:::

詳目顯示

回上一頁
題名:大鼠似情節記憶歷程裡海馬迴iCA1與內側前額葉扮演的角色
作者:洪旭慶
作者(外文):Hsu-Ching Hung
校院名稱:國立中正大學
系所名稱:心理學研究所
指導教授:李季湜
學位類別:博士
出版日期:2015
主題關鍵詞:似情節記憶內側前額葉皮質海馬迴恐懼制約大鼠episodic-like memorymedial prefrontal cortexhippocampusfear conditioningrat
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:23
情節記憶(episodic memory)是指人們有能力提取過去的經驗,並記得自己經歷過的事件是發生在什麼時間與地點。而動物展現出將事件、空間以及時間這三項訊息整合在一起的記憶能力稱為似情節記憶(episodic-like memory)。根據過去動物實驗的研究指出,大腦內側前額葉皮質(medial prefrontal cortex)與海馬迴(hippocampus)在形成似情節記憶的過程中扮演重要的角色。另一方面,神經解剖的證據指出從海馬迴iCA1到內側前額葉皮質之間,有一個通過前視丘(anterior thalamus)的連結而成的雙向迴路,而海馬迴iCA1與內側前額葉皮質之間並沒有跨腦區直接的神經連結。這二個腦區是以何種互動模式來形成似情節記憶,至今仍無明確結論,因此本研究將探究此議題。本研究採用O’Brien的作業,這一作業流程由三階段歷程來完成恐懼制約(fear conditioning)的似情節記憶:前探索階段形成時間與空間的配對連結(pair-assocation);制約階段整合時間、空間與電擊事件而形成恐懼制約之似情節記憶;測試階段透過對空間的線索提取出似情節記憶。我們的實驗設計是在作業的不同階段使用利多卡因(lidocaine)暫時抑制內側前額葉皮質以及海馬迴iCA1,目的在找出這二腦區參與似情節記憶的關係。實驗一結果呈現在前探索與測試階段被暫時抑制雙側海馬迴iCA1的大鼠無法完成這項作業,我們推論似情節記憶歷程中形成時間與空間的連結以及提取似情節記憶需要海馬迴iCA1的參與。實驗二結果則是在制約與測試階段被暫時抑制雙側內側前額葉皮質的大鼠無法完成這項作業,我們推論似情節記憶歷程中事件、空間以及時間這三項訊息的整合以及提取似情節記憶是由內側前額葉皮質來完成。實驗三的結果發現暫時抑制同側(ipsilateral)腦半球內側前額葉皮質與海馬迴iCA1的大鼠能表現出似情節記憶的能力。我們推論只需要單一側腦半球的內側前額葉皮質與海馬迴iCA1共同運作就能完成似情節記憶。實驗四的結果則是在制約與測試階段被暫時抑制異側(contralateral)腦半球內側前額葉皮質與海馬迴的大鼠無法呈現似情節記憶的能力。我們推論似情節記憶的整合歷程以及提取歷程需要內側前額葉皮質和海馬迴iCA1共同參與。總結來說,本研究觀察到內側前額葉皮質與海馬迴分別參與似情節記憶歷程的不同階段,更進一步觀察到內側前額葉皮質與海馬迴形成的神經迴路共同參與似情節記憶能力的展現。
Episodic memory is the ability to consciously recollect specific events from one’s past personal experience including what happened in where and when. In animals, it focuses on the capability for combining these three main elements: “what”, “where” and “when”, to create “episodic-like memory”. Previous studies have shown that the medial prefrontal cortex and hippocampus may play an important role in the formation of episodic-like memory. Furthermore, anatomical evidence indicated that a reciprocal circuit connects the hippocampus iCA1 with mPFC via the anterior thalamus, while there is no direct neural connection between these two brain areas cross hemispheres. However, there is no clear conclusion about how the two areas interact in the processing of episodic-like memory. Thus, the present study intends to address this issue.We applied the O’Brien’s task to test episodic-like memory of a fear conditioning event in rats. The task comprises three stages: a when and where pair-association is formed in the pre-exposure stage; the combination of when, where, and the foot shock event is formed in the conditioning stage; the episodic-like memory is recalled through a spatial clue in the test stage. The experimental design of the present study is to temporarily deactivate mPFC and hippocampus iCA1 using lidocaine, and attempt to understand the roles of the two brain areas in episodic-like memory process.Results of experiment one showed that rats with temporary inhibition of bilateral hippocampus iCA1 in the pre-exposure and test stages failed in the task. We inferred that the processes of forming when-where connection and recalling episodic-like memory require involvement of hippocampus iCA1. In experiment two, we found that rats with temporary inhibition of bilateral mPFCin the conditioning and test stages failed in the task. Thus we inferred that the processes of integrating what-when-where connection and recalling episodic-like memory need involvement of mPFC. In experiment three, results showed that rats with temporary ipsilateral deactivationof mPFC and hippocampus iCA1 performed episodic-like memory task at the same level as the normal rats. It was interpreted that the processing of episodic-like memory requires the cooperation of intact mPFC and hippocampus iCA1 on at least one hemisphere of the brain. Results of experiment four showed that rats with contralateral deactivation of mPFC and hippocampus iCA1 in the conditioning and test stages showed deficits in processing episodic-like memory. Therefore, we inferred that the integrating and recalling processes of episodic-like memory requires the cooperation of mPFC and hippocampus iCA1. As a conclusion, this study found that mPFC and hippocampus iCA1 involves in different process of episodic-like memory respectively; and further, it was found that performing of episodic-like memory requires the cooperation of mPFC and hippocampus iCA1.
Aggleton, J. P., Wright, N. F., Rosene, D. L., & Saunders, R. C. (2015). Complementary Patterns of Direct Amygdala and Hippocampal Projections to the Macaque Prefrontal Cortex. Cerebral cortex. doi: 10.1093/cercor/bhv019
Babb, S. J., & Crystal, J. D. (2005). Discrimination of what, when, and where: Implications for episodic-like memory in rats. Learning and Motivation, 36(2), 177-189. doi: 10.1016/j.lmot.2005.02.009
Babiloni, C., Vecchio, F., Cappa, S., Pasqualetti, P., Rossi, S., Miniussi, C., & Rossini, P. M. (2006). Functional frontoparietal connectivity during encoding and retrieval processes follows HERA model. Brain Research Bulletin, 68(4), 203-212. doi: 10.1016/j.brainresbull.2005.04.019
Barker, G. R., Bird, F., Alexander, V., & Warburton, E. C. (2007). Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. The Journal of Neuroscencei, 27(11), 2948-2957. doi: 10.1523/jneurosci.5289-06.2007
Barker, G. R., & Warburton, E. C. (2011). When is the hippocampus involved in recognition memory? The Journal of neuroscience, 31(29), 10721-10731. doi: 10.1523/jneurosci.6413-10.2011
Barredo, J., Oztekin, I., & Badre, D. (2013). Ventral Fronto-Temporal Pathway Supporting Cognitive Control of Episodic Memory Retrieval. Cerebral Cortex. doi: 10.1093/cercor/bht291
Bartsch, T., Dohring, J., Rohr, A., Jansen, O., & Deuschl, G. (2011). CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17562-17567. doi: 10.1073/pnas.1110266108
Broadbent, N. J., Squire, L. R., & Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 101(40), 14515-14520. doi: 10.1073/pnas.0406344101
Burgess, N., Maguire, E. A., & O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625-641.
Churchwell, J. C., Morris, A. M., Musso, N. D., & Kesner, R. P. (2010). Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory. Neurobiology of Learning and Memory, 93(3), 415-421. doi: 10.1016/j.nlm.2009.12.008
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395(6699), 272-274. doi: 10.1038/26216
Clayton, N. S., Salwiczek, L. H., & Dickinson, A. (2007). Episodic memory. Current Biology, 17(6), R189-191. doi: 10.1016/j.cub.2007.01.011
Crystal, J. D. (2009). Elements of episodic-like memory in animal models. Behavioural Processes, 80(3), 269-277. doi: 10.1016/j.beproc.2008.09.009
Davachi, L., & Wagner, A. D. (2002). Hippocampal contributions to episodic encoding: insights from relational and item-based learning. Journal of Neurophysiology, 88(2), 982-990.
de Vanssay-Maigne, A., Noulhiane, M., Devauchelle, A. D., Rodrigo, S., Baudoin-Chial, S., Meder, J. F., Chassoux, F. (2011). Modulation of encoding and retrieval by recollection and familiarity: mapping the medial temporal lobe networks. Neuroimage, 58(4), 1131-1138. doi: 10.1016/j.neuroimage.2011.06.086
Dere, E., Huston, J. P., & Silva, M. A. S. (2005). Episodic-like memory in mice:Simultaneous assessment of object, place and temporal order memory. Brain Research Protocols, 16, 10-19. doi:10.1016/j.brainresprot.2005.08.001
Dere, E., Kart-Teke, E., Huston, J. P., & De Souza Silva, M. A. (2006). The case for episodic memory in animals. Neuroscience and Biobehavioral Reviews, 30(8), 1206-1224. doi: 10.1016/j.neubiorev.2006.09.005
DeVito, L. M., & Eichenbaum, H. (2010). Distinct contributions of the hippocampus and medial prefrontal cortex to the "what-where-when" components of episodic-like memory in mice. Behavioural Brain Research, 215(2), 318-325. doi: 10.1016/j.bbr.2009.09.014
Devito, L. M., & Eichenbaum, H. (2011). Memory for the order of events in specific sequences: contributions of the hippocampus and medial prefrontal cortex. The journal of Neuroscience, 31(9), 3169-3175. doi: 10.1523/jneurosci.4202-10.2011
DeVito, L. M., Lykken, C., Kanter, B. R., & Eichenbaum, H. (2010). Prefrontal cortex: role in acquisition of overlapping associations and transitive inference. Learning & Memory, 17(3), 161-167. doi: 10.1101/lm.1685710
Dobbins, I. G., Foley, H., Schacter, D. L., & Wagner, A. D. (2002). Executive Control during Episodic Retrieval: Multiple Prefrontal Processes Subserve Source Memory. Neuron, 35(5), 989-996. doi: 10.1016/S0896-6273(02)00858-9
Downes, J. J., Mayes, A. R., MacDonald, C., & Hunkin, N. M. (2002). Temporal order memory in patients with Korsakoff's syndrome and medial temporal amnesia. Neuropsychologia, 40(7), 853-861. doi: 10.1016/S0028-3932(01)00172-5
Forro, T., Valenti, O., Lasztoczi, B., & Klausberger, T. (2015). Temporal organization of GABAergic interneurons in the intermediate CA1 hippocampus during network oscillations. Cerebral cortex, 25(5), 1228-1240. doi: 10.1093/cercor/bht316
Fortin, N. J., Agster, K. L., & Eichenbaum, H. B. (2002). Critical role of the hippocampus in memory for sequences of events. Nature neuroscience, 5(5), 458-462. doi: 10.1038/nn834
Gaskin, S., Gamliel, A., Tardif, M., Cole, E., & Mumby, D. G. (2009). Incidental (unreinforced) and reinforced spatial learning in rats with ventral and dorsal lesions of the hippocampus. Behavioural brain research, 202(1), 64-70. doi: 10.1016/j.bbr.2009.03.016
Gaskin, S., Tardif, M., & Mumby, D. G. (2009). Patterns of retrograde amnesia for recent and remote incidental spatial learning in rats. Hippocampus, 19(12), 1212-1221. doi: 10.1002/hipo.20583
Habib, R., Nyberg, L., & Tulving, E. (2003). Hemispheric asymmetries of memory: the HERA model revisited. Trends in Cognitive Sciences, 7(6), 241-245. doi: 10.1016/s1364-6613(03)00110-4
Hartley, T., & Burgess, N. (2005). Complementary memory systems: competition, cooperation and compensation. Trends in neurosciences, 28(4), 169-170. doi: 10.1016/j.tins.2005.02.004
Hassabis, D., Kumaran, D., & Maguire, E. A. (2007). Using imagination to understand the neural basis of episodic memory. The Journal of Neuroscience, 27(52), 14365-14374. doi: 10.1523/jneurosci.4549-07.2007
Ishikawa, A., & Nakamura, S. (2006). Ventral hippocampal neurons project axons simultaneously to the medial prefrontal cortex and amygdala in the rat.Journal of neurophysiology, 96(4), 2134-2138. doi: 10.1152/jn.00069.
Jenkins, L. J., & Ranganath, C. (2010). Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory. The Journal of neuroscience, 30(46), 15558-15565. doi: 10.1523/jneurosci.1337-10.2010
Jones, M. W., & Wilson, M. A. (2005). Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS biology, 3(12), e402. doi: 10.1371/journal.pbio.0030402
Kart-Teke, E., De Souza Silva, M. A., Huston, J. P., & Dere, E. (2006). Wistar rats show episodic-like memory for unique experiences. Neurobiology of Learning and memory, 85(2), 173-182. doi: 10.1016/j.nlm.2005.10.002
Kesner, R. P., Lee, I., & Gilbert, P. (2004). A behavioral assessment of hippocampal function based on a subregional analysis. Reviews in the neurosciences, 15(5), 333-351.
Kirchhoff, B. A., Wagner, A. D., Maril, A., & Stern, C. E. (2000). Prefrontal-temporal circuitry for episodic encoding and subsequent memory. The Journal of Neuroscience, 20(16), 6173-6180.
Lee, I., & Solivan, F. (2008). The roles of the medial prefrontal cortex and hippocampus in a spatial paired-association task.Learning & memory, 15(5), 357-367. doi: 10.1101/lm.902708
Lepage, M., Ghaffar, O., Nyberg, L., & Tulving, E. (2000). Prefrontal cortex and episodic memory retrieval mode. Proceedings of the National Academy of Sciences of the United States of America, 97(1), 506-511. doi: 10.1073/pnas.97.1.506
Li, J. S., & Chao, Y. S. (2008). Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats. Neurobiology of Learning and Memory, 89(2), 192-198. doi: 10.1016/j.nlm.2007.06.006
Li, J. S., Hsiao, K. Y., & Chen, W. M. (2011). Effects of medial prefrontal cortex lesions in rats on the what-where-when memory of a fear conditioning event. Behavioural Brain Research, 218(1), 94-98. doi: 10.1016/j.bbr.2010.11.044
Li, M., Long, C., & Yang, L. (2015). Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. BioMed research international, 2015, 810548. doi: 10.1155/2015/81054
Maguire, E. A. (2001). Neuroimaging studies of autobiographical event memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1413), 1441-1451. doi: 10.1098/rstb.2001.0944
Maguire, E. A., Frackowiak, R. S. J., &Frith, C. D. (1996). Learning to find your way: A role for the human hippocampal formation. Proceedings of the Royal Society of London. Series B: Biological Sciences,263(1377), 1745-1750. dio: 10.1098/rspb.1996.0255
Maguire, E. A., & Mummery, C. J. (1999). Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus, 9(1), 54-61. doi: 10.1002/(sici)1098-1063(1999)9:1<54::aid-hipo6>3.0.co;2-o
Mankin, E. A., Sparks, F. T., Slayyeh, B., Sutherland, R. J., Leutgeb, S., & Leutgeb, J. K. (2012). Neuronal code for extended time in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19462-19467. doi: 10.1073/pnas.1214107109
Murray, L. J., & Ranganath, C. (2007). The dorsolateral prefrontal cortex contributes to successful relational memory encoding. The Journal of Neuroscience, 27(20), 5515-5522. doi: 10.1523/JNEUROSCI.0406-07.2007
O'Brien, J., & Sutherland, R. J. (2007). Evidence for episodic memory in a pavlovian conditioning procedure in rats. Hippocampus, 17(12), 1149-1152. doi: 10.1002/hipo.20346
O'Keefe, J. (1983). Spatial memory within and without the hippocampal system. In W.Seifert (Ed.), Neurobiology of the hippocampus . London: Academic Press Inc.
Parent, M. A., Wang, L., Su, J., Netoff, T., & Yuan, L. L. (2010). Identification of the hippocampal input to medial prefrontal cortex in vitro.Cerebral cortex, 20(2), 393-403. doi: 10.1093/cercor/bhp108
Poldrack, R. A., & Packard, M. G. (2003). Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia, 41(3), 245-251. doi: 10.106/S0028-3932(02)00157-4
Pothuizen, H. H., Zhang, W. N., Jongen-Relo, A. L., Feldon, J., & Yee, B. K. (2004). Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. The European journal of neuroscience, 19(3), 705-712. doi: 10.1111/j.0953-816X.2004.03170.x
Reber, T. P., & Henke, K. (2011). Rapid formation and flexible expression of memories of subliminal word pairs. Frontiers in psychology, 2, 343. doi: 10.3389/fpsyg.2011.00343
Robin, J., Hirshhorn, M., Rosenbaum, R. S., Winocur, G., Moscovitch, M., & Grady, C. L. (2015). Functional connectivity of hippocampal and prefrontal networks during episodic and spatial memory based on real-world environments. Hippocampus, 25(1), 81-93. doi: 10.1002/hipo.22352
Schacter, D. L., & Wagner, A. D. (1999). Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus, 9(1), 7-24. doi: 10.1002/(sici)1098-1063(1999)9:1<7::aid-hipo2>3.0.co;2-k
Smith, D. M., & Mizumori, S. J. (2006). Hippocampal place cells, context, and episodic memory. Hippocampus, 16(9), 716-729. doi: 10.1002/hipo.20208
Squire, L. R. (1992). Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. Journal of cognitive neuroscience, 4(3), 232-243. doi: 10.1162/jocn.1992.4.3.232
Squire, L. R. (2004). Memory systems of the brain: a brief history and current perspective. Neurobiology of learning and memory, 82(3), 171-177. doi: 10.1016/j.nlm.2004.06.005
Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to human? Behavioral and Brain Sciences, 30(3), 299-312. dio: 10.1017/S0140525X07002026
Tsukiura, T. (2008). Functional neuroimaging studies of episodic memory--functional dissociation in the medial temporal lobe structures. Brain and Nerve, 60(7), 833-844.
Tulving, E. (1972). Episodic and semantic memory. In Endel Tulving & W. Donaldson (Eds.), In Organization of Memory (pp. 381-402). New York: Academic.
Tulving, E. (2002). Episodic memory: from mind to brain. Annual review of psychology, 53, 1-25. doi: 10.1146/annurev.psych.53.100901.135114
Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus, 8(3), 198-204. doi: 10.1002/(SICI)1098-1063(1998)8:3<198::AID-HIPO2>3.0.CO;2-G
Uylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex? Behavioural Brain Research, 146(1-2), 3-17. doi: 10.1016/j.bbr.2003.09.028
Vertes, R. P. (2006). Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience, 142(1), 1-20. doi: 10.1016/j.neuroscience.2006.06.027
Wan, H., Aggleton, J. P., & Brown, M.W. (1999). Different contributions of the hippocampus and perirhinal cortex to recognition memory. Journal of Neuroscience, 19,1142-1148.
Warburton, E. C., & Brown, M. W. (2010). Findings from animals concerning when interactions between perirhinal cortex, hippocampus and medial prefrontal cortex are necessary for recognition memory. Neuropsychologia, 48(8), 2262-2272. doi: 10.1016/j.neuropsychologia.2009.12.022
Wheeler, M. A., Stuss, D. T., & Tulving, E. (1997). Toward a theory of episodic memory: the frontal lobes and autonoetic consciousness. Psychological bulletin, 121(3), 331-354. doi: 10.1037/0033-2909.121.3.331
Zeithamova, D., & Preston, A. R. (2010). Flexible memories: differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding. The Journal of Neuroscience, 30(44), 14676-14684. doi: 10.1523/JNEUROSCI.3250-10.2010

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top