:::

詳目顯示

回上一頁
題名:撐竿跳高持竿助跑速度、插竿起跳動作與成績表現之相關性分析
作者:楊木輝
作者(外文):Yang, Mu-Hui
校院名稱:臺北市立大學
系所名稱:競技運動訓練研究所
指導教授:何維華
學位類別:博士
出版日期:2020
主題關鍵詞:速度能力分段速度加速規陀螺儀運動選才Speed CapabilitySegmented VelocityAccelerometerGyroscopeSport Talent Identification
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
目地:本研究主要目的是探討國內優秀撐竿跳高選手持竿助跑速度、插竿起跳動作與成績表現之相關性。方法:研究對象為10名國內男子優秀撐竿跳高選手,使用雷射測速槍,測量其徒手跑、持竿跑和實跳助跑之5m分段平均速度以及持竿跑達到最高速度之距離;高速攝影機拍攝靜止及起跳上舉高度,並計算起跳時上舉高度利用率;加速規與陀螺儀感測器,分別置於撐竿彎竿面的前端、尾端及起跳腳脛前肌中間,以測量持竿助跑最後兩步至插竿階段的翻竿角速度 (deg/s) 變化。統計方法以皮爾森積差相關分析各變項間之相關性,顯著水準定為 (p<.05)。結果:撐竿跳高成績表現與選手持竿跑最高5m分段平均速度、靜止上舉高度和起跳時上舉高度有顯著正相關;持竿跑最高5m分段平均速度與實跳助跑最後5m之平均速度有顯著正相關;助跑速度利用率與持竿跑達到最高速度所需之距離和實跳助跑距離之差值有顯著負相關;靜止上舉高度與起跳時上舉高度有顯著正相關;倒數第二步翻竿速度與起跳時上舉高度利用率有顯著正相關。結論:持竿跑最高分段速度能力,適合做為撐竿跳高選手評估專項能力狀態及潛力之重要指標;實跳助跑最後5m之平均速度的差異,是國內優秀選手成績低於國際優秀選手的主因;選手個人的助跑距離與持竿跑達到最高速度所需之距離差距過大,導致其速度利用率低,可能是影響助跑速度因素之一;選手的靜止上舉高度可做為選才及預測未來潛力條件之一;起跳時上舉高度利用率適合做為專項能力的重要指標;提高持竿助跑最後兩步至插竿的翻竿速度,可能有助於增加起跳時身體達到最大的伸展來提升較高的上舉高度利用率。實務訓練上建議選手從持竿跑速度測驗中,找出個人從持竿跑起動後達到最高速所需之距離為基準,適當應用在撐竿跳高助跑距離,以提升其實跳助跑速度利用率及發揮個人的速度水準。另外在助跑最後兩步過程中,教練可視選手的條件,指導選手從短程助跑中以循序漸進的方式熟練插竿的技術,特別注重助跑最後兩步至插竿階段的翻竿動作速度,最後再嘗試將助跑距離逐步拉長至接近其全程距離,以發揮個人最高上舉高度的效率,以期提高成績表現。
Purpose: The purpose of this study was to investigate the Relationship between Approach, Take-off, and pole vault performance. Methods: Ten domestic male elite pole vaulters were recruited. The study used: a laser speed gun was used to measure the average velocity of each 5m segment of their sprint running (SR), pole vault running (PVR, without jump), pole vault approach (PVA, with real jump), and the distance to the maximum velocity; high speed camera to capture the height of the top arm at static and take-off to calculate the utilization rate; sensors with Accelerometer and Gyroscope measure acceleration (g) and the pole’s angular velocity (deg/s) during the vaulter’s last two steps phase. Pearson's correlation was used to analyze whether there is a significant correlation between variables. Results: The maximum average velocity of 5m segment of the PVR, the standing height of the top arm, the height of the top arm at take-off are significantly positively correlated with the PV performance; The maximum average velocity of 5m segment of the PVR is significantly positively correlated with the last 5m PVA average velocity; The utilization rate of the PVA velocity is significantly negatively correlated with the difference between the distance to the maximum velocity of PVR and the distance of PVA; The standing height of the top arm is significantly positively correlated with the height of the top arm at take-off; The angular velocity of the pole flip during the last two steps is significantly positively correlated with the utilization rate of the height of the top arm at take-off. Conclusion: The standing height of the top arm should be one of the selection conditions of pole vaulters. The maximum speed capability of the PVR segment and the height of the top arm are both important indicators to evaluate the specialized ability and potential in the pole vaulter; The difference on pole vault performances between the domestic and international elite pole vaulters could be results from the last 5m PVA. The approach distance of the domestic elite pole vaulters is generally insufficient, resulting in low velocity utilization rate, which might affect the approach velocity. Special attention should also be placed to the technique training of the speed of the pole flip during the last two steps. It is suggested that during training, the pole vaulter can find out the distance required to reach the highest velocity after starting from the PVR test, and apply it properly to the approach distance of the pole vault to improve the utilization rate of the PVA and reach to the individual’s highest speed, as well as focus on increasing the speed of the pole flip so that the pole vaulter can more efficiently fully extend their body at take-off, thereby further increasing the height of the top hand at take-off.
中文部份
王建畯 (1999)。撐竿跳高選手持竿助跑與起跳動作技術分析與技術訓練之研究 (未出版碩士論文)。中國文化大學,台北市。
王淑華、陳九州、陳志中 (2000)。我國優秀跳遠選手助跑速度與助跑速度利用率分析。北體學報,7,193-206。
有川星女、遠藤俊典、塚田卓巳、豊嶋陵司、小山宏之、田内健二 (2016)。棒高跳の跳躍動作における女子世界トップレベル選手の特徴同記録の男子選手と比較して。体育学研究,61,651-662。
官美璉、張立羣、許弘恩 (2011)。撐竿跳高技術的能量觀點。臺灣體育論壇,2,41-49。
孫南 (2001)。國際田徑總會書報,15,35-37。
秦文宏 (2002)。我國優秀女子撐竿跳高運動員高淑英撐竿跳高技術的運動學診斷。體育科學,22(4),72-76。
張武紀、王代才 (1994)。論現代撐竿跳高技術。成都體育學院學報, 20(4),26-32。
張華新、田坤 (2001)。布勃卡撐竿跳高技術特點分析。浙江體育科學,23(2),22-24。
張維綱、許弘恩、許弘毅、王進華 (2008)。臺灣撐竿跳高運動選手造成掉落性傷害之調查研究。大專體育學刊,10(2),149-156。
許占鳴 (2009)。對我國優秀男子撐竿跳高運動員起跳階段速度特徵的分析 (未出版碩士論文)。北京體育大學,北京市。
許弘恩、湯文慈 (2009)。現代撐竿跳高運動竿子之特性與選擇。中華體育季刊,23(2),94-102。
許樹淵 (1992)。田徑論。臺北市:偉彬體育研究社。
游正忠 (2008)。撐竿器具與起跳動作對撐竿跳高選手成績影響之分析。輔仁大學體育學刊,7,16-27。
黃宏春、游正忠 (2007)。撐竿跳高選手起跳階段手臂與腿部動作對成績表現之分析。輔仁大學體育學刊,6,47-58。
黃宏春、游正忠 (2009)。撐竿跳高選手起跳動作之生物力學分析。高苑學報,15,379-392。
楊木輝 (2004)。國內優秀撐竿跳高選手持竿助跑最後三步及起跳之運動學分析 (未出版碩士論文)。國立體育學院,桃園縣。
葉憲清 (1984)。競技撐竿跳高起跳動學分析。國民體育季刊,12(4),73-79。
鄒克寧 (2012)。跳遠助跑速度利用率模型的提出及驗證。武漢體育學院學報,46(4),61-64。
劉正泉 (2002)。影響我國撐竿跳高運動成績的主要因素。體育函授通訊,18(1),65-66。
謝慧松、周鐵民、葛蘊 (2007)。撐竿跳高運動員助跑速度與其成績的相關研究。山東體育科技,29(3),1-3。
羅元鴻、黃宏春 (2008)。男子撐竿跳高選手持竿助跑最後四步與起跳動作之運動學分析。長榮運動休閒學刊,2,37-45。







外文部份
Angulo-Kinzler, R. M., Kinzler, S. B., Balius, X., Turro, C., Caubet, J. M., Escoda, Escoda J., & Prat A. J. (1994). Biomechanical analysis of the pole vault event. Journal of Applied Biomechanics, 10, 147-165.
Arampatzis, A., Schade,F., & Bruggemann, G. P. (2004). Effect of the pole–human bodyinteraction on pole vaulting performance pole vaulting performance. Journal of Biomechanics, 37(9), 1353-1360.
Brian (1998). Modern Pole Vault. Taf news Press. USA.
Bussabarger, D. (2013). Technical Analysis of Yelena Isinbayeva. Track Coach, 5713-5716.
Choi K. J., K., Yi O., Kim, N. H., Kang, J. E., & Kim, H. L. (2013). Comparative Analyses on Kinematic Variables of Women's Pole Vault Competition at IAAF World Championships Daegu 2011. Korean Journal of Sport Biomechanics. 23(3), 189-200.
Choil, K. J., Yi, K.O., Kim, N. H., Kang, J. E., Kim, H. L., Moon, J. H., & Jung, B. C. (2013). Comparative Analyses on Kinematic Variables of Women's Pole Vault Competition at IAAF World Championships Daegu 2011. Korean Journal of Sport Biomechanics. 23(3), 189-200.
Falk S, Juha I, Adamantios A, G. P. Brüggemann & P. Kom (2007). Biomechanical analysis of the pole vault at the 2005 IAAF World Championships in Athletics. IAAF. 22(2), 29-45.
Frère J, Chollet D, Tourny-Chollet C. (2009). Assessment of the influence of pole carriage on sprint kinematics: A case study of novice athletes. Int J Sports Sci Eng, 3, 3–10.
Frère, J., L’Hermette, M., Slawinski, J., Tourny-Chollet C. (2010). Mechanics of pole vaulting: a review. Sports Biomech. 9, 123–138.
Frèrea, J., Sanchezb, H., Homob, S., Rabitac, G., Morind, J. B., & Cassiramee, J. (2017). Influence of pole carriage on sprint mechanical properties during pole vault runup. Computer Methods in Biomechanics and Biomedical Engineering, 20(1), 83–84.
Ganslen, R. V. (1979). Mechanics of the Pole Vault. 176.
Gros, H. J. & Kunkel, V. (1990). Biomechanical analysis of the pole vault. Scientific Research Project at the Games of the 24th Olympiad-Seoul 1988, Final Report. 219-260.
Helen, J. G., & Athanassios, B. (2017). Biomechanical report for the pole vault men’s in IAAF world championship. Biomechanics Research - IAAF World Championships, London 2017. 1-22.
Julien F., Maxime L., Jean S., & Claire T. C. (2010). Mechanics of pole vaulting: a review. Sports Biomechanics, 9(2), 123-138.
Julien, F., Didier, C., & Claire, T. C. (2009). Assessment of the Influence of Pole Carriage on Sprint Kinematics: A Case Study of Novice Athletes. International Journal of Sports Science and Engineering, 3(1), 3-10.
Krska, P., Sedlacek J., & Kostial, J. (2014). Influence of Selected Kinetic Parameters in Female Pole Vault on Sport Serformance. Studia Universitatis Babes-Bolyai, Educatio Artis Gymnasticae, 59(4), 5-16.
Linthorne, N. P. (2000). Energy loss in the pole vault take-off and the advantage of the flexible pole. Sports Engineering, 3, 205–218.
Linthorne, N. P., & Gemma Weetman, A. H. (2012). Effects of run-up velocity on performance, kinematics, and energy exchanges in the pole vault. Journal of Sports Science and Medicine, 11, 245-254.
Moguš, D., Jukić, J., Čavala, M. (2018). differences in some kinematic parameters in pole vaulters of different qualities. Sport Science 11(1), 29-34.
Needham, L., Bezodis. I., Exell, T., & Irwin, G. (2018). Patterns of locomotor regulation during the pole vault approach phase. Journal of Sports Sciences, 36,1742-1748.
Pavlović, R., Vrcić, M., Savić, V., Skrypchenko, I., Németh, Z., & Khafagy, A. (2019) The differences of kinematic parameters pole vault between male and female final lists world championship in daegu, 2011. European Journal of Physical Education and Sport Science, 3(5), 1-16.
Steben, E. (1970). A cinematographic study of selective factors in the pole vault. Research quarterly, 41(1), 95-104.
Tamural, Y., Nunome, H., Usui, S. (2017). The Difference in Gait Regulation Strategies Between Successful and Failed Pole Vault Performance. Journal of Sports Science, 5, 211-214.
Young, A. (2002). A technical model for pole vault success. Track Coach, 161, 5129-5133.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE