-191.
Maselli, F., Barbati, A., Chiesi, M., Chirici, G., and Corona, P., 2006, Use of remotely sensed and ancillary data for estimating forest gross primary productivity in Italy, Remote Sensing of Environment, Vol.100, pp.563-575.
McDonald, R. A., 1995, Opening the cold war sky to the public: declassifying satellite reconnaissance imagery, Vol. 61, pp.380-390.
McRoberts, R. E., and Tomppo, E, O., 2007, Remote sensing support for national forest inventories, Remote Sensing of Environment, Vol. 110, pp.412-419.
Missfeldt, F., and Haites, E., 2001, The potential contribution of sinks to meeting Kyoto Protocol commitments, Environmental Science and Policy, Vol.4, pp.269-292.
Miura, T., Huete, A., and Yoshioka, H., 2006, An empirical investigation of cross-sensor relationships of NDVI and red/near-infrared reflectance using EO-1 Hyperion data, Remote Sensing of Environment, Vol. 100, pp.223-236.
Mohanty, K. K., and Majumdar, T. J., 1996, An artificial neural network (ANN) based software package for classification of remotely sensed data, Computers & Geosciences, Vol. 22, No.1, pp.81-87.
Mukherjee, A. P., Banerjee, D. M., 2005, Normalized Difference Vegetation Index (NDVI) Analysis: Use of Vegetation Health as a Groundwater Indicator, the Vision RIViewpoint—environment: natural resources management, [online] URL: http://www.visionriviewpoint.com/
Murray, B. C., Prisly, S. P., Birdsey, R. A., and Sampson, R. N., 2000, Carbon sinks in the Kyoto protocol: potential relevance for US forests, Journal of Forestry, Vol. 98, No. 9, pp. 6-11.
Muukkonen, P., and Heiskanen, J., 2005, Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data, Remote Sensing of Environment, Vol. 99, pp.434-447.
Myeong, S., Nowak, D. J., and Duggin, M. J., 2006, A temporal analysis of urban forest carbon storage using remote sensing, Remote Sensing of Environment, Vol. 101, pp.277-282.
Neeff, T., Grac, P. M. A., Dutra, L.V., and Freitas, C. C., 2005, Carbon budget estimation in Central Amazonia: Successional forest modeling from remote sensing data, Remote Sensing of Environment, Vol. 94, pp.508-522.
North, P. R. J., 2002, Estimation of fAPAR, LAI, and vegetation fractional cover from ATSR-2 imagery, Remote Sensing of Environment, Vol. 80, pp.114-121.
Pao, H. T., 2008, A comparison of neural network and multiple regression analysis in modeling capital structure, Expert Systems with Applications, Vol. 35, pp.720-727.
Patenaude, G., Milne, R., and Dawson, T. P., 2005, Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol, Environmental Science & Policy, Vol. 8, pp.161-178.
Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., and Wagner, F., 2004, Good practice guidance for land use, land-use change and forestry, The Intergovernmental Panel on Climate Change(IPCC), Hayama, Japan7 IGES.
Puma, P. L., Philippi, T. E., and Oberbauer, S. F., 2007, Relating NDVI to ecosystem CO2 exchange patterns in response to season length and soil warming manipulations in arctic Alaska, Remote Sensing of Environment, Vol. 109, pp.225-236.
Rautiainen, M., 2005, Retrieval of leaf area index for a coniferous forest by inverting a forest reflectance model, Remote Sensing of Environment, Vol. 99, pp. 295-303.
Rosenqvist, A., Milne, A., Lucas, R., Imhoff, M., and Dobson, C., 2003, A review of remote sensing technology in support of the Kyoto protocol, Environmental Science and Policy, Vol. 6, pp.441- 455.
Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W., 1973, Monitoring vegetation systems in the great plains with ERTS, Third ERTS Symposium, NASA SP-351, Vol. 1, pp.309-317.
Sagan, C., 2006, Ambiguous Futures: Global Warming and the Third World, Journal of Futures Studies, Vol.11, No.2, pp.15-34.
Shalaby, A., and Tateishi, R., 2007, Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt, Applied Geography, Vol. 27, pp.28-41.
Shen, M., Tang,Y., Klein, J., Zhang, P., Gu, S., Shimono, A., and Chen, J., 2008, Estimation of aboveground biomass using in situ hyperspectral measurements in five major grassland ecosystems on the Tibetan Plateau, Journal of Plant Ecology, Vol. 1, No. 4, pp.247-257.
Silleos, N. G., Alexandridis, T. K., Gitas, I. Z., and Perakis, K., 2006,Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years, Geocarto International, Vol. 21, No. 4, pp.21-28.
Tarnavsky, E., Garrigues, S., and Brown, M. E., 2008, Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products, Remote Sensing of Environment, Vol. 112, pp.535-549.
Telesca, L., and Lasaponara, R., 2006, Quantifying intra-annual persistent behaviour in SPOT-VEGETATION NDVI data for Mediterranean ecosystems of southern Italy, Remote Sensing of Environment, Vol. 101, pp.95-103.
Tietenberg, T., Grubb, M., Michaelowa, A., Swift, B., and Zhang, Z. X., 1999, International Rules for Greenhouse Gas Emissions Trading: Defining the Principles, Modalities, Rules and Guidelines for Verification, Reporting & Accountability, United Nations Conference on Trade and Development(UNCTAD), Geneva, Switzerland.
Tucker, C. J., 1979, Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, Vol. 8, pp. 127-150.
Van Leeuwen, W. J. D., Orr, B. J., Marsh, S. E., and Herrmann, S. M., 2006, Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications, Remote Sensing of Environment, Vol. 100, pp.67-81.
Walker, J. S., and Blaschke, T., 2008, Object-based land-cover classification for the Phoenix metropolitan area: optimization vs. transportability, International Journal of Remote Sensing, Vol. 29, pp.2021-2040.
Wang, S. H., 1999, Nonlinear regression: a hybrid model, Computers & Operations Research, Vol. 26, pp.799-817.
Wang, S. Q., Zhou, C., Liu, J., Tian, H., Li, K., and Yang, X., 2002, Carbon storage in northeast China as estimated from vegetation and soil inventories, Environmental Pollution, Vol. 116, pp.157-165.
Wang, T. Y., and Huang, C. Y., 2007, Applying optimized BPN to a chaotic time series problem, Expert Systems with Applications,Vol.32, pp.193-200.
Wang, F. M., Huang, J. F., Tang, Y. L., and Wang, X. Z., 2007, New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice, Rice Science, Vol. 14, pp.195-203.
Wang, S., Chen, J. M., Ju, W. M., Feng, X., Chen, M., Chen, P., and Yu, G., 2007, Carbon sinks and sources in China’s forests during 1901–2001, Journal of Environmental Management, Vol. 85, pp.524-537.
Washington-Allen, R. A., Ramsey, R. D., West, N. E., and Norton, B. E., 2008, Quantification of the Ecological Resilience of Drylands Using Digital Remote Sensing, Ecology and Society, Vol. 13, No. 1, 33., [online] URL: http://www.ecologyandsociety.org/vol13/iss1/art33/
Weiers, S., Bock, M., Wissen, M., and Rossner, G., 2004, Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods, Landscape and Urban Planning, Vol. 67, pp.43-65.
Wu, J., Gao, W., and Tueller, P. T., 1997, Effects of changing spatial scale on the results of statistical analysis with landscape data: A case study, Geographic Information Sciences, Vol. 3, pp.30-41.
Wulder, M. A., Butson, C. R., and White, J. C., 2008, Cross-sensor change detection over a forested landscape: Options to enable continuity of medium spatial resolution measures, Remote Sensing of Environment, Vol. 112, pp.796-809.
Xu, M., Watanachaturaporn, P., Varshney, P. K., and Arora, M. K., 2005, Decision tree regression for soft classification of remote sensing data, Remote Sensing of Environment, Vol. 97, pp.322- 336.
Yildirim, I., Ersoy, O. K., and Yazgan, B., 2005, Improvement of classification accuracy in remote sensing using morphological filter, Advances in Space Research, Vol. 36, pp.1003-1006.
Yim, J., and Mitchell, H., 2005, Comparison of country risk models: hybrid neural networks, logit models, discriminant analysis and cluster techniques, Expert Systems with Applications, Vol.28, pp.137-148.
Zhang, C., and Guo, X., 2008, Monitoring northern mixed prairie health using broadband satellite imagery International Journal of Remote Sensing, Vol. 29, No. 8, pp.2257-2271.
Zhenga, D., Rademacherb, J., Chena, J., Crowc, T., Breseea, M., Moined, J. L., and Ryu, S. R., 2004, Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA, Remote Sensing of Environment, Vol. 93, pp.402-411.
Zhenga, G., Chenb, J. M., Tiana, Q. J., Jub, W. M., and Xia, X. Q., 2007, Combining remote sensing imagery and forest age inventory for biomass mapping, Journal of Environmental Management, Vol. 85, pp.616-623.
Zhou, G., Baysal, O., Kaye, J., Habib, S., and Wang, C., 2004, Concept design of future intelligent Earth observing satellites, International Journal of Remote Sensing, Vol. 25, No. 14, pp.2667-2685.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top