:::

詳目顯示

回上一頁
題名:都市空間發展對都市型態之具含能量與建築二氧化碳排放影響-以臺北市為例
作者:黃柏儒
作者(外文):HUANG, PO-JU
校院名稱:國立臺北大學
系所名稱:都市計劃研究所
指導教授:黃書禮
學位類別:博士
出版日期:2020
主題關鍵詞:具含能量能值評估分析建築類型都市型態二氧化碳排放量embodied energyemergy synthesisbuilding typeurban formbuilding CO2 emission
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
聯合國環境規劃署(UNEP)指出「都市地區」已成為全球能源使用與溫室氣體排放的主要來源。然而,都市地區是由不同「發展時期」興建的「建築類型」,以不同的「都市型態」所形塑而成。目前,將建築類型與都市型態應用在空間方面的解析,以及檢討不同建築物類型的具含能量與都市地區能源使用所導致二氧化碳排放量之相關研究仍相當稀少。因此,探討不同都市型態的建築密度與建築構造方式對建築具含能量的影響,以及在不同都市發展時期下的空間分布,並據以分析都市地區建築興建的二氧化碳排放,是本研究的主要動機與目的。首先透過不同時期之發展將臺北市建築分成五種建築物類型,再結合都市空間指數(建築覆蓋比、建築樓地板面積比、平均樓層數、空間擁擠比),做為臺北市都市型態的分類依據,藉此連結臺北市都市空間發展與規劃的整體背景。再透過能值評估方法,分析不同建築類型的具含能量,並將各種建築類型所投入的能量,做為評估建築物興建時所衍生的二氧化碳排放量依據,分析結果可補充臺北市二氧化碳排放量在範疇三的盤查。最後,將臺北市的456個里依七種都市型態分類,分析其空間特性和建築能值儲存量的組成與空間分布是否能做為都市地區其它二氧化碳排放量的相關鏈描述。
研究發現,不同建築類型所具含的能值儲存量高低,具體反映出臺北市都市化過程的空間發展時序與擴張趨勢。以都市空間指數所進行的都市型態分類也呈現出不同都市型態間的建築具含能量之高低分布。本研究進一步發現,建築具含能量為都市型態影響建築二氧化碳排放量的主要基礎。此外,都市建築二氧化碳排放量與都市地區能源使用所衍生之二氧化碳排放量亦具有空間分佈的相關性。本研究最後提出,臺北市不同時期所發展的空間區位差異和計劃規範是型塑都市型態的重要背景,反映出都市空間發展規劃透過建築具含能量間接影響了都市的建築二氧化碳排放量。因此本研究提出都市地區的減緩策略時,除了考量能源使用所排放的二氧化碳外,若能將都市空間背後所儲存的具含能量一併納入,對於建築類型和都市型態應用在減緩二氧化碳排放量上,將帶來正面的效果。
Urban areas are the world's primary source of energy-related greenhouse gas (GHG) emissions. Therefore, the evaluation of energy use in urban areas is one of the key strategies to mitigate the effects of energy use. Although there is an abundance of research evaluating energy usage in different urban forms, little is understood of its relationship to the embodied energy of different building types. This study argues that the embodied energy of urban forms consists of different building types from different stages of urban development. The methodologies and tools used in most energy consumption research do not consider the interactions among different building construction technologies and the urban spatial development process. The primary goal of this study is to develop a framework, which is based on the embodied energy of different building types from different stages of urban development, for assessing the urban form of 456 neighborhoods in Taipei City that incorporates the interaction of three components: building types, spacematrix, and urban spatial planning. To achieve this goal, this research interprets different building types based on emergy concepts, develops emergy indices to assess the embodied energy of urban forms, and uses spacematrix and GIS to analyze and discuss the spatiality of different urban development periods. This analysis reveals that the embodied energy of urban forms is clearly related to different building types and spacematrix. This relationship can be described by calculating the correlation between the embodied energy of different building types and spatial density: high-rise building or high-intensity urban form have higher accumulated embodied energy density. The result also identifies the relationship between Taipei City’s development stages of urban growth and the associated changes in building embodied energy. Furthermore, CO2 emissions can be derived from building embodied energy, and building embodied energy can be utilized to explain the relationships between building types, urban forms, and urban development. Thus, embodied energy provides a new approach to understand urban energy consumption. The results of this research into the spatial distribution of building embodied energy and urban form are used to discuss the effect of urban spatial planning, building density, and building construction and examine how these factors can contribute to mitigation strategies to offset energy consumption and greenhouse emissions.
參考文獻:
中文文獻:
互助營造股份有限公司(2012),臺灣營造業百年史,臺灣:遠流出版事業股份有限公司。
王思樺、黃書禮、李叢禎(2016),都市能源使用CO2排放變動趨勢之降尺度分析-以臺北都會區與高雄市為例,都市與計劃,43(4),369-394。new window
呂宗盈、林建元(2002),由制度面探討台灣土地使用管理制度變遷之研究,建築與規劃學報,3(2),136-158。new window
林憲德(2015),建築碳足跡,臺北:詹氏書局。
林憲德、林子平、蔡耀賢(2015),綠建築評估手冊-基本型,內政部建築研究所。
林憲德、孫振義、李魁鵬、郭曉青(2005),台南地區都市規模與都市熱島強度之研究,都市與計劃,32(1),83-97。new window
林憲德、張又升、歐文生、楊煦照、劉漢卿(2002),台灣建材生產耗能與二氧化碳排放之解析,建築學報,(40),1-15。new window
邱佳淳(2012),新建建築工程大宗材料用量分析之研究,國立中央大學營建管理研究所碩士論文,桃園市。
施鴻志、邱景升(1989),建築容積管制的實施與制定,都市與計劃,16,83-96。new window
張又升、鄭元良、林憲德、許茂雄(2002),台灣建築物CO2排放量簡易評估法之研究,建築學報,(41),1-21。
張世典、蕭江碧、丁育群、林憲德、張珩(2000),台灣建築生命週期二氧化碳排放減量初步之研究,建築學報,(34),87-104。new window
張學聖、王琪斐、陳姿伶 (2016),臺灣地區縣市空間緊湊發展特性與交通運輸耗能關係之初探,都市與計劃,43(2), 115-141.new window
郭柏巖、林憲德、顧孝偉(2004),住宅生活模式與耗電特性解析,建築學報,(50),15-33。new window
陳伯沖(1997),建築形式論邁向圖像思維,台北:田園城市文化事業股份有限公司。
黃武達、小川英明、山根正彥、內藤昌(1991),日治時代臺北街路網結構之分析,建築學報,4,43-67。new window
黃武達、小川英明、內藤昌(1995),日治時代之臺北市近代都市計畫(一)—都市計畫之萌芽與展開,都市與計劃,22(1),99-122。new window
黃武達、小川英明、內藤昌(1998),日治時代之臺北市近代都市計畫(二)-法制確立期之都市計畫,都市與計劃,25(1),107-131。new window
黃武達、蔡之豪、內藤昌(1997),日治時代臺灣近代都市計畫法制之創設—創設期法制之內涵,并以臺北市街之施行為例,都市與計劃,24(2),99-127。new window
黃南淵,何芳子(1988),台北市實施土地使用分區管制之檢討一對策及其影響, 都市與計劃,15,107-142。new window
黃南淵、何芳子(1979),台北市土地使用分區管制草案簡介,都市與計劃,5(1),15-22。new window
黃書禮(2002),生態系統理論在區域研究之應用,都市與計劃,29(2),187-215。new window
黃書禮(2004),都市生態經濟與能量,臺北:詹市書局。
黃書禮、徐婉玲(2001),台北地區都市建設代謝作用物質流分析與能值評估,都市與計劃,28(2),187-209。new window
黃書禮、廖文弘(1991),應用能值分析對臺北都會區生態經濟系統之初探,都市與計劃,18(1),19-36。new window
楊裕富(1990),光復後台灣地區都市化的回顧,建築學報,(2),85-100。new window
楊裕富(1991),光復後台灣地區住宅發展與住宅論述的研究,建築學報,(5),21-51。new window
經濟部能源局(2019),我國燃料燃燒二氧化碳排放統計與分析,經濟部能源局。
葉佳宗(2017),都市型態與家戶能源用:對家戶運輸能源與住宅電力能源消耗之分析,臺灣的都市氣候議題與治理,臺北:臺大出版社,149-179。
臺北市政府,2017,臺北市統計要覽,臺北市政府。
臺北都市更新處策劃(2015),計劃城事:戰後臺北都市發展歷程,臺北:田園城市文化。
劉慶禧(2001),建築工程估價,臺北:科技圖書股份有限公司。

英文文獻:

Alexander, E. R. (1993). Density measures: A review and analysis. Journal of Architectural and Planning Research, 10(3), 181-202.
Alexander, E. R., Reed, K. D., & Murphy, P. (1988). Density Measures and Their Relation to Urban Form. Milwaukee, WI: Center for Architecture and Urban Planning Research, University of Wisconsin-Milwaukee.
Anderson, W. P., Kanaroglou, P. S., & Miller, E. J. (1996). Urban Form, Energy and the Environment: A Review of Issues, Evidence and Policy. Urban Studies, 33(1), 7-35. doi:10.1080/00420989650012095new window
Beloin-Saint-Pierre, D., Rugani, B., Lasvaux, S., Mailhac, A., Popovici, E., Galdric, S., . . . Schiopu, N. (2016). A review of urban metabolism studies to identify key methodological choices for future harmonization and implementation. Journal of Cleaner Production. doi:10.1016/j.jclepro.2016.09.014
Berghauser Pont, M., & Haupt, P. (2005). The Spacemate: Density and the typomorphology of the urban fabric. Nordic Journal of Architectural Research, 4, 55-68.
Berghauser Pont, M., & Haupt, P. (2007). The relation between urban form and density. Urban Morphology, 11(1), 62-66.new window
Berghauser Pont, M., & Haupt, P. (2010). SPACEMATRIX: Space, Density and Urban Form. Rotterdam: NAi Uitgevers.
Biesbroek, G. R., Swart, R. J., & van der Knaap, W. G. M. (2009). The mitigation–adaptation dichotomy and the role of spatial planning. Habitat International, 33(3), 230-237. doi:https://doi.org/10.1016/j.habitatint.2008.10.001
Blanco, H., McCarney, P., Parnell, S., Schmidt, M., & Seto, K. C. (2011). The role of urban land in climate change. In C. Rosenzweig, S. Mehrotra, S. A. Hammer, & W. D. Solecki (Eds.), Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network (pp. 217-248). Cambridge: Cambridge University Press.
Bobkova, E., Berghauser Pont, M., & Marcus, L. Towards analytical typologies of plot systems: Quantitative profile of five European cities. Environment and Planning B: Urban Analytics and City Science, 0(0), 2399808319880902. doi:10.1177/2399808319880902
Boyko, C. T., & Cooper, R. (2011). Clarifying and re-conceptualising density. Progress in Planning, 76(1), 1-61. doi:https://doi.org/10.1016/j.progress.2011.07.001new window
Braham, W. W., & Benghi, N. (2016). The Varieties of Building Emergy Intensity.
Brown, M. T., & Ulgiati, S. (2016). Emergy assessment of global renewable sources. Ecological Modelling, 339, 148-156. doi:https://doi.org/10.1016/j.ecolmodel.2016.03.010
Buranakarn, V. (1998). Evaluation of recycling and reuse of building materials using the emergy analysis method. (Ph.D.), University of Florida, Ann Arbor. Retrieved from ProQuest Dissertations & Theses Global database. (9919534)
Burchell, R. W. (2005). Sprawl costs economic impacts of unchecked development. Washington, [D.C.]: Island Press.
Campbell, H. (2006). Is the Issue of Climate Change too Big for Spatial Planning? Planning Theory & Practice, 7(2), 201-230. doi:10.1080/14649350600681875
Cervero, R. (1998). The Transit Metropolis: A Global Inquiry: Island Press.
Cervero, R., & Kockelman, K. (1997). Travel Demand and The 3ds: Density, Diversity, And Design. Transportation Research Part D: Transport and Environment, 2(3), 199-219.
Chen, Y., Li, X., Zheng, Y., Guan, Y., & Liu, X. (2011). Estimating the relationship between urban forms and energy consumption: A case study in the Pearl River Delta, 2005–2008. Landscape and urban planning, 102, 33–42. doi:10.1016/j.landurbplan.2011.03.007
Chiu, H.-W., Lee, Y.-C., Huang, S.-L., & Hsieh, Y.-C. (2019). How does peri-urbanization teleconnect remote areas? An emergy approach. Ecological Modelling, 403, 57-69. doi:https://doi.org/10.1016/j.ecolmodel.2019.03.025
Condon, P. M., Cavens, D., & Miller, N. (2009). Urban Planning Tools for Climate Change Mitigation: Lincoln Institute of Land Policy.
Cottrell, F. (1955). Energy and Society: The Relaton Between Energy, Social Change, and Economic Development. New York: McGraw-Hill.
Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P., & Seto, K. C. (2015). Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proceedings of the National Academy of Sciences, 112(20), 6283-6288. doi:10.1073/pnas.1315545112 %J Proceedings of the National Academy of Sciences
Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K.Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx. (2014). IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (C. U. Press Ed.). Cambridge, United Kingdom and New York, NY, USA.
Emmanuel, R. (2016). Urban Climate Challenges in the Tropics - Introduction. In (pp. 1-30).
Ewing, R., & Cervero, R. (2010). Travel and the Built Environment. Journal of the American Planning Association, 76(3), 265-294. doi:10.1080/01944361003766766
Ewing, R., & Rong, F. (2008). The impact of urban form on U.S. residential energy use. Housing Policy Debate, 19(1), 1-30. doi:10.1080/10511482.2008.9521624new window
Forsyth, A., Oakes, J. M., Schmitz, K. H., & Hearst, M. (2007). Does Residential Density Increase Walking and Other Physical Activity? Urban Studies, 44(4), 679-697. doi:10.1080/00420980601184729
Frank, L. D., & Pivo, G. (1994). Impacts of mixed use and density on utilization of three modes of travel: single-occupant vehicle, transit, and walking. Transportation Research Record, 1466, 44-52.
Futcher, J. A., & Mills, G. (2013). The role of urban form as an energy management parameter. Energy Policy, 53, 218-228. doi:https://doi.org/10.1016/j.enpol.2012.10.080
Haas, W., Krausmann, F., Wiedenhofer, D., & Heinz, M. (2015). How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005. Journal of Industrial Ecology, 19(5), 765-777. doi:10.1111/jiec.12244
Heath, G., Brownson, R., Kruger, J., Miles, R., Powell, K., & Ramsey, L. (2006). The Effectiveness of Urban Design and Land Use and Transport Policies and Practices to Increase Physical Activity: A Systematic Review. Journal of Physical Activity and Health, 3, S55-S76. doi:10.1123/jpah.3.s1.s55
Hoppenbrouwer, E., & Louw, E. (2005). Mixed-use development: Theory and practice in Amsterdam's Eastern Docklands. European Planning Studies, 13(7), 967-983. doi:10.1080/09654310500242048
Huang, S.-L. (1998). Urban ecosystems, energetic hierarchies, and ecological economics of Taipei metropolis. Journal of Environmental Management, 52(1), 39-51. doi:https://doi.org/10.1006/jema.1997.0157new window
Huang, S.-L., & Chen, C.-W. (2005). Theory of urban energetics and mechanisms of urban development. Ecological Modelling, 189(1), 49-71. doi:https://doi.org/10.1016/j.ecolmodel.2005.03.004new window
Huang, S.-L., & Hsu, W.-L. (2003). Materials flow analysis and emergy evaluation of Taipei’s urban construction. Landscape and urban planning, 63(2), 61-74. doi:https://doi.org/10.1016/S0169-2046(02)00152-4
Huang, S.-L., Lai, H.-Y., & Lee, C.-L. (2001). Energy hierarchy and urban landscape system. Landscape and urban planning, 53(1), 145-161. doi:https://doi.org/10.1016/S0169-2046(00)00150-Xnew window
IEA, (2015). CO2 Emissions from Fuel Combustion Highlights. International Energy Agency.
IEA, (2019). CO2 Emissions from Fuel Combustion Highlights. International Energy Agency.
Ishii, S., Tabushi, S., Aramaki, T., & Hanaki, K. (2010). Impact of future urban form on the potential to reduce greenhouse gas emissions from residential, commercial and public buildings in Utsunomiya, Japan. Energy Policy, 38(9), 4888-4896. doi:https://doi.org/10.1016/j.enpol.2009.08.022
Jabareen, Y. R. (2006). Sustainable Urban Forms:Their Typologies, Models, and Concepts. 26(1), 38-52. doi:10.1177/0739456x05285119new window
Kennedy, C. A., Stewart, I., Facchini, A., Cersosimo, I., Mele, R., Chen, B., . . . Sahin, A. D. (2015a). Energy and material flows of megacities. Proceedings of the National Academy of Sciences, 112(19), 5985-5990. doi:10.1073/pnas.1504315112
Kennedy, C. A., Stewart, I., Facchini, A., Cersosimo, I., Mele, R., Chen, B., . . . Sahin, A. D. (2015b). Energy and material flows of megacities. 112(19), 5985-5990. doi:10.1073/pnas.1504315112/-/DCSupplemental
Kickert, C. C., Pont, M. B., & Nefs, M. (2014). Surveying density, urban characteristics, and development capacity of station areas in the Delta Metropolis. Environment and Planning B: Planning and Design, 41(1), 69-92.new window
Lee, J. M., & Braham, W. W. (2017). Building emergy analysis of Manhattan: Density parameters for high-density and high-rise developments. Ecological Modelling, 363, 157-171. doi:https://doi.org/10.1016/j.ecolmodel.2017.08.014
Lee, T.-C., Peng, S.-K., Yeh, C.-T., & Tseng, C.-Y. (2018). Bottom-up approach for downscaling CO2 emissions in Taiwan: robustness analysis and policy implications. Journal of Environmental Planning and Management, 61(4), 656-676. doi:10.1080/09640568.2017.1329714
Lee, Y.-C., Huang, S.-L., & Liao, P.-T. (2019). Land teleconnections of urban tourism: A case study of Taipei’s agricultural souvenir products. Landscape and urban planning, 191, 103616. doi:https://doi.org/10.1016/j.landurbplan.2019.103616
Lin, F.-Y., Lin, T.-P., & Hwang, R.-L. (2017). Using geospatial information and building energy simulation to construct urban residential energy use map with high resolution for Taiwan cities. Energy and Buildings, 157, 166-175. doi:https://doi.org/10.1016/j.enbuild.2017.01.040
Liu, Y., Song, Y., & Song, X. (2014). An empirical study on the relationship between urban compactness and CO2 efficiency in China. Habitat International, 41, 92-98. doi:https://doi.org/10.1016/j.habitatint.2013.07.005
Ma, J., Liu, Z., & Chai, Y. (2015). The impact of urban form on CO2 emission from work and non-work trips: The case of Beijing, China. Habitat International, 47, 1-10. doi:https://doi.org/10.1016/j.habitatint.2014.12.007
Madlener, R., & Sunak, Y. (2011). Impacts of urbanization on urban structures and energy demand: What can we learn for urban energy planning and urbanization management? Sustainable Cities and Society, 1(1), 45-53. doi:https://doi.org/10.1016/j.scs.2010.08.006new window
Makido, Y., Dhakal, S., & Yamagata, Y. (2012). Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. Urban Climate, 2, 55-67. doi:https://doi.org/10.1016/j.uclim.2012.10.006
March, L. (1972). Elementary models of built forms. In L. Martin & L. March (Eds.), Urban Space and Structures (pp. 55-96). Cambridge: Cambridge University Press.
Marcotullio, P. J., Sarzynski, A., Albrecht, J., & Schulz, N. (2012). The geography of urban greenhouse gas emissions in Asia: A regional analysis. Global Environmental Change, 22(4), 944-958. doi:https://doi.org/10.1016/j.gloenvcha.2012.07.002
Marshall, J. D. (2008). Energy-Efficient Urban Form. Environmental Science & Technology, 42(9), 3133-3137. doi:10.1021/es087047l
McCormack, E., Rutherford, G. S., & Wilkinson, M. G. (2001). Travel Impacts of Mixed Land Use Neighborhoods in Seattle, Washington. Transportation Research Record, 1780(1), 25-32. doi:10.3141/1780-04new window
Meurs, H., & Haaijer, R. (2001). Spatial structure and mobility. Transportation Research Part D: Transport and Environment, 6, 429-446. doi:10.1016/S1361-9209(01)00007-4
Moudon, A. V. (1997). Urban morphology as an emerging interdisciplinary field. Urban Morphology, 1, 3-10.new window
Müller, D. B., Liu, G., Løvik, A. N., Modaresi, R., Pauliuk, S., Steinhoff, F. S., & Brattebø, H. (2013). Carbon Emissions of Infrastructure Development. Environmental Science & Technology, 47(20), 11739-11746. doi:10.1021/es402618m
Næss, P. (2006). Accessibility, Activity Participation and Location of Activities: Exploring the Links between Residential Location and Travel Behaviour. Urban Studies, 43(3), 627-652. doi:10.1080/00420980500534677
Newman, P. W. G. (1999). Sustainability and cities : overcoming automobile dependence / Peter Newman, Jeffrey Kenworthy. Washington, D. C: Island Press.
Newman, P. W. G., & Kenworthy, J. R. (1989a). Cities and Automobile Dependence: A Sourcebook: Gower.
Newman, P. W. G., & Kenworthy, J. R. (1989b). Gasoline Consumption and Cities. Journal of the American Planning Association, 55(1), 24-37. doi:10.1080/01944368908975398new window
Newton, P. W. T., S. N.; Ambrose, M. (2000). Housing form, energy use and greenhouse gas emissions. In Achieving sustainable urban form (pp. 74-83). London: E &FN Spon.
Odum, H. T. (1983). Systems Ecology. New York: John Wiley and Sons.
Odum, H. T., & Odum, P. H. T. (1996). Environmental Accounting: Emergy and Environmental Decision Making: Wiley.
Panerai, P., Castex, J., Depaule, J. C., Samuels, I., & Samuels, O. V. (2012). Urban forms: The death and life of the urban block. Urban Forms: The Death and Life of the Urban Block, 1-222. doi:10.4324/9780080481548
Perkins, A., Hamnett, S., Pullen, S., Zito, R., & Trebilcock, D. (2009). Transport, Housing and Urban Form: The Life Cycle Energy Consumption and Emissions of City Centre Apartments Compared with Suburban Dwellings. Urban Policy and Research, 27, 377-396. doi:10.1080/08111140903308859
Rode, P., Keim, C., Robazza, G., Viejo, P., & Schofield, J. (2014). Cities and energy: urban morphology and residential heat-energy demand. Environment and Planning B: Planning and Design, 41(1), 138-162.new window
Rosenzweig, C., Solecki, W., Hammer, S. A., & Mehrotra, S. (2010). Cities lead the way in climate-change action. Nature, 467(7318), 909-911.
Rotem Mindali, O., Raveh, A., & Salomon, I. (2004). Urban density and energy consumption: A new look at old statistics. Transportation Research Part A: Policy and Practice, 38, 143-162. doi:10.1016/j.tra.2003.10.004
Salat, S. (2009). Energy loads, CO2 emissions and building stocks: morphologies, typologies, energy systems and behaviour. Building Research & Information, 37(5-6), 598-609. doi:10.1080/09613210903162126
Salon, D., Boarnet, M. G., Handy, S., Spears, S., & Tal, G. (2012). How do local actions affect VMT? A critical review of the empirical evidence. Transportation Research Part D: Transport and Environment, 17(7), 495-508. doi:https://doi.org/10.1016/j.trd.2012.05.006
Seto, K. C., Dhakal, S., Bigio, A., Blanco, H., Delgado, G. C., Dewar, D., . . . Lwasa, S. (2014). Human settlements, infrastructure and spatial planning.
Shih, W. (2017). Greenspace patterns and the mitigation of land surface temperature in Taipei metropolis. Habitat International, 60, 69-80. doi:https://doi.org/10.1016/j.habitatint.2016.12.006
Shim, G.-E., Rhee, S.-M., Ahn, K.-H., & Chung, S.-B. (2006). The relationship between the characteristics of transportation energy consumption and urban form. The Annals of Regional Science, 40(2), 351-367. doi:10.1007/s00168-005-0051-5
Sjoberg, G. (1960). The Preindustrial City: Past and Present. The Free Press.
Sjoberg, G. (1979). The origin and evolution of cities. In: Civillization: Reading from Scientific American. San Francisco: W. H. Freeman and Co.
Srinivasan, R. S., Braham, W. W., Campbell, D. E., & Curcija, C. D. (2012). Re(De)fining Net Zero Energy: Renewable Emergy Balance in environmental building design. Building and Environment, 47, 300-315. doi:https://doi.org/10.1016/j.buildenv.2011.07.010
Srinivasan, R., & Moe, K. (2015). The Hierarchy of Energy in Architecture Emergy Analysis. London: Routledge.
Srinivasan, S., & Rogers, P. (2005). Travel behavior of low-income residents: studying two contrasting locations in the city of Chennai, India. Journal of Transport Geography, 13(3), 265-274. doi:https://doi.org/10.1016/j.jtrangeo.2004.07.008
Steadman, P. (2014). Density and built form: Integrating 'Spacemate' with the work of Martin and March. Environment and Planning B: Planning and Design, 41, 341-358. doi:10.1068/b39141
Steemers, K. (2003). Energy and the City: Density, Buildings and Transport. Energy and Buildings, 35, 3-14. doi:10.1016/S0378-7788(02)00075-0
Stojanovski, T. (2019a). Swedish Typo-Morphology - Morphological Conceptualizations and Implication for Urban Design. Iconarp International J. of Architecture and Planning, 7, 135-157. doi:10.15320/ICONARP.2019.81
Stojanovski, T. (2019b). Swedish Typo-Morphology – Morphological Conceptualizations and Implication for Urban Design. 2019, 7, 23. doi:10.15320/iconarp.2019.81
Unger, J., Sümeghy, Z., Gulyás, Á., Bottyán, Z., & Mucsi, L. (2001). Land-use and meteorological aspects of the urban heat island. Meteorological Applications, 8(2), 189-194. doi:10.1017/s1350482701002067
Wang, S.-H., Huang, S.-L., & Huang, P.-J. (2018). Can spatial planning really mitigate carbon dioxide emissions in urban areas? A case study in Taipei, Taiwan. Landscape and urban planning, 169, 22-36.
WBCSD, WRI (2004). The GHG Protocol Corporate Accounting and Reporting Standard. World Business Council for Sustainable Developmen, World Resources Institute, Washington, DC.
Williams, K., Burton, E., & Jenks, M. (2000). Achieving Sustainable Urban Form.
Wilson, E., & Piper, J. (2010). Spatial Planning and Climate Change: Routledge.
WRI, ICLEI, C40 (2014). Global Protocol for Community-Scale Greenhouse Gas Emission Inventories. World Resources Institute, C40 Cities Climate Leadership Group, ICLEI - Local Governments for Sustainability.
Yi, H., Srinivasan, R. S., & Braham, W. W. (2015). An integrated energy–emergy approach to building form optimization: Use of EnergyPlus, emergy analysis and Taguchi-regression method. Building and Environment, 84, 89-104. doi:https://doi.org/10.1016/j.buildenv.2014.10.013
Yi, H., Srinivasan, R. S., Braham, W. W., & Tilley, D. R. (2017). An ecological understanding of net-zero energy building: Evaluation of sustainability based on emergy theory. Journal of Cleaner Production, 143, 654-671. doi:https://doi.org/10.1016/j.jclepro.2016.12.059

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE