:::

詳目顯示

回上一頁
題名:建構塑膠射出成形智慧製造系統之研究
作者:阮孟雄
作者(外文):Nguyen,Manh-Hung
校院名稱:中華大學
系所名稱:科技管理博士學位學程
指導教授:陳文欽
學位類別:博士
出版日期:2017
主題關鍵詞:塑膠射出成形工業4.0物聯網巨量資料雲端運算智慧製造系統田口方法變異數分析倒傳遞類神經網路改良粒子群最佳化-基因演算法PIMindustry 4.0IoTbig datacloud computingIMSTaguchi methodANOVABPNNmodified PSO- GA
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:3
隨著時代的進步與塑膠工業的迅速發展,塑膠射出成形應用的範圍也越來越廣泛,在許多電子、機械、航太、汽機車或一般生活用品等,該如何產出優良的產品,有效掌控品質良率與量產,是迫切需要改善的問題。近年來工業4.0、物聯網、巨量資料與雲端運算之推波助瀾下,產品不斷被要求輕、薄、短、小、多功能、精度佳、省能源,面對此艱鉅挑戰,建構具新一代射出成形智慧製造系統,扮演非常重要之角色。
本論文所提塑膠射出成形智慧製造系統包括智慧製程參數最佳化系統、參數資料庫管理系統,以及即時監控系統等三個子系統。首先智慧製程參數最佳化系統運用田口方法、變異數分析、多層感知器、倒傳遞類神經網路與改良粒子群最佳化-基因演算法建構最佳化模型,搜尋最佳製程參數組合;其次建構製程參數資料庫管理系統,此資料庫管理系統,儲存射出成形實驗數據、智慧製程參數最佳化系統產出之最佳參數組合、以及成形件產品編號與多品質目標值;最後建構射出成形即時監控系統,將建立射出成形圖形監控介面,監控範圍包含射出成形機台參數即時監控與多品質最佳化系統產出之最佳參數組合,並將最佳參數組合傳送並改變射出成形機台參數,並智能化監控產線機台狀況。本智慧製造系統具備即時監控、製程參數優化以及資料庫管理,可協助射出成形公司新產品開發,並有效提升產品的良率及製程穩定性,進而提升射出成形產業之全球市場競爭力。
Along with the progress of times and the plastic industry’s rapid development, plastic injection molding (PIM) has become one of the most important methods in plastic manufacturing with increasingly wider applications. Presently, PIM products are ubiquitous in a variety of applications like electronics, mechanics, aviation, aerospace, automobile, motorbike, and various general household items. With the booming development of PIM products, the requirements for these products have increased significantly. Therefore, how to produce products with excellent quality, effectively control product quality, and solve the problems related to yield rate and mass production have become urgent issues. In recent years, the great trends of industry 4.0, internet of things (IoT), big data analytics and cloud computing, the design and manufacture of PIM products have being demanded to fulfill the criteria of being light, thin, short, small, multi-function, high-precision, and energy-saving. To tackle this arduous challenge, effectively developing a novel PIM intelligent manufacturing system is now playing a crucial role.
The dissertation proposes an intelligent manufacturing system (IMS) composed of three subsystems: intelligent parameter optimization system of PIM process, database management system, and real-time monitoring and control system. Firstly the intelligent parameter optimization system employs Taguchi Method, ANOVA, MLP, BPNN and modified PSO-GA methodologies to search for the optimal parameter setting. Then the database management system is used to access the experimental data and PIM process parameter settings, which encompasses PIM product ID with quality targets. Finally, as for the PIM real-time monitoring and control system, the system will establish a graphic monitoring and control interface, whose monitoring scope includes intelligent real-time monitoring, the parameters of PIM machine, and the optimal process parameter settings. It will also transfer the optimal process parameter settings to PIM machines and simultaneously change their parameters. The proposed IMS system can help the PIM firms search for better parameter settings for new plastic products, and it also can facilitate the PIM firms to avoid product defects more easily, enhance the stability in the PIM process and build sustainable competitive advantage over their competitors in the world.
Aggarwal, A., Singh, H., Kumar, P., & Singh, M. (2008). Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi's technique—A comparative analysis. Journal of Materials Processing Technology, 200, 373-384.

Akbarzadeh, A., & Sadeghi, M. (2011). Parameter study in plastic injection molding process using statistical methods and IWO algorithm. International Journal of Modeling and Optimization, 1, 141-145.

Akemi, G., & Iglesias, A. (2013). A new iterative mutually coupled hybrid GA-PSO approach for curve fitting in Manufacturing. Applied Soft Computing, 13, 1491-1504.

Alkaabneh, F., Barghash, M., &Abdullat,Y. (2016).A novel statistical analysis for residual stress in injection molding, American Journal of Operations Research, 6, 90-103.

Altan, M. (2010). Reducing shrinkage in injection moldings via the Taguchi ANOVA and neural network method. Materials & Design, 31, 599-640.

Baboli, A., Okamoto, J., Tsuzuki, M. S., Martins, T. C., Miyagi, P. E., & Junqueira, F. (2015). Intelligent Manufacturing System Configuration and Optimization Considering Mobile Robots, Multi-Functional Machines and Human Operators: New Facilities and Challenge for Industrial Engineering. IFAC-PapersOnLine, 48(3), 1912-1917.

Bagheri, B., Yang, S., Kao, H. A., & Lee, J. (2015). Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment. IFAC-PapersOnLine, 48, 1622-1627.

Banerjee, A. G. (2006). Computer Aided Design of Side Actions for Injection Molding of Complex Parts. Unpublished master thesis, University of Maryland, United States.

Bariran, S. E. S., & Sahari, K. S. M. (2014). A comparative bibilometric analysis of Taguchi- centered optimization in plastic injection moulding, Jurnal Teknologi, 41, 1-16.

Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1-31.

Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. International Journal of Mechanical, Industrial Science and Engineering, 8(1), 37-44.

Callister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: an introduction (Vol. 7, pp. 665-715). New York: Wiley.

Candioti, L. V., De Zan, M. M., Camara, M. S., & Goicoechea, H. C. (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124, 123-138.
Castillo, E. D., Montgomery, D. C., & McCarville, D. R. (1996). Modified desirability functions for multiple response optimization. Journal of quality technology, 28, 337-345.

Chaplin, J. C., Bakker, O. J., de Silva, L., Sanderson, D., Kelly, E., Logan, B., & Ratchev, S. M. (2015). Evolvable Assembly Systems: A Distributed Architecture for Intelligent Manufacturing. IFAC-PapersOnLine, 48(3), 2065-2070.

Chen, W. C., &Kurniawan, D. (2014).Process Parameters Optimization for Multiple Quality Characteristics in Plastic Injection Molding Using Taguchi Method, BPNN, GA, and Hybrid PSO-GA. International Journal of Precision Engineering and Manufacturing, 15, 1583-1593.

Chen, W. C., Fu, G. L., Tai, P. H., & Deng, W. J. (2009). Process parameter optimization for MIMO plastic injection molding via soft computing, Expert Systems with Applications, 36, 1114-1122.

Chen, W. C., Liou, P. H, & Chou, S. C. (2014). A integrated parameter optimization system for MIMO plastic injection molding using soft computing. The International Journal of Advanced Manufacturing Technology, 23, 1539-1550.

Chen, W. J., LinC. X., Chen, Y. T., &Linet,J. R. (2016).Optimization design of a gating systemfor sand casting aluminium A356 usinga Taguchi method and multi-objectiveculture-based QPSO algorithm, Advances in Mechanical Engineering, 8(4), 1-14.

Colombo, A. W. (2005). Industrial agents: towards collaborative production-automation, management and organization. IEEE Industrial Electronics Society Newsletter 52 (4), 17–18.

Cutler, T. R. (2014). The internet of manufacturing things. Ind. Eng, 46(8), 37-41.
da Silva, R. M., Junqueira, F., Santos Filho, D. J., & Miyagi, P. E. (2016). Control architecture and design method of reconfigurable manufacturing systems. Control Engineering Practice, 49, 87-100.

Danišová, N., & Velíšek, K. (2007). Intelligent manufacturing and assembly system. Machine Design: On the Occasion of the 47th Anniversary of the Faculty of Technical Sciences, 413-416.

Danišová, N., Velšek, K. and Košťál, P. (2009). “Automated Tool Changing System in the Intelligent Manufacturing and Assembly Cell,” Int. Symposium on Computing, Communication, and Control, Singapore, pp.1-8.

Deng, W. J., Chen, C. T., Sun, C. H., Chen, W. C., & Chen, C. P. (2008). An effective approach for process parameter optimization in injection molding of plastic housing components. Polymer-Plastics Technology and Engineering, 47, 910-919.

Deng, W. J., Chen, W. C., & Wen, P. (2008). Back-propagation neural network based importance- performance analysis for determining critical service attributes. Expert Systems with Applications, 34, 1115-1125.
Dong, N., Wu, C. H., Ip, W. H., Chen, Z. Q., & Chan, C. Y. (2012). An opposition –based chaotic GA/PSO hybrid algorithm and its application in circle detection. Computers & Mathematics with Applications, 15, 1886-1902.

Du, S., Li, W., & Cao, K. (2006). A learning algorithm of artificial neural network based on GA – PSO. Journal of Intelligent Control and Automation, 1, 3633-3637.

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43.

Feng, C. X., & Kusiak A. (2000). Robust tolerance synthesis with the design of experiments approach. Transactions of the ASME, 122, 520-528.

Giret, A., & Trentesaux, D. (2015, September). Software engineering methods for intelligent manufacturing systems: a comparative survey. In International Conference on Industrial Applications of Holonic and Multi-Agent Systems (pp. 11-21). Springer International Publishing.

Giret, A., Trentesaux, D., Salido, M. A., Garcia, E., & Adam, E. (2017). A holonic multi-agent methodology to design sustainable intelligent manufacturing control systems. Journal of Cleaner Production, 1-17.

Gordon, G., Kazmer, D. O., Tang, X., Fan, Z., & Gao, R. X. (2015). Quality control using a multivariate injection molding sensor. The International Journal of Advanced Manufacturing Technology, 78, 1381-1391.

Han, Y., Liu, X., & Lv, G. (2013). The Intelligent Control Method of the Density of the Metal Injection Molding Billet Based on ANN. Journal of Materials Science Forum, 5, 161-167.

Hastings, K. J. (1997). Probability and statistics: Addison Wesley Longman, Inc. (1st ed.).

Hermann, M., Pentek, T., & Otto, B. (2016, January). Design Principles for Industrie 4.0 Scenarios. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 3928-3937). IEEE.

Horváth, Š., Hrušková, E., & Mudriková, A. (2008). Areas in flexible manufacturing-assembly cell. Annals of Faculty Engineering Hunedoara–Journal of engineering, 6(3).

Industrie 4.0 Working Group. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report, April.

Jazdi, N. (2014, May). Cyber physical systems in the context of Industry 4.0. In Automation, Quality and Testing, Robotics, 2014 IEEE International Conference on (pp. 1-4). IEEE.
Kagermann, H., & Lukas, W. D. (2014). Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution. VDI Nachrichten 13.

Kao, Y. T., & Zahare, E. (2008). A hybrid genetic algorithm and particle swarm optimization for multimodal functions.Applied Soft Computing, 8, 849-857.
Kashyap, S., & Datta, D. (2015). Process parameter optimization of plastic injection molding: a review. The International Journal of Advanced Manufacturing Technology, published online.

Kitayama, S., Onuki, R., & Yamazaki, K. (2014). Warpage reduction with variable pressure profile in plastic injection molding via sequential approximate optimization. The International Journal of Advanced Manufacturing Technology, 72, 827-838.

Kurt, M., Bagci, E., & Kaynak, A. (2009). Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. The International Journal of Advanced Manufacturing Technology, 40, pp. 458-469.

Kurtaran, H., & Erzurumlu, T. (2006). Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm. The International Journal of Advanced Manufacturing Technology, 27, 468-472.

Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88, 365-411.

Lee, E. A. (2008). Cyber physical systems: design challenges. 11th IEEE symposium on object oriented real-time distributed computing (ISORC). (pp. 363-369).

Lee, E. A., & Seshia, S. A. (2011). Introduction to embedded systems: A cyber-physical systems approach. Lee & Seshia.

Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.

Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP, 16, 3-8.

Lee, W. P., & Hsiao, Y. T. (2011). An adaptive GA-PSO with gene clustering to infer S-system models of gene regulatory networks. The Computer Journal, 54, 1449-1464.

Leitão, P. (2009). Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence, 22(7), 979-991.

Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry, 81, 11-25.

Leitão, P., Rodrigues, N., Barbosa, J., Turrin, C., & Pagani, A. (2015). Intelligent products: The grace experience. Control Engineering Practice, 42, 95-105.

Librantz, A. F., de Araújo, S. A., Alves, W. A., Belan, P. A., Mesquita, R. A., & Selvatici, A. H. (2017). Artificial intelligence based system to improve the inspection of plastic mould surfaces. Journal of Intelligent Manufacturing, 28(1), 181-190.


Liu, X. H., & Lin, J. (2011). Scheduling optimization in supply chain based on GA-PSO hybrid algorithm. Control and Decision, 26.

Madhura, P. M., Bilurkar, N., Jain, P., & Ranjith, J. (2015). A survey on Internet of Things: security and privacy issues. IJITR, 3(3), 2069-2074.

Mariajayaprakash, A., Senthilvelan, T., & Gnanadass, R. (2015). Optimization of process parameters through fuzzy logic and genetic algorithm – A case study in a process industry. Applied Soft Computing, 30, 94-103.

Mařík, V., Schirrmann, A., Trentesaux, D., & Vrba, P. (2015). Industrial applications of holonic and multi-agent systems. In 7th International conference, HoloMAS 2015, September 2–3. Proceedings, (Vol. 9266). Valencia, Spain: Springer.

Mehat, N. M., &Kamaruddin, S. (2011). Multi-response optimization of injection moulding processing parameters using the Taguchi method. Polymer-Plastics Technology and Engineering, 50(15), 1519-1526.

Moradi, M. H., & Abedini, M. (2012). A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. International Journal of Electrical Power & Energy Systems, 34, 66-74.

Mostafa, J., Mohammad, M. A., & Ehsan, M. (2011). A hybrid response surface methodology and simulated annealing algorithm: A case study on the optimization of shrinkage and warpage of a fuel filter. World Applied Sciences Journal, 13, 2156-2163.

Nash, S. G., & Sofer, A. (1996). Linear and nonlinear programming: McGraw-Hill Book Co.

Ng, C. F., Kamaruddin, S., Siddiquee, A. N., & Khan, Z. A. (2011). Experimental investigation on the recycled HDPE and optimization of injection moulding process parameters via Taguchi method. International Journal of Mechanical and Materials Engineering, 6, 81-91.

Öktem, H. (2012). Optimum process conditions on shrinkage of an injected-molded part of DVD-ROM cover using Taguchi robust method. The International Journal of Advanced Manufacturing Technology, 61, 518-528.

Premalatha, K., & Natarajan, A. M. (2009). Hybrid PSO and GA for global maximization. Int. J. Open Problems Compt. Math, 2(4), 597-608.

Pujo, P., Broissin, N., & Ounnar, F. (2009). PROSIS: An isoarchic structure for HMS control. Engineering Applications of Artificial Intelligence, 22(7), 1034-1045.

Radziwon, A., Bilberg, A., Bogers, M., & Madsen, E. S. (2014). The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia Engineering, 69, 1184-1190.

Ren, B., Tee, K. P., & Lee, T. H. (2010). Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Transactions on Neural Networks and Learning Systems, 21, 1339-1345.

Ren, Y., & BaI, G. (2010). Determination of optimal SVM Parameters by using GA/PSO. Journal of Computers, 5, 1160-1168.

Robert, V. H., Joseph, W. McK., & Allen, T. C. (2013). Introduction to mathematical statistics: Pearson Education, Inc., 7th edition.
Shi, F., Lou, Z. L., Lu, J. G., & Zhang, Y. Q. (2003). Optimization of plastic injection molding process with soft computing. The International Journal of Advanced Manufacturing Technology, 21, 656-661.

Singh, G., & Verma, A. (2017). A Brief Review on injection moulding manufacturing process. Materials Today: Proceedings, 4(2), 1423-1433.

Su, C. T., & Wong, J. T. (2007). Designing MIMO controller by neuro-traveling particle swarm optimizer approach. Expert Systems with Applications, 32, 848-855.

Tsai, K. M., Hsieh, C. Y., & Lo, W. C. (2008). A study of the effects of process parameters for injection molding on surface quality of optical lenses. Journal of Materials Processing Technology, 209, 3469-3477.

Tzeng, C. J., Yang, K. Y., Lin, Y. H., & Tsai, C. H. (2012). A study of optimization of injection molding process parameters for SGF and PTFE reinforced PC composites using neural network and response surface methodology. The International Journal of Advanced Manufacturing Technology, 63, 691-704.

Wang, J., Zhang, L., Duan, L., & Gao, R. X. (2015). A new paradigm of cloud-based predictive maintenance for intelligent manufacturing. Journal of Intelligent Manufacturing, 1-13.

Wang, L. C., Cheng, C. Y., & Lin, S. K. (2013). Distributed feedback control algorithm in an auction-based manufacturing planning and control system. International Journal of Production Research, 51(9), 2667-2679.

Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37(Part 2), 517-527.

Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Computer Networks, 101, 158-168.

Wang, X., Zhao, G., & Wang, G. (2013). Research on the reduction of sink mark and warpage of the molded part in rapid heat cycle molding process. Materials & Design, 47, 779-792.

Weinberg, B. D., Milne, G. R., Andonova, Y. G., & Hajjat, F. M. (2015). Internet of Things: Convenience vs. privacy and secrecy. Business Horizons, 58(6), 615-624.

Weyer, S., Schmitt, M., Ohmer, M., & Gorecky, D. (2015). Towards Industry 4.0-Standardization as the crucial challenge for highly modular, multi-vendor production systems. IFAC-PapersOnLine, 48(3), 579-584.

Wu, C. H., & Chen, W. S. (2006). Injection molding and injection compression molding of three-beam grating of DVD pickup lens. Sensors and Actuators A: Physical, 125, 367-375.

Xu, G., Yang, Z., & Long, G. (2012). Multi-objective optimization of MIMO plastic injection molding process conditions based on particle swarm optimization. The International Journal of Advanced Manufacturing Technology, 58, 521-531.

Yin, F., Mao, H., Hua, L., Guo, W., & Shu, M. (2011). Back-propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding, Materials & design, 32, 1844-1850.

Yu, M., Zhang, Y., Chen, K., & Zhang, D. (2015) Integration of process planning and scheduling using a hybrid GA/PSO algorithm. The International Journal of Advanced Manufacturing Technology, 78, 583-592.

Zhai, M., & Xie, Y. (2010). A study of gate location optimization of plastic injection molding using sequential linear programming. The International Journal of Advanced Manufacturing Technology, 49, 97-103.

Zhang, H., Tang, D., Huang, T., & Xu, C. (2016). An Agent Based Intelligent Distributed Control Paradigm for Manufacturing Systems. IFAC-PapersOnLine, 49(12), 1549-1554.

Zhang, L., & Wang, R. (2013). An intelligent system for low-pressure die-cast process parameters optimization. The International Journal of Advanced Manufacturing Technology, 65, 517-524.

Zhang, Y., Xi, D., Yang, H., Tao, F., & Wang, Z. (2017). Cloud manufacturing based service encapsulation and optimal configuration method for injection molding machine. Journal of Intelligent Manufacturing, 1-19.

Zhenpeng, H., Yigang, S., Guichang, Z., Zhenyu, H., Weisong, X., Xin, L., & Junhong, Z. (2015). Tribilogical performances of connecting rod and by using orthogonal experiment, regression method and response surface methodology. Applied Soft Computing, 29, 436-449.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top