:::

詳目顯示

回上一頁
題名:六週等量交替與固定強度有氧阻力循環訓練對運動表現與血流動力學之影響
作者:江政凌
作者(外文):Chiang, Cheng-Ling
校院名稱:國立體育大學
系所名稱:競技與教練科學研究所
指導教授:林晉利
王鐘賢
學位類別:博士
出版日期:2016
主題關鍵詞:最大攝氧量肌力肌耐力近紅外線光譜儀V̇O2maxmuscle strengthmuscle enduranceNIRS
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
間歇式訓練較傳統持續式訓練對心肺適能和有氧代謝能力有類似或更佳的提升,且能同時對有氧能量供應機制與無氧能量供應機制施加負擔,且近年大量應用於肌力與體能訓練。觀察血流動力學評估訓練的深層生理效益。有氧間歇式訓練對年輕健康受試者運動表現之效益與連續式訓練相同。但目前尚無研究結合有氧間歇式運動與速度交替阻力運動,探討其對運動表現與血流動力學之影響,且先前對於間歇訓練研究與持續訓練之訓練量不相等。本研究受試者為36位20-30歲健康男性,隨機分為交替強度組 (IT)與持續強度組 (CT),進行每週五天,包含三次腳踏車訓練及兩次等速阻力訓練共六週,IT組以40%及80% V̇O2max,CT組以60% V̇O2max強度進行腳踏車訓練。IT組以角速度60°及180°交替、CT以120°進行等速阻力訓練,訓練總量相等。結果顯示兩組最大作功強度與達到無氧閾值之% V̇O2max皆顯著提升,IT組最大攝氧量進步17.7%顯著高於CT組之14.1%,IT組最作功強度進步19.6%顯著高於CT組之14.2%。無氧閾值及最大運動時大腿肌肉O2Hb及HHb皆顯著提升,CT組血流動力學則無顯著改變。IT組於等速肌力120°、180°與240°之最大自主收縮測試後測,肌力顯著提升,CT組則顯著提升所有角速度之肌力。此外IT組於60°、120°、180°與240°大腿股外側肌之O2Hb顯著降低,代表氧氣利用率提升,CT訓練僅在180°顯著低於前測。兩組於等速肌力儀180°連續進行30下之伸膝疲勞測試後測顯示肌力皆顯著提升,IT組疲勞指數顯著降低,代表肌耐力同時提升。此外IT組於去氧動力學公式中τP顯著下降,代表肌肉氧氣萃取速度提升。本研究結果可知IT訓練對年輕健康男性最大運動能力、最大攝氧量與肌肉表現皆有較CT組有更佳之效益,並可提升運動時腿部血流動力學,此結果可作為健康成年男性進行體能訓練之參考。
Interval training had similar or better improvement of cardiorespiratory fitness and aerobic capacity than continuous training and impose a burden on the aerobic and anaerobic energy supply mechanism in the training period. It’s possible to evaluate the hemodynamics to observe the underlying physiological benefit. Previous studies indicated that the benefits of athletic performance in healthy young subjects were identical. However, there is no study combined aerobic interval training with alternately velocity resistance training to investigate hemodynamic and athletic performance. In addition, the amount of interval training in previous studies was not consistant. Subjects were 36 healthy men, age 20-30 and were randomly split into interval training (IT) and continuous training (CT) group. All subjects underwent 6 weeks training period, 5 times/wk, which consist of 3 times bicycle aerobic training (30min) and 2 time isokinetic resistance training (6-8 sets). The intensity of bicycle training in IT group is 40% and 80% V̇O2max alternately, 60% V̇O2max in the CT group. IT group performed 60° and 180° angular velocities alternately and CT group performed 120° in isokinetic resistance training program. Training volume is equal in both groups. The results showed that the maximal workload and the V̇O2max of anaerobic threshold increased significantly in both groups. In addition, the V̇O2max of IT group increased higher than CT group (17.7% vs 14.1%), and the maximal workload also higher than the CT group (19.6% vs 14.2%). In addition, IT group significantly enhanced O2Hb and THb of muscle during AT and peak exercise. The hemodynamics showed no significant change in the CT group. The results of this study showed that IT has similar or better effect than CT on athletic performance. Moreover, IT enhanced the muscle hemodynamics in healthy men. The results provide insights in training for healthy men.
Abe, K., Matsuo, Y., Kadekawa, J., Inoue, S., & Yanagihara, T. (1997). Measurement of tissue oxygen consumption in patients with mitochondrial myopathy by noninvasive tissue oximetry. Neurology, 49(3), 837-841.
Andersen, P., & Saltin, B. (1985). Maximal perfusion of skeletal muscle in man. Journal of Physiology, 366, 233-249.
Aratow, M., Ballard, R. E., Crenshaw, A. G., Styf, J., Watenpaugh, D. E., Kahan, N. J., & Hargens, A. R. (1993). Intramuscular pressure and electromyography as indexes of force during isokinetic exercise. Journal of Applied Physiology, 74(6), 2634-2640.
Bailey, S. J., Wilkerson, D. P., Dimenna, F. J., & Jones, A. M. (2009). Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. Journal of Applied Physiology, 106(6), 1875-1887. doi: 10.1152/japplphysiol.00144.2009
Bank, W., & Chance, B. (1994). An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry. Annals of Neurology, 36(6), 830-837.
Barnes, K. R., Hopkins, W. G., McGuigan, M. R., Northuis, M. E., & Kilding, A. E. (2013). Effects of resistance training on running economy and cross-country performance. [Randomized Controlled Trial]. Medicine and Science in Sports and Exercise, 45(12), 2322-2331.
Barstow, T. J., Lamarra, N., & Whipp, B. J. (1990). Modulation of muscle and pulmonary O2 uptakes by circulatory dynamics during exercise. Journal of Applied Physiology, 68(3), 979-989.
Belardinelli, R., Georgiou, D., & Barstow, T. J. (1995). Near infrared spectroscopy and changes in skeletal muscle oxygenation during incremental exercise in chronic heart failure: a comparison with healthy subjects. Giornale Italiano di Cardiologia, 25(6), 715-724.
Bell, G. J., Syrotuik, D., Martin, T. P., Burnham, R., & Quinney, H. A. (2000). Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. European Journal of Applied Physiology, 81(5), 418-427.
Bertuzzi, R., Pasqua, L. A., Bueno, S., Damasceno, M. V., Lima-Silva, A. E., Bishop, D., & Tricoli, V. (2013). Strength-training with whole-body vibration in long-distance runners: a randomized trial. International Journal of Sports Medicine, 34(10), 917-923.
Bhambhani, Y., Malik, R., & Mookerjee, S. (2007). Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respiratory Physiology & Neurobiolog, 156(2), 196-202.
Binzoni, T., Cooper, C. E., Wittekind, A. L., Beneke, R., Elwell, C. E., Van De Ville, D., & Leung, T. S. (2010). A new method to measure local oxygen consumption in human skeletal muscle during dynamic exercise using near-infrared spectroscopy. Physiological Measurement, 31(9), 1257-1269.
Bowen, T. S., Murgatroyd, S. R., Cannon, D. T., Cuff, T. J., Lainey, A. F., Marjerrison, A. D., . . . Rossiter, H. B. (2011). A raised metabolic rate slows pulmonary O(2) uptake kinetics on transition to moderate-intensity exercise in humans independently of work rate. Experimental Physiology, 96(10), 1049-1061. doi: 10.1113/expphysiol.2011.058321
Bringard, A., Denis, R., Belluye, N., & Perrey, S. (2006). Effects of compression tights on calf muscle oxygenation and venous pooling during quiet resting in supine and standing positions. Journal of Sports Medicine and Physical Fitness, 46(4), 548-554.
Brittain, C. J., Rossiter, H. B., Kowalchuk, J. M., & Whipp, B. J. (2001). Effect of prior metabolic rate on the kinetics of oxygen uptake during moderate-intensity exercise. European Journal of Applied Physiology 86(2), 125-134. doi: 10.1007/s004210100514
Buchheit, M., Abbiss, C. R., Peiffer, J. J., & Laursen, P. B. (2012). Performance and physiological responses during a sprint interval training session: relationships with muscle oxygenation and pulmonary oxygen uptake kinetics. European Journal of Applied Physiology, 112(2), 767-779.
Buchheit, M., Laursen, P. B., & Ahmaidi, S. (2009). Effect of prior exercise on pulmonary O2 uptake and estimated muscle capillary blood flow kinetics during moderate-intensity field running in men. Journal of Applied Physiology, 107(2), 460-470.
Burgomaster, K. A., Cermak, N. M., Phillips, S. M., Benton, C. R., Bonen, A., & Gibala, M. J. (2007). Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 292(5), R1970-1976. doi: 10.1152/ajpregu.00503.2006
Burgomaster, K. A., Heigenhauser, G. J., & Gibala, M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Journal of Applied Physiology, 100(6), 2041-2047. doi: 10.1152/japplphysiol.01220.2005
Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., Macdonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Journal of Physiology 586(1), 151-160. doi: 10.1113/jphysiol.2007.142109
Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. [Clinical Trial
Controlled Clinical Trial
Research Support, Non-U.S. Gov't]. Journal of Applied Physiology, 98(6), 1985-1990. doi: 10.1152/japplphysiol.01095.2004
Campbell, L., Wallman, K., & Green, D. (2010). The effects of intermittent exercise on physiological outcomes in an obese population: continuous versus interval walking. Journal of Sports Science and Medicine, 9(1), 24-30.
Cettolo, V., Ferrari, M., Biasini, V., & Quaresima, V. (2007). Vastus lateralis O2 desaturation in response to fast and short maximal contraction. Medicine & Science in Sports & Exercise, 39(11), 1949-1959.
Cheatle, T. R., Potter, L. A., Cope, M., Delpy, D. T., Coleridge Smith, P. D., & Scurr, J. H. (1991). Near-infrared spectroscopy in peripheral vascular disease. British Journal of Surgery, 78(4), 405-408.
Chuang, M. L., Ting, H., Otsuka, T., Sun, X. G., Chiu, F. Y., Hansen, J. E., & Wasserman, K. (2002). Muscle deoxygenation as related to work rate. Medicine & Science in Sports & Exercise, 34(10), 1614-1623.
Conraads, V. M., Pattyn, N., De Maeyer, C., Beckers, P. J., Coeckelberghs, E., Cornelissen, V. A., . . . Vanhees, L. (2015). Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX-CAD study. International Journal of Cardiology, 179, 203-210.
Cunha, R., Carregaro, R. L., Martorelli, A., Vieira, A., Oliveira, A. B., & Bottaro, M. (2013). Effects of short-term isokinetic training with reciprocal knee extensors agonist and antagonist muscle actions: a controlled and randomized trial. Brazilian Journal of Physical Therapy, 17(2), 137-145.
Damasceno, M. V., Lima-Silva, A. E., Pasqua, L. A., Tricoli, V., Duarte, M., Bishop, D. J., & Bertuzzi, R. (2015). Effects of resistance training on neuromuscular characteristics and pacing during 10-km running time trial. [Research Support, Non-U.S. Gov't]. European Journal of Applied Physiology, 115(7), 1513-1522.
Daussin, F. N., Zoll, J., Dufour, S. P., Ponsot, E., Lonsdorfer-Wolf, E., Doutreleau, S., . . . Richard, R. (2008). Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 295(1), R264-272.
Dellal, A., Varliette, C., Owen, A., Chirico, E. N., & Pialoux, V. (2012). Small-sided games versus interval training in amateur soccer players: effects on the aerobic capacity and the ability to perform intermittent exercises with changes of direction. Journal of Strength & Conditioning Research, 26(10), 2712-2720.
Denis, R., Bringard, A., & Perrey, S. (2011). Vastus lateralis oxygenation dynamics during maximal fatiguing concentric and eccentric isokinetic muscle actions. Journal of Electromyography and Kinesiology, 21(2), 276-282.
Denis, R., Wilkinson, J., & De Vito, G. (2011). Influence of angular velocity on vastus lateralis and rectus femoris oxygenation dynamics during knee extension exercises. Clinical Physiology and Functional Imaging, 31(5), 352-357.
DiMenna, F. J., Wilkerson, D. P., Burnley, M., Bailey, S. J., & Jones, A. M. (2010). Priming exercise speeds pulmonary O2 uptake kinetics during supine "work-to-work" high-intensity cycle exercise. Journal of Applied Physiology, 108(2), 283-292.
Dolan, L. B., Campbell, K., Gelmon, K., Neil-Sztramko, S., Holmes, D., & McKenzie, D. C. (2015). Interval versus continuous aerobic exercise training in breast cancer survivors-a pilot RCT. Supportive Care in Cancer.
duManoir, G. R., DeLorey, D. S., Kowalchuk, J. M., & Paterson, D. H. (2010). Kinetics of VO2 limb blood flow and regional muscle deoxygenation in young adults during moderate intensity, knee-extension exercise. European Journal of Applied Physiology, 108(3), 607-617.
Esfandiari, S., Sasson, Z., & Goodman, J. M. (2014). Short-term high-intensity interval and continuous moderate-intensity training improve maximal aerobic power and diastolic filling during exercise. European Journal of Applied Physiology, 114(2), 331-343.
Felici, F., Quaresima, V., Fattorini, L., Sbriccoli, P., Filligoi, G. C., & Ferrari, M. (2009). Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises. Journal of Electromyography and Kinesiology, 19(2), e1-11.
Ferrari, M., Muthalib, M., & Quaresima, V. (2011). The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1955), 4577-4590.
Ferrauti, A., Bergermann, M., & Fernandez-Fernandez, J. (2010). Effects of a concurrent strength and endurance training on running performance and running economy in recreational marathon runners. Journal of Strength and Conditioning Research, 24(10), 2770-2778.
Freyssin, C., Verkindt, C., Prieur, F., Benaich, P., Maunier, S., & Blanc, P. (2012). Cardiac rehabilitation in chronic heart failure: effect of an 8-week, high-intensity interval training versus continuous training. Archives of Physical Medicine and Rehabilitation, 93(8), 1359-1364.
Fu, T. C., Wang, C. H., Lin, P. S., Hsu, C. C., Cherng, W. J., Huang, S. C., . . . Wang, J. S. (2013). Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. International Journal of Cardiology, 167(1), 41-50.
Gellerich, F. N., Mueller, T., Nioka, S., Hertel, K., Schulte-Mattler, W. J., Zierz, S., & Chance, B. (1998). NIR spectroscopic investigation of m. vastus lateralis in patients with mitochondrial myopathies as detected by respirometric investigation of mitochondrial function in skinned fibers. Paper presented at the Photon Propagation in Tissues III, San Remo, Italy
Gibala, M. J., Gagnon, P. J., & Nindl, B. C. (2015). Military Applicability of Interval Training for Health and Performance. Journal of Strength & Conditioning Research, 29 Suppl 11, S40-45.
Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., . . . Tarnopolsky, M. A. (2006). Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. Journal of Physiology 575(Pt 3), 901-911. doi: 10.1113/jphysiol.2006.112094
Gibala, M. J., McGee, S. L., Garnham, A. P., Howlett, K. F., Snow, R. J., & Hargreaves, M. (2009). Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. Journal of Applied Physiology, 106(3), 929-934. doi: 10.1152/japplphysiol.90880.2008
Gonzalez-Alonso, J., Olsen, D. B., & Saltin, B. (2002). Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. Circulation Research, 91(11), 1046-1055.
Grassi, B., Poole, D. C., Richardson, R. S., Knight, D. R., Erickson, B. K., & Wagner, P. D. (1996). Muscle O2 uptake kinetics in humans: implications for metabolic control. Journal of Applied Physiology, 80(3), 988-998.
Guenette, J. A., Vogiatzis, I., Zakynthinos, S., Athanasopoulos, D., Koskolou, M., Golemati, S., . . . Boushel, R. (2008). Human respiratory muscle blood flow measured by near-infrared spectroscopy and indocyanine green. Journal of Applied Physiology, 104(4), 1202-1210.
Hather, B. M., Tesch, P. A., Buchanan, P., & Dudley, G. A. (1991). Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiologica Scandinavica, 143(2), 177-185.
Hickson, R. C., Dvorak, B. A., Gorostiaga, E. M., Kurowski, T. T., & Foster, C. (1988). Potential for strength and endurance training to amplify endurance performance. Journal of Applied Physiology, 65(5), 2285-2290.
Hirai, Y., & Tabata, I. (1996). Effect Of High Intensity Intermittent Training Resistance And Training On The Maximal Oxygen Defict And VO2max. Japanese Journal of Physical Fitness and Sports Medicine, 45(5), 495-502.
Hoier, B., & Hellsten, Y. (2014). Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation, 21(4), 301-314.
Holloszy, J. O., & Coyle, E. F. (1984). Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Journal of applied physiology: respiratory, environmental and exercise physiology, 56(4), 831-838.
Holmes, J. W. (2006). Teaching from classic papers: Hill's model of muscle contraction. Advances in Physiology Education, 30(2), 67-72.
Hood, D. A. (2001). Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. Journal of Applied Physiology, 90(3), 1137-1157.
Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264-1267.
Jones, B., Hamilton, D. K., & Cooper, C. E. (2015). Muscle oxygen changes following Sprint Interval Cycling training in elite field hockey players. PLoS One, 10(3), e0120338.
Juel, C., Klarskov, C., Nielsen, J. J., Krustrup, P., Mohr, M., & Bangsbo, J. (2004). Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 286(2), E245-251.
Kacin, A., & Strazar, K. (2011). Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scandinavian Journal of Medicine & Science in Sports, 21(6), e231-241.
Kannus, P. (1994). Isokinetic evaluation of muscular performance: implications for muscle testing and rehabilitation. International Journal of Sports Medicine, 15 Suppl 1, S11-18.
Kawanaka, K., Tabata, I., Tanaka, A., & Higuchi, M. (1998). Effects of high-intensity intermittent swimming on glucose transport in rat epitrochlearis muscle. Journal of Applied Physiology, 84(6), 1852-1857.
Keating, S. E., Machan, E. A., O'Connor, H. T., Gerofi, J. A., Sainsbury, A., Caterson, I. D., & Johnson, N. A. (2014). Continuous exercise but not high intensity interval training improves fat distribution in overweight adults. Journal of Obesity, 2014, 834865.
Kelly, C. M., Burnett, A. F., & Newton, M. J. (2008). The effect of strength training on three-kilometer performance in recreational women endurance runners. Journal of Strength and Conditioning Research, 22(2), 396-403.
Kemmler, W., Scharf, M., Lell, M., Petrasek, C., & von Stengel, S. (2014). High versus moderate intensity running exercise to impact cardiometabolic risk factors: the randomized controlled RUSH-study. BioMed Research International, 2014, 843095.
Kessler, H. S., Sisson, S. B., & Short, K. R. (2012). The potential for high-intensity interval training to reduce cardiometabolic disease risk. [
Review]. Sports Medicine, 42(6), 489-509.
Killington, M. J., Mackintosh, S. F., & Ayres, M. (2010). An isokinetic muscle strengthening program for adults with an acquired brain injury leads to meaningful improvements in physical function. Brain Injury, 24(7-8), 970-977.
Koga, S., Poole, D. C., Ferreira, L. F., Whipp, B. J., Kondo, N., Saitoh, T., . . . Barstow, T. J. (2007). Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise. Journal of Applied Physiology, 103(6), 2049-2056.
Komiyama, T., Shigematsu, H., Yasuhara, H., & Muto, T. (1994). An objective assessment of intermittent claudication by near-infrared spectroscopy. European Journal of Vascular Surgery, 8(3), 294-296.
Kooijman, H. M., Hopman, M. T., Colier, W. N., van der Vliet, J. A., & Oeseburg, B. (1997). Near infrared spectroscopy for noninvasive assessment of claudication. Journal of Surgical Research, 72(1), 1-7.
Kooistra, R. D., de Ruiter, C. J., & de Haan, A. (2008). Knee angle-dependent oxygen consumption of human quadriceps muscles during maximal voluntary and electrically evoked contractions. [Comparative Study]. European Journal of Applied Physiology, 102(2), 233-242.
Kraemer, W. J., Patton, J. F., Gordon, S. E., Harman, E. A., Deschenes, M. R., Reynolds, K., . . . Dziados, J. E. (1995). Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. [Clinical Trial
Randomized Controlled Trial
Research Support, Non-U.S. Gov't]. J Appl Physiol (1985), 78(3), 976-989.
Krustrup, P., Jones, A. M., Wilkerson, D. P., Calbet, J. A., & Bangsbo, J. (2009). Muscular and pulmonary O2 uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in humans. Journal of Physiology, 587(Pt 8), 1843-1856. doi: 10.1113/jphysiol.2008.166397
Layec, G., Bringard, A., Le Fur, Y., Vilmen, C., Micallef, J. P., Perrey, S., . . . Bendahan, D. (2009). Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans. Experimental Physiology, 94(6), 704-719.
Lucas, S. J., Cotter, J. D., Brassard, P., & Bailey, D. M. (2015). High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. Journal of Cerebral Blood Flow & Metabolism, 35(6), 902-911.
Lynch, J., Helmrich, S. P., Lakka, T. A., Kaplan, G. A., Cohen, R. D., Salonen, R., & Salonen, J. T. (1996). Moderately intense physical activities and high levels of cardiorespiratory fitness reduce the risk of non-insulin-dependent diabetes mellitus in middle-aged men. Archives of internal medicine, 156(12), 1307-1314.
MacPhee, S. L., Shoemaker, J. K., Paterson, D. H., & Kowalchuk, J. M. (2005). Kinetics of O2 uptake, leg blood flow, and muscle deoxygenation are slowed in the upper compared with lower region of the moderate-intensity exercise domain. Journal of Applied Physiology, 99(5), 1822-1834. doi: 10.1152/japplphysiol.01183.2004
Maikala, R. V., & Hargens, A. R. (2010). Application of near-infrared spectroscopy (NIRS) in ergonomics and exercise. International Journal of Industrial Ergonomics, 40(2), 123-124.
Mancini, D. M., Wilson, J. R., Bolinger, L., Li, H., Kendrick, K., Chance, B., & Leigh, J. S. (1994). In vivo magnetic resonance spectroscopy measurement of deoxymyoglobin during exercise in patients with heart failure. Demonstration of abnormal muscle metabolism despite adequate oxygenation. Circulation, 90(1), 500-508.
Matsui, S., Tamura, N., Hirakawa, T., Kobayashi, S., Takekoshi, N., & Murakami, E. (1995). Assessment of working skeletal muscle oxygenation in patients with chronic heart failure. American Heart Journal, 129(4), 690-695.
Mazurek, K., Krawczyk, K., Zmijewski, P., Norkowski, H., & Czajkowska, A. (2014). Effects of aerobic interval training versus continuous moderate exercise programme on aerobic and anaerobic capacity, somatic features and blood lipid profile in collegate females. Annals of Agricultural and Environmental Medicine, 21(4), 844-849.
McCully, K. K., Halber, C., & Posner, J. D. (1994). Exercise-induced changes in oxygen saturation in the calf muscles of elderly subjects with peripheral vascular disease. Journals of Gerontology, 49(3), B128-134.
McKay, B. R., Paterson, D. H., & Kowalchuk, J. M. (2009). Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. Journal of Applied Physiology, 107(1), 128-138. doi: 10.1152/japplphysiol.90828.2008
Medbo, J. I., Mohn, A. C., Tabata, I., Bahr, R., Vaage, O., & Sejersted, O. M. (1988). Anaerobic capacity determined by maximal accumulated O2 deficit. Journal of Applied Physiology, 64(1), 50-60.
Medbo, J. I., & Tabata, I. (1989). Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. Journal of Applied Physiology, 67(5), 1881-1886.
Moholdt, T. T., Amundsen, B. H., Rustad, L. A., Wahba, A., Lovo, K. T., Gullikstad, L. R., . . . Slordahl, S. A. (2009). Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. American Heart Journal, 158(6), 1031-1037.
Muthalib, M., Lee, H., Millet, G. Y., Ferrari, M., & Nosaka, K. (2010). Comparison between maximal lengthening and shortening contractions for biceps brachii muscle oxygenation and hemodynamics. Journal of Applied Physiology, 109(3), 710-720.
Muthalib, M., Millet, G. Y., Quaresima, V., & Nosaka, K. (2010). Reliability of near-infrared spectroscopy for measuring biceps brachii oxygenation during sustained and repeated isometric contractions. Journal of Biomedical Optics, 15(1), 017008.
Narici, M. V., Hoppeler, H., Kayser, B., Landoni, L., Claassen, H., Gavardi, C., . . . Cerretelli, P. (1996). Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiologica Scandinavica, 157(2), 175-186.
Nishiyasu, T., Maekawa, T., Sone, R., Tan, N., & Kondo, N. (2006). Effects of rhythmic muscle compression on cardiovascular responses and muscle oxygenation at rest and during dynamic exercise. Experimental Physiology, 91(1), 103-109.
Osawa, Y., Azuma, K., Tabata, S., Katsukawa, F., Ishida, H., Oguma, Y., . . . Matsumoto, H. (2014). Effects of 16-week high-intensity interval training using upper and lower body ergometers on aerobic fitness and morphological changes in healthy men: a preliminary study. Open Access Journal of Sports Medicine, 5, 257-265.
Paavolainen, L., Hakkinen, K., Hamalainen, I., Nummela, A., & Rusko, H. (1999). Explosive-strength training improves 5-km running time by improving running economy and muscle power. [Clinical Trial
Controlled Clinical Trial
Research Support, Non-U.S. Gov't]. Journal of Applied Physiology, 86(5), 1527-1533.
Pescatello, L. S., & American College of Sports Medicine. (2006). ACSM's guidelines for exercise testing and prescription (7th ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health.
Rognmo, O., Hetland, E., Helgerud, J., Hoff, J., & Slordahl, S. A. (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil, 11(3), 216-222.
Roschel, H., Barroso, R., Tricoli, V., Batista, M. A., Acquesta, F. M., Serrao, J. C., & Ugrinowitsch, C. (2015). Effects of Strength Training Associated With Whole-Body Vibration Training on Running Economy and Vertical Stiffness. Journal of Strength and Conditioning Research, 29(8), 2215-2220.
Rossiter, H. B., Ward, S. A., Doyle, V. L., Howe, F. A., Griffiths, J. R., & Whipp, B. J. (1999). Inferences from pulmonary O2 uptake with respect to intramuscular [phosphocreatine] kinetics during moderate exercise in humans. Journal of Physiology, 518 ( Pt 3), 921-932.
Rupp, T., & Perrey, S. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 102(2), 153-163.
Sadamoto, T., Bonde-Petersen, F., & Suzuki, Y. (1983). Skeletal muscle tension, flow, pressure, and EMG during sustained isometric contractions in humans. European Journal of Applied Physiology and Occupational Physiology, 51(3), 395-408.
Saitoh, T., Ferreira, L. F., Barstow, T. J., Poole, D. C., Ooue, A., Kondo, N., & Koga, S. (2009). Effects of prior heavy exercise on heterogeneity of muscle deoxygenation kinetics during subsequent heavy exercise. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 297(3), R615-621.
Sawada, S. S., Lee, I. M., Muto, T., Matuszaki, K., & Blair, S. N. (2003). Cardiorespiratory fitness and the incidence of type 2 diabetes: prospective study of Japanese men. Diabetes Care, 26(10), 2918-2922.
Schmidt, W., Anderson, K., Graff, M., & Strutz, V. (2015). The effect of high-intensity circuit training on physical fitness. Journal of Sports Medicine and Physical Fitness.
Sedano, S., Marin, P. J., Cuadrado, G., & Redondo, J. C. (2013). Concurrent training in elite male runners: the influence of strength versus muscular endurance training on performance outcomes. Journal of Strength and Conditioning Research, 27(9), 2433-2443.
Sejersted, O. M., & Hargens, A. R. (1995). Intramuscular pressures for monitoring different tasks and muscle conditions. Advances in Experimental Medicine and Biology, 384, 339-350.
Spencer, M. D., Murias, J. M., Kowalchuk, J. M., & Paterson, D. H. (2011). Pulmonary O(2) uptake and muscle deoxygenation kinetics are slowed in the upper compared with lower region of the moderate-intensity exercise domain in older men. European Journal of Applied Physiology, 111(9), 2139-2148. doi: 10.1007/s00421-011-1851-1
Spencer, M. D., Murias, J. M., Lamb, H. P., Kowalchuk, J. M., & Paterson, D. H. (2011). Are the parameters of VO2, heart rate and muscle deoxygenation kinetics affected by serial moderate-intensity exercise transitions in a single day? European Journal of Applied Physiology, 111(4), 591-600.
Storen, O., Helgerud, J., Stoa, E. M., & Hoff, J. (2008). Maximal strength training improves running economy in distance runners. [Randomized Controlled Trial]. Medicine and Science in Sports and Exercise, 40(6), 1087-1092.
Tabata, I., Nishimura, K., Kouzaki, M., Hirai, Y., Ogita, F., Miyachi, M., & Yamamoto, K. (1996). Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Medicine & Science in Sports & Exercis, 28(10), 1327-1330.
Tanaka, H., Desouza, C. A., Jones, P. P., Stevenson, E. T., Davy, K. P., & Seals, D. R. (1997). Greater rate of decline in maximal aerobic capacity with age in physically active vs. sedentary healthy women. Journal of Applied Physiology, 83(6), 1947-1953.
Tjonna, A. E., Lee, S. J., Rognmo, O., Stolen, T. O., Bye, A., Haram, P. M., . . . Wisloff, U. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation, 118(4), 346-354.
Van Beekvelt, M. C., Colier, W. N., Wevers, R. A., & Van Engelen, B. G. (2001). Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle. Journal of Applied Physiology, 90(2), 511-519.
Vogiatzis, I., Athanasopoulos, D., Boushel, R., Guenette, J. A., Koskolou, M., Vasilopoulou, M., . . . Zakynthinos, S. (2008). Contribution of respiratory muscle blood flow to exercise-induced diaphragmatic fatigue in trained cyclists. Journal of Physiology, 586(Pt 22), 5575-5587.
Wei, M., Gibbons, L. W., Mitchell, T. L., Kampert, J. B., Lee, C. D., & Blair, S. N. (1999). The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Annals of Internal Medicine, 130(2), 89-96.
Wilkerson, D. P., & Jones, A. M. (2007). Effects of baseline metabolic rate on pulmonary O2 uptake on-kinetics during heavy-intensity exercise in humans. Respiratory Physiology & Neurobiology 156(2), 203-211. doi: 10.1016/j.resp.2006.09.008
Williams, A. M., Paterson, D. H., & Kowalchuk, J. M. (2013). High-intensity interval training speeds the adjustment of pulmonary O2 uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates. Journal of Applied Physiology, 114(11), 1550-1562. doi: 10.1152/japplphysiol.00575.2012
Wilson, J. M., Loenneke, J. P., Jo, E., Wilson, G. J., Zourdos, M. C., & Kim, J. S. (2012). The effects of endurance, strength, and power training on muscle fiber type shifting. [Review]. The Journal of Strength & Conditioning Research, 26(6), 1724-1729.
Wilson, J. R., Mancini, D. M., McCully, K., Ferraro, N., Lanoce, V., & Chance, B. (1989). Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure. Circulation, 80(6), 1668-1674.
Wisloff, U., Stoylen, A., Loennechen, J. P., Bruvold, M., Rognmo, O., Haram, P. M., . . . Skjaerpe, T. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation, 115(24), 3086-3094. doi: 10.1161/CIRCULATIONAHA.106.675041
Wolf, M., Ferrari, M., & Quaresima, V. (2007). Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. [
Review]. Journal of Biomedical Optics, 12(6), 062104.
Zampetaki, A., Kirton, J. P., & Xu, Q. (2008). Vascular repair by endothelial progenitor cells. Cardiovascular Research, 78(3), 413-421.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE