:::

詳目顯示

回上一頁
題名:不同模型教學對國小學童方位概念學習及模型認知之影響
作者:楊志強 引用關係
校院名稱:國立高雄師範大學
系所名稱:科學教育暨環境教育研究所
指導教授:洪振方
學位類別:博士
出版日期:2015
主題關鍵詞:方位概念模型認知模型教學Concept of PositionUnderstanding of ModelsModel instruction
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
本研究旨在探討學童在不同模型教學的環境中,對方位概念理解、方位概念成就及對模型理解表現之影響,依準實驗設計,選取國小高年級六個班級142名學童,隨機分配於三種不同的模型教學組之中進行實驗教學,並以方位概念理解測驗、方位概念成就測驗及模型認知量表進行前後測,再以前測為共變項進行ANCOVA統計分析,其中各班分別選取一位學生進行晤談,了解學生另有概念的情況。結果顯示,在方位概念理解測驗中,尺度組和模擬組在方位概念理解測驗表現優於圖示組(p<.05);在方位概念成就測驗中,尺度組優於模擬組,而模擬組優於圖示組(p<.05);在對模型認知量表中,模擬組優於尺度組,而尺度組優於圖示組(p<.05)。由晤談資料顯示,學生呈現出對於方位概念另有概念,例如「北方一定在地圖的正上方」、「在地球上無論哪個方向移動,到最後都會回到原來的地方」、「太陽升起的方位會因地點不同而有所差異」。
The purposes of this study are to inquire students’ learning of position concepts and understanding of models in science.142 students in six classes participated in this study and divided into three groups with different model instructions. This study applies one-way ANCOVA to do data analysis for understanding the effects of different model instructions with two-tier diagnostic instrument of position concepts and the achievement test of position concepts and the instrument students’understanding of models in science. Interview was used to confirm the student’s altertvie concepts further. The results indicated that the score of the scale model group and simulations model group are significantly greater than the traditional group in the two-tier diagnostic instrument of position concepts(p<.05). The score of scale model group is significantly greater than the simulations model group and the score of simulations model group is significantly greater than the traditional group in the achievement test of position concepts(p<.05). The score of simulations model group is significantly greater than the scale model group and the score of scale model group is significantly greater than the traditional group in the instrument students’understanding of models in science (p<.05). From the invteview, students’ alternative concepts were showed, such as “North is always on the top of the map”, “No matter go toward which orientation, it will go bake to the origin “and “The orientation of sunrise is varied from different plsce”.
一、中文部份

毛松霖(1995):國小五六年級學童「傳達」及「資料解釋」能力與天文概念架構之關係研究。行政院國家科學委員會專題研究計畫成果報告(NSC-82-0111-S003-069-N),台北,台灣:行政院國家科學委員會。
王美芬(1992):我國五、六年級學生有關月亮錯誤概念的診斷及補救教學策略的應用。台北立師範學院學報,第23期,357-379。
左台益和蔡志仁(2001):高中生建構橢圓多重表徵之認知特性。科學教育學刊, 9(3),281-297.
余民寧和陳嘉成(2001):領域知識結構之評量研究---以「垃圾分類處理」領域知識為例。教育與心理研究,第24期(下冊),393-420。
吳明珠(2008):科學模型本質剖析:認識論面向初探。科學教育月刊,306,2-8。
吳明隆和涂金堂(2005)。SPSS與統計應用分析。臺北市:五南。
宋德忠、陳淑芬和張國恩(1998):電腦化概念構圖系統在知識結構測量上的應用。中國測驗學會測驗年刊,第45(2)期,37-56。
周文忠和林宗翰(2010):實體與虛擬教具於教師教學應用上之省思。資訊科學應用期刊,第6卷,33-46。
周金城(2007):探究中學生對科學模型的分類與組成本質的理解。第二十三屆中華民國科學教育學術研討會,高雄市,台灣。
周金城(2008):探究中學生對科學模型的分類與組成本質的理解。科學教育期刊,第306卷,10-17。
林郁宏(2009):立體書對幼童空間方位學習成效研究。崑山科技大學視覺傳達設計研究所碩士論文,未出版,台南市。
林振欽和洪振方(2010):學生建模歷程分析與類型之個案研究:以電腦模擬單擺實驗為例。高雄師大學報(自然科學與科技類),第25期,1-24。
林嘉綏和李丹玲(2005):幼兒數學教材教法。台北:五南。
林靜雯和吳育倫(2011):探究動態表徵結合即時回饋系統對診斷學生簡單暨串聯電路之另有概念的影響。教育與心理研究,第34(1)卷,79-107
林靜雯和邱美虹(2005):整合類比與多重表徵研究取向探究多重類比設計對兒童電學概念學習之影響。科學教育學刊,第13(3)期,317-345。
林靜雯和邱美虹(2007):從認知/方法論之向度初探高中學生模型及建模歷程之知識。第二十三屆中華民國科學教育學術研討會,高雄,台灣。
邱美虹(2007):以認知師徒制探討建模能力與歷程對學生學習物質科學中「氧化與還原」之影響。行政院國家科學委員會研究計畫成果報告(NSC 95-2511-S-003-024-MY2)。
邱美虹(2008):模型與建模能力之理論架構。科學教育月刊,306,2-9。
邱美虹和劉俊庚(2008):從科學學習的觀點探討模型與建模能力。科學教育月刊,第314期,2-20。
邵怡莉(2011):虛擬教具和實體教具對國小智能障礙學生時間概念應用學習成效之比較研究。中原大學教育研究所碩士論文,未出版,桃園縣。.
姜滿(1997):國小學童地球運動之想法與概念改變歷程。台南師院學報,第30期,217-243。
封中興、顏志昌和洪振方(2011):「多元模型教學模式」的教學成效之評析-以國小星象觀測單元為例,屏東教育大學學報-教育類,第36期,25-62。
洪文東(2007):幼年期兒童的空間概念。南臺灣2007幼兒保育學術研討會論文集,美和技術學院。
洪振方、莊敏雄和宋國城(2011):建模教學對國小學童的模型認知及地質概念理解之影響。科學教育學刊,19(4),309-333。
胡長銘(2009):虛擬教具應用於國小四年級角度概念教學之影響研究。交通大學理學院科技與數位學習學程學位論文,未出版,台東縣。
翁嘉鴻(2001):以認知負荷觀點探討聽覺媒體物件之媒體呈現方式對學習成效之影響。國立中央大學資訊管理研究所碩士論文,未出版,台東縣。
高慧蓮和蘇明洲(2004):科學本質的理論回顧與課程設計的實例分享。中華民國九十三年自然與生活科技學習領域課程研討會手冊。台北:國立台灣師範大學,261-292。
張志康和邱美虹(2008):中學生模型本質觀的相關研究。中華民國第二十四屆科學教育學術研討會,國立台灣師範大學。
張國恩、林水成、潘宏明和陳世旺(1998):屬性化概念圖的模糊評量。科學教育學刊,第6卷第1期,81-94。
張惠博(1999):迷思概念的研究方法。發表於行政院國科會主辦之「科學概念學習研究」研習會,台北市:國立臺灣師範大學。
張漢宜(2002):教導兒童學習教學的新工具—虛擬教具。國教輔導,42(1),11633-1167。
張靜儀(2002):科學迷思概念的研究與概念改變教學。屏師科學教育,第16卷,49-56。
教育部(2010):國民中小學九年一貫課程綱要-自然與生活科技課程綱要。台北:教育部。
許民陽(1995):國小學童對方向及位置兩空間概念認知發展的研究(2)--國小中年級學童對東西南北相關方位的認知探討。臺北市立師範學院學報,第26期,213-244。
許民陽、王郁軒、梁添水和鄭紹龍(2001):國小運用STS教學模式—天象與時空概念教學模組之探討。科學教育學刊,9(1),79-100。
許民陽、鄧國雄、卓娟秀、李崑山和殷炯盛(1994):國小學童對方向及位置兩空間概念認知發展的研究(1)。臺北市立師範學院學報,第25期,91-120。
許培恩(2010):使用自由軟體Stellarium 於國小自然領域月相概念教學成效之研究。國立臺東大學教育學系碩士論文,未出版,台東縣。
許培恩和楊義清(2010):國小天文教學上之教學困境及解決策略與方案。電腦與網路科技在教育上的應用研討會。2010 The International Conference on Computer and Network Technologies in Education(CNTE 2010), 國立新竹教育大學,2010.04.29 ~ 30。
連啟瑞和盧玉玲(1996):國民小學高年級學童對自然科學、環境和技學興趣類別分析研究-城鄉之比較。台北師院學報,第9期,517-544。
郭金美(1999):建構主義教學方法-影響學童光學概念學習教材模式的研究。嘉義師院學報,第13期,157-201。
郭雨珍(2011):行動環境中「表徵形式」與「線索有無」對學習者學習行為、認知負荷與學習成效之影響,中央大學。
郭重吉(1980):學生科學知識認知結構的評估與描述。彰化師大學報,第一期,279-319。
郭重吉和江武雄(1993):從協助學童建構意義的觀點探討國中理化教學的改進。國科會專題研究成果報告:NSC82-0111-S018-001。
陳欣民和劉祥通(2002):從兒童迷思概念之文獻分析談機率單元的教學與課程。科學教育研究與發展,26,40-51。
陳芳慶和陳孟寬(2009):Google Earth介紹與應用於國小社會領域教學之研究。網路社會學通訊期刊,77期。
陳炫勳(2014):來自星星的夢-應用科技學天文。科學研習,53(6),30-33
陳彙芳和范懿文(2000):認知負荷對多媒體電腦輔助學習成效之影響研究。資訊管理研究,第2(2)卷,45-60.
陳毓梅(2011):不同教具教學環境對國小一年級學生學習立方體積木堆疊計數的影響。中原大學教育研究所碩士論文,未出版,桃園縣。
陳瑞麟(2004):科學理論版本的結構與發展。台北市:台灣大學出版。
陳翠雯、侯依伶和劉嘉茹(2010):不同非語詞刺激對國小學生月相概念學習之影響。科學教育學刊,18(4),361-387。
黃秀山(2003):以數位星象儀多媒體演示系統進行星象教學之成效研究。台北市立師範學院科學教育研究所碩士論文,未出版,台北市。
黃書卿(2008):以心象為基礎之電腦輔助教材開發-以國小地圖教學為例。國立台北教育大學教育傳播與科技研究所碩士論文,未出版,台北市。
黃達三(1995):國小自然科新課程教學理念探討。國立編譯館通訊,(26),19-21。
楊純珠(1999):「溶液」多媒體CAL 之概念學習研究。國立臺灣師範大學化學研究所碩士論文,未出版,台北市。
廖淑苹(2000):發展國中「分子」多元媒體與概念學習研究。國立臺灣師範大學化學研究所碩士論文,未出版,彰化縣。
熊召弟(1995):對國小自然科新課程教材之建議。國立編譯館通訊,8(1),13-18。
劉怡君(2010):不同表徵形式測驗對診斷學生簡單暨串聯電路心智模式的影響。臺北市立教育大學自然科學系教學碩士班碩士論文,未出版,台北市。
劉俊庚(2001):迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響。國立臺灣師範大學科學教育研究所碩士論文,未出版,台北市。
劉德勝、黃釗俊、王明仁、李念魯和陳輝樺(1996):國小四、五、六年級天文知識背景調查。科學教育研究與發展月刊,14,30-45 。
蔡輝龍(1999):以彙總研究探討多種媒體呈現方式對學習成效的影響,國立中央大學資訊管理研究所碩士論文,未出版,桃園縣。
盧永勝(2009):3D星圖模擬軟體在國小自然與生活科技領域學習成效之研究。高雄師範大學工業科技教育學系碩士論文,未出版,高雄市。
蕭登仲、謝哲仁和蔡玉花(2004):國小學生在動態多重表徵視窗環境下學習等值分數成效之研究。國立臺南師範學院「南師學報」,第38(1)卷,數理與科學類,77-106。
賴瑞芳(2002):小學月亮迷思概念之研究。臺中師範學院自然科學教育研究所碩士論文,未出版,台中市。
賴慶三和吳正雄(2005):國小學童天文實作教學學習之研究。國立臺北師院學報,18 (1),59-86。
戴政吉(2001):國小四年級學童長度與面積迷思概念之研究。國立屏東範學院碩士論文,未出版,屏東縣。
謝甫宜和洪振方(2010):不同教學方法增進學生科學本質學習成效之比較與分析。屏東教育大學學報-教育類,第35卷,1-32。
鍾菊香(2005):認知圖述說幼兒空間認知能力的表現-以家家幼稚園戶外教學為例。國立台北教育大學碩士論文,未出版,台北市。
鍾曉蘭和邱美虹(2009):以動態評量探究學生氣體粒子本質的概念改變歷程。中華民國第25屆科學教育學術研討會。臺北市:國立臺灣師範大學。
顏志昌(2007):以多元模型為基礎的教學對學生星象單元學習之影響。國立高雄師範大學科學教育研究所碩士論文,未出版,高雄市。
鐘建坪(2010):引導式建模探究教學架構初探。科學教育月刊, 328 期,2-18。



二、英文部份

Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353–374.
Abd-El-Khalick, F., &; Lederman, N.G. (2000). Improving science teachers’conceptions of the nature of science: A critical review of the literature.International Journal of Science Education, 22(7), 665-701.
Acher, A., Arca, M., &; Sanmarti, N. (2007). Modeling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91(3), 398-418.
Adams, D., &; Shrum, J. (1990). The effect of microcomputer based laboratory exercises on the acquisition of line graph construction and interpretation skills by high school biology students. Journal of Research in Science Teaching, 27, 777–787.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.
Ainsworth, S.E., Bibby, P.A &; Wood, D.J. (2002) Examining the effects of different multiple representational systems in learning primary mathematics. Journal of the Learning Sciences. 11(1), 25-62.
Akerson, V. L., &; Hanuscin, D. L. (2007). Teaching nature of science through inquiry: Results of a 3‐year professional development program. Journal of Research in Science Teaching, 44(5), 653-680.
Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart &; Winston.
Baddeley, A., &; Wilson, B. (1988). Comprehension and working memory: A single case neuropsychological study. Journal of Memory and Language, 27(5), 479-498.
Baird, D. (2002).Thing Knowledge. A Philosophy of Scientific Instruments. Berkeley and Los Angeles, California︰University of California.
Bakas, C., &; Mikropoulos, T. (2003). Design of virtual environments for the comprehension of planetary phenomena based on students’ ideas. International Journal of Science Education, 25(8), 949–967.
Barab, S. A., Hay, K. E., Barnett, M. G., &; Keating, T. (2000). Virtual solar system project: Building understanding through model building. Journal of Research in Science Teaching, 37(7), 719-756.
Berland, L. K. &; Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55.
Black, M. (1962). Models and metaphors (Ithaca, NY: Cornell University Press).
Bliss, J. &; Ogborn, J. (1989). Tools for Exploratory Learning. A Research Programme. Journal of Computer Assisted Learning, 5, 37-50.
Brasell, H. (1987). The effect of real time laboratory graphing on learning graphic representation of distance and velocity. Journal of Research in Science Teaching, 24, 385–395.
Carey, S., &; Smith, C. (1993). On understanding the nature of scientific knowledge.Educational Psychologist, 28, 235-251.
Carey, S., Evans, R., Honda, M., Jay, E., &; Unger, C. (1989). An experiment is when you try it and see if it works: A study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514-529.
Carr, M. (1984). Model confusion in chemistry. Research in Science Education, 14, 97-103.
Champagne, A. B., Gunstone, R., &; Klopfer, L. (1985). Effecting changes in cognitive structures among physics students. In L. West and A. Pines(Eds.), Cognitive Structure and Conceptual Change. London: Academic Press.
Chi, M. T. H. (1992). Conceptual change within and cross ontological categories: Implication for learning and discovery in sciences. In R. G(Eds.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129-186). Minneapolis: University of Minnesota Press.
Chittleborough, G. D., Treatuest, D. F., Manmiala, T. L, &; Mocerino, M. (2005). Students’ perception of the role of models in the process of science and in the process of learning. Research in Science &; Technological Education, 23(2), 195-212
Chiu, M. H., &; Lin, J. W. (2005). Promoting fourth graders' conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429-464.
Chiu, M. H., Guo, C. J., &; Treagust, D. F. (2007). Assessing students’ conceptual understanding in science: An introduction about a national project in Taiwan. International Journal of ScienceEducation, 29(4), 379-390.
Clement, J. J. &; Rea-Ramirez, M. A. (Eds.) (2008). Model Based Learning and Instruction in Sceince. Dordrecht, Netherland: Springer.
Clement, J., Brown, D. E., &; Zietsman, A. (1989). Not all preconceptions are misconceptions: finding ‘anchoring conceptions’ for grounding instruction on students’ intuitions. International journal of science education, 11(5), 554-565.
Coll, R. K., France, B., &; Taylor, I. (2005). The role of models and analogies in science education implications form research. International Journal of Science Education, 27(2), 183-198.
Crawford, B. A., &; Cullin, M. F. (2004). Supporting prospective teachers’conception of modeling in science.International Journal of ScienceEducation, 26(11), 1379-1401.
Creswell, J. W., &; Plano Clark, V. L. (2007). Designing and conducting mixed methods research. Thousand Oaks, CA: Sage.
Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science &; Education, 16(7), 725-749.
Doran, R. L. (1980). Basic measurement and evaluation of science instruction.Washington, DC: National Science Teachers Association.
Dori, Y.J., &; Sasson, I. (2008). Chemical understanding and graphing skills in an honors case-based computerized chemistry laboratory environment: The value of bidirectional visual and textual representations. Journal of Research in Science Teaching, 45, 219–250.
Driver, R., Leach, J., Millar, R., &; Scott, P. (1996). Young people’s images of
Duit, R (2009). STCSE- Bibliography: Students’ and teachers’ conceptions and science education. Kiel, Germany: IPN- Leibniz Institute for Science Education. (http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html)
Dykstra, D. I., Boyle, C. F., &; Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76(6), 615-652.
Ebel, R. L. &; Frisbie, D.A. (5th ed), (1991). Essentials of Educational Measurement. Englewood Cliffs, NJ: Prentice Hall.
Falcão, D., Colinvaux, D., Krapas, S., Querioz, G., Alves, F., Cazelli, S., Valente, M. E., &; Gouvea, G. (2004). A model-based approach to science exhibition evaluation: A case study in a Brazilian astronomy museum. International Journal of Science Education, 26(8), 951-978.
Fellows, N. (1994). A window into thinking: using student writing to understand conceptual change in science learning. Journal of Research in Science Teaching, 31(9), 985-1001.
Feynman, R. P. (1994). Six easy pieces (Reading, MA: Helix Books).
Flores, A.( 2002). Learning and teaching mathematics with technology. Teaching Children Mathematics, 8, 308-310.
Fraenkel, J. R., &; Wallen, N. E. (2000). How to design and evaluate research
in education (4th ed.). New York: McGraw-Hill.
Gabriel, N. (2004). Space Exploration: Developing Spaces for Children. Geography, 89(2), 180-182.
Garnett, P. J. &; Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation reduction equations. Journal of Research in Science Teaching, 29, 121-142.
Gee, B. (1978). Models as a pedagogical tool: Can we learn from Maxwell? Physics Education, 13, 287-291.
Giere, R. N. (1991). Understanding Scientific Reasoning (3rd ed.), New York: Harcourt Brace Jovanovich.
Gilbert, J. K. (1993)Models and modelling in science education .Hatfield, Herts: Association for Science Education.
Gilbert, J. K. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2, 115–130.
Gilbert, J.K., Boulter, C.J.&; Elmer, R. (2000). Positioning models in science education and in design and technology education. In J.K. Gilbert &; C.J. Boulter (Eds.), Developing models in science education (pp. 3–18). Dordrecht: Kluwer Academic Publishers.
Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. In S. Glynn, R. Yeany and B. Britton (Eds). The psychology of learning science (Hillsdale, NJ, Erlbaum), 219-240.
Gobert, J &; Discenna, J.(1997). The Relationship between Students’ Epistemologies and Model-Based Reasoning. Kalamazoo, MI: Western Michigan University, Department of Science Studies. (ERIC Document Reprodction Service No. ED409164).
Gobert, J. D., &; Pallant, A. (2004). Fostering students’ epistemologies of models via authentic model-based tasks. Journal of Science Education and Technology, 13(1), 7-22.
Gobert, J. D., Buckley, B., &; Clarke,J.E. (2004).Scaffolding model-based reasoning: Representations, congnitive affordances, and learnig outcomes. Paper presented at the American Education Rsersch Association, San Diego, CA.
Gobert, J. Slotta, J., &; Pallant, A. (2002). Inquiry Learning Through Students’ East-West Coast Collaboration. Presented at the National Association for Research in Science Teaching, April 7-11, New Orleans, LA.
Gobert, J., O’Dwyer, L., Horwitz, P., Buckley, B., Levy, S. T. &; Wilensky, U. (2011). Examining the relationship between students’ understanding of models and conceptual learning in Biology, Physics, &; Chemistry. International Journal of Science Education, 33(5), 653-684.
Gobert, J., Snyder, J., &; Houghton, C. (2002). The influence of students' understanding of models on model-based reasoning. Presented at the Annual 24.
Gorodetsky, E. &; Gussarsky, E. (1986). Misconceptualization of the chemical equilibrium concept as revealed by different evaluation methods. European Journal of Science Education, 8, 427-441.
Greca, I. M. & Moreira, A. (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1-11.
Grosslight, L., Unger, C., Jay, E., &; Smith, C. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799-822.
Hambleton, R. K. &; Sheehan, D. S. (1977). On the evaluation of high-order science instructional objectives. Science Education, 61(3), 307-315.
Hammer D., &; Elby, A. (2002). On the Form of a Personal Epistemology. In B. Hofer and Pintrich, P, Personal Epistemology: The Psychology of Beliefs about Knowledge and Knowing, pp. 169-190. New Jersey: Lawrence Erlbaum Associates.
Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and Instruction, 12 (2), 151-183.
Hammer, D. (1995). Epistemological considerations in teaching introductory physics.Science Education, 79 (4), 393-413.
Harre, R. (1985). The philosophies of science (2nd ed.). Oxford: Oxford University Press.
Harrison, A. G. &; De Jong, O. (2005). Exploring the use of multiple analogical models when teaching and learning chemical equilibrium. Journal of Research in Science Teaching, 42, 1135-1159.
Harrison, A. G. &; Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509-534.
Harrison, A. G. &; Treagust, D.F. (1998). Modeling in science lessons: Are there better ways to learn with models? School Science and Mathematics 98(8), 420-429.
Harrison, A. G. (1994) Is there a scientific explanation for refraction of light? - A review of textbook analogies. Australian Science Teaches Journal, 40, 30-35.
Harrison, A. G., &; Treagust, D. F. (2000). A typology of school science models.International Journal of Science Education, 22(9), 1011-1026.
Haury, D. L. (1993). Assessing Student Performance in Science. ERIC ED 359068.
Hesse, M. B. (2000). In W. H. Newton-Smith (ed.), A Companion to the Philosophy of Science .Oxford: Blackwell.
Hestenes, D. (1995). Modeling software for learning and doing physics. In C. Bernardini, C. Tarsitani, &; M. Vincentini (Eds.), Thinking physics for teaching.(pp. 25- ). New York: Plenum.
Hewitt, P. G. (1987) Conceptual physics (Menlo Park, CA: Addison-Wesley Publishing Company, Inc.
Hewson, P. W., &; Thorley, N. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11(5), 541-553.
Hodgson, T. (1995) Secondary mathematics modeling: issues and challenges. School Science and Mathematics, 95, 351-358.
Hodson, D. (1992). In search of a meaningful relationship: an exploration of some issues relating to integration in science and science education. Int. Journal of Science Education, 14, 541-562.
Honda, M. (1994). Linguistic inquiry in the science classroom: “It is science, but it’s not like a science problem in a book.” Cambridge, MA: MIT Working Papers in Linguistics.
Ingham, A. M., &; Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13(2), 193–202.
Jones, M. G., Carter, G., &; Rua, M. J. (2000). Exploring the development of conceptual ecologies: communities of concepts related to convection and heat. Journal of Research in Science Teaching, 37(2), 139-159.
Justi, R. S. &; Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.
Keenan, C. W., Kleinfelter, D. C. &; Wood, J. H. (1980) General college chemistry, 6th ed (San Francisco, CA: Harper and Row, Publishers).
Khishfe, R., &; Abd‐El‐Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry‐oriented instruction on sixth graders' views of nature of science. Journal of research in science teaching, 39(7), 551-578.
Khishfe, R., &; Lederman, N. (2006). Teaching nature of science within a controversial topic: Integrated versus nonintegrated. Journal of Research in Science Teaching, 43(4), 395-418.
Kline, M. (1985). Mathematics and the search for knowledge (New York: Oxford University Press).
Kucukozer, H. (2008). The effects of 3D computer modelling on conceptual change about seasons and phases of the Moon. Physics Education,43(6), 632-636.
Langley, P. (1997). Machine learning for intelligent systems. Proceedings of the Fourteenth National Conference on Artificial Intelligence (pp. 763-769). Providence, RI: AAAI Press.
Leatherdale, W. H. (1974). The role ofanalogy, model and metaphor inscience. Amsterdam: North-Holland Publishing Company.
Lederman, N. G., &; Lederman, J. S. (2004). Revising instruction to teach nature of science. The Science Teacher, 71(9): 36–39.
Lee, S. J. (2007). Exploring students’ understanding concerning batteries- Theories and practices, International Journal of Science Education, 29(4), 497-516.
Lehrer, R., &; Schauble, L. (2006). Scientific thinking and science literacy: Supporting development in learning in contexts. In W. Damon, R.M. Lerner, K.A. Renninger, &; I.E. Sigel (Eds.), Handbook of child psychology (6th ed., Vol. 4). Hoboken, NJ: John Wiley and Sons.
Lehrer, R., &; Schauble, L. (2010). What Kind of Explanation is a Model?. In Instructional explanations in the disciplines, 9-22. Springer US.
Lelliott, A. &; Rollnick, M. (2010). Big Ideas: A review of astronomy education research 1974–2008. International Journal of Science Education, 32(13), 1771-1799.
Lesh, R.,&;Doerr, H.M. (2000). Symbolizing, communicating, and mathematizing:Key components of models and modeling. In P. Cobb, E. Yackel, &; K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design (pp. 361–383). Mahwah, NJ: Lawrence Erlbaum Associates.
Lewis, E. &; Linn, M. (1994). Heat energy and temperature conceptions of adolescents, adults,and experts: Implications for curricular improvements. Journal of Research in Science Teaching, 31(6), 657-677.
Lin, S-W. (2004) Development and application of a two-tier school students’ understanding of flowering plant growth and development.International Journal of Science and Mathematics Education, 2, 175–199.
Linn, M., Songer, N. B., Lewis, E. L., &; Stern, J. (1991). Using technology to teach thermodynamics: Achieving integrated understanding. In D. L. Ferguson (Ed.), Advanced technologies in the teaching of mathematics and science, pp. 5-60, Berlin. Springer-Verlag.
Lipman, P. D., &; Caplan, L. J. (1992). Adult age differences in memory for routes: Effects of instruction and spatial diagram. Psychology and Aging, 7(3), 435.
Loving, C. C. (1997). From the summit of truth to its slippery slopes: Science education journey through positivist-postmodern territory. American Educational Research Journal, 34 (3), 421-452.
Markham, K., Mintzes, J., &; Jones, M. G. (1994). The concept map as a research and evaluation tool: Further evidence of validity. Journal of Research in Science Teaching,31, 91-101.
Mayer, R. E. &; Anderson, R. B.(1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational psychology, 84(4), 444-452.
Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.
Mayer, R. E., &; Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction, 12(1), 107-119.
Mayer, R. E., &; Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of educational psychology, 86(3), 389.
Norman, D. A. (1983). Some observations on mental models. In D. Gentner and Sutton, C. (1992). Words, science and learning (Buckingham: Open University Press).
Noss, R., &; Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers, 17. Springer.
Novak, J. &; Gowan, D. (1984). Learning how to learn. Cambridge: Cambridge Uinversity Press.
Paivio, A. (1986). Mental Representations. New York: Oxford University Press.
Perkins, D., Jay, E., &; Tishman, S. (1993). Teaching thinking: From ontology to education. Educational Psychologist, 28(1), 67-85.
Pimentel, G. C. (1963). Chemistry: an experimental science. San Francisco: W. H. Freeman and Co).
Poole, C., Miller, S. A., &; Church, E. B. (2006). Development: Ages &; Stages—Spatial Awareness. Early Childhood Today, 20(6), 25-30
Posner, G. J., Strike, K. A., Hewson, P. W. &; Gertzog, W. A. (1982).accommodation of a scientific conception: Toward a theory of conceptual change. Science Education. 66, 211-227.
Reif, F. (1987). Instructional design, cognition and technology: Applications to the teaching of scientific concepts. Journal of Research in Science Teaching, 24(4), 309-324.
Rieber, L. P. (1990). Using Computer Animated Graphics in Science Instruction with
Roth, W.-M. (2006). Learning science: Asingular plural perspective. Rotterdam, NL:Sense.
Saari, H., &; Viiri, J. (2003). A research-based teaching sequence for teaching theconcept of modeling to seventh-grade students. International Journal of ScienceEducation, 25(11), 1333-1352.
Sanchez, E. (2009). Innovative teaching/learning with geotechnologies in secondary education. In Education and technology for a better World (pp. 65-74). Springer Berlin Heidelberg.
Sanger, M. (2000). Using particulate drawings to determine and improve students’ conceptions of pure substances and mixtures. Journal of Chemical Education, 77(6), 762-766.
Schnotz, W., &; Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and instruction, 13(2), 141-156.
Schnotz, W., &; Kürschner, C. (2008). External and internal representations in the acquisition and use of knowledge: visualization effects on mental model construction. Instructional Science, 36(3), 175-190.
Schwarz, C. V. &; White, B. Y. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205.
Schwarz, C. V., Meyer, K, &; Sharma, A. (2007). Technology, pedagogy, and epistemology: Opportunities and challenges of using computer modeling and simulation tools in elementary science methods. Journal of Science Teacher Education, 18(2), 243-269.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., et al.(2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654.
science. Buckingham, England: Open University Press.
Seel, N. M. (2003). Model-centered learning and instruction. Technology, instruction, cognition, and learning, 1(1), 59-85.
Sengupta, P., &; Wilensky, U. (2009). Learning electricity with NIELS: Thinking with electrons and thinking in levels. International Journal of Computers for Mathematical Learning, 14(1), 21-50.
Shepardson, D. P. &; Moje, D. B. (1994). The nature of fourth graders’ understandings of lectric circuits. Science Education, 78(5), 489-514.
Sins, P. H.M., Savelsbergh, E.R., van Joolingen, W., van Hout-Wolters, B. (2009).The relation between students’ epistemological understanding of computer models and their cognitive processing in a modeling task. International Journal of Science Education, 31(9), 1205-1229.
Smit, J. J. A. &; Finegold, M. (1995). Models in physics: perceptions held by final-year prospective physical science teachers studying at South African universities.International Journal of Science Education, 17, 621-634.
Snir, J., Smith, C., &; Grosslight, L. (1988). Not the whole truth: An essay on building a conceptually enhanced computer simulation for science teaching (Technical Report No. TR 88-18). Cambridge, MA: Harvard Graduate School of Education, Educational Technology Center.
Songer, N.B., &; Linn, M.C. (1991). How do students' views of science influence knowledge integration? Journal of Research in Science Teaching, 28(9), 761-784.
Spiro, R. J., Feltovich, P. J., Coulson, R. L., &; Anderson, D. K. (1989). Multiple analogies for complex concepts: Antidotes for analogyinduced misconception in advanced knowledge acquisition. In S. Vosniadou &; A. Ortony (Eds.), Similarity and Analogical Reasoning. New York: Cambridge University Press.
Stavridou, H. &; Solomonidou, C. (1989). Physical phenomena-chemical phenomena: do pupils make the distinction? International Journal of Science Education, 11(1), 83-92.
Stewart, J., Cartier, J.L., &; Passmore, C.M. (2005). Developing understanding through model-based inquiry. In M.S. Donovan &; J.D. Bransford (Eds.), How students learn (pp. 515–565). Washington, DC:National Research Council.
Storksdieck, M. (2001). Differences in teachers’ and students’ museum field-trip experiences. Visitor Studies Today!, 4(1), 8-12.
Strike, K. A. &; Posner, G. J. (1992). A revisionist theory of conceptual change. In R.A. Duschl &; R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice. (pp. 147-176). Albany, NY: State University of New York Press.
Sutter, E. G. &; Luza, J. (1993). Developmental anatomy of roots induced by Agrobacterium rhizogenes in Malus pumila 'M26' shoots grown in vitro. International Journal of Plant Sciences 154: 59-67.
Sutton, C. (1992). Words, science and learning. Buckingham: Open University Press.
Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning and Instruction, 4, 295-312.
Tan, K. C. G., Goh, N. K., Chia, L. S., &; Treagust, D. F. (2002). Development and application of a two-tier multiple choice diagnostic instrument to assess high school students' understanding of inorganic chemistry qualitative analysis. Journal of Research in Science Teaching, 39(4), 283-301.
Tao, P-K. &; Gunstone, R. (1999). The process on conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36(7), 859-882.
Taylor, I., Barker, M., &; Jones, A. (2003). Promoting mental model building in astronomy education. International Journal of Science Education, 25(10), 1025-1225.
Thagard, P. (1992). Conceptual revolutions. Princeton: Princeton University Press.
Treagust, D. F. &; Chandrasegaran, A. L. (2007). The Taiwan national science concept learning study in an international perspective. International Journal of Science Education, 29(4), 391-403.
Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students misconceptions in science. International Journal of Science Education, 10, 159-169.
Treagust, D. F., Chittleborough, G., &; Mamiala, T. L. (2002). Students’ understanding of the role of scientific models inlearning science. International Journal of Science Education, 24(4), 357-368.
Tsai, C. C., &; Chou, C. (2002). Diagnosing students' alternative conceptions in science. Journal of Computer Assisted Learning, 18(2), 157-165.
Tsai, C. H., Chen, H. Y., Chou, C. Y., &; Lain, K. D. (2007). Current as the key concept of Taiwanese students’ understandings of electric circuits. International Journal of Science Education, 29(4),483-496.
Uttal, D. H., &; O’Doherty, K. (2008). Comprehending and learning from ‘visualizations’: A developmental perspective. In J. K. Gilbert, M. Reiner, &; M. Nakhleh (Eds.), Visualization: Theory and practicein science education (pp. 53-72). Dordrecht, Nehterlands: Springer.
Van Driel, J. H. &; Verloop, N. (2002). Experienced teachers’ knowledge of teaching and learning of models and modelling in science Education. International Journal of Science Education, 24(12), 1255–1272.
Van Someren, M.W., Reimann, P. Bozhimen, &; de Jong, T. (1998) Learning with Multiple Representations, Amsterdam: Elsevier Science.
Vosniadou, S. (1994). Capturing and Modeling the Process of Conceptual Change. In S. Vosniadou (Guest Editor), Special Issure on Conceptual Change, Learning and Instruction, 4, 45-69.
Watson, J. R., Prieto, T., &; Dillon, J. S. (1997). Consistency of students’ explanations about combustion. Science Education, 81, 425-444.
White, B. (1984). Designing computer games to help physics students understand Newton’s law of motion. Cognition and Instruction, 1(1), 69-108.
Wilensky, U., &; Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning biology through constructing and testing computational theories. Cognition &; Instruction, 24(2), 171-209.
Zietsman, A. I. &; Hewson, P. W. (1986). Effect of instruction using microcomputer simulations and conceptual change strategies on science .Journal of Research in Science Teaching, 23(1), 27–39.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關博士論文
 
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE