:::

詳目顯示

回上一頁
題名:以太陽能與風能電氣化高速公路運輸
作者:阮凡克
作者(外文):Nguyen Van Can
校院名稱:國立中央大學
系所名稱:工業管理研究所
指導教授:王啟泰
學位類別:博士
出版日期:2021
主題關鍵詞:全球暖化溫室氣體電動汽車高速公路再生能源最佳化模型global warminggreenhouse gas (GHG)electric vehicleshighwayrenewable energyoptimization model
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
全球暖化引起強烈公民意識的浪潮,減少溫室氣體排放成為重中之重。實現此目標的所有可行方法中,使用再生能源替代化石燃料和電動汽車(EV)替代傳統內燃機汽車無疑是當務之急。但現在缺乏實際方法測量再生能源與電動汽車供電於大型公路網中的合適組合,同時考慮再生能源的季節性供應及可能需要在某些位置通過電網規模安裝的電池調節再生能源的產出和消耗陣列。根據如此迫切的需求,本文提出使用混合整數規劃(MIP)模型。此外,關於台灣國道綜合案例涵蓋的有用資訊,如準備關鍵數據的過程,尤其是當地太陽能、風能和高速公路交通,對模型解決方案進行深入分析,提供整個地區再生能源的總體可用性公路網,並仔細評估投資所需。這些發現支持國家高速公路上使用再生能源為電動汽車供電,並展現當地企業參與的重要性。但相對較小的國家(如台灣)於再生能源供應方面仍會顯示出很大的差異。在電力使用獨立設置中,這些變化將導致大量再生能源在某些季節不被公路旅行使用。這些細節證明本研究所提出模型在實際情況下的適用性和價值。
Global warming has triggered waves of public awareness to surface very strongly all over the world, urging to eliminate all greenhouse gas emissions in a timely fashion. Among all feasible approaches to achieving this goal, the use of renewables to replace fos-sil fuels and electric vehicles (EVs) to replace conventional internal combustion engine ve-hicles is arguably a top-priority task. However, there is a severe lack of practical ap-proaches to measuring a proper renewable mix for powering EVs in a large highway net-work, while also considering renewables’ seasonal availability and the possible need to regulate the production and consumption of renewable energy with grid-scale battery ar-rays installed at certain locations. This urgent need motivates the development of the mixed-integer programming model as presented in this paper. Furthermore, a comprehen-sive case study on Taiwan’s national highways covers such useful knowledge as the pro-cess to prepare key numeric data, especially, local solar and wind energy and highway traf-fic, in-depth analysis on model solutions to reveal the overall availability of renewable en-ergy across the highway network, and close measurements on the required investments. These findings support the use of renewable energy to power EVs on a national highway and reveal the importance of local business involvements. However, a relatively small country such as Taiwan can still display significant variations in renewable power availabil-ity. In a standalone setting for power usage, these variations would result in massive volumes of renewable energy not used by highway travel in some seasons. These details demonstrate the applicability and values of the proposed model in a real situation.
[1] Australian Energy Market Commission (AEMC). System Services Consultation Response. 2020. Available online: https://www.aemc.gov.au/ (accessed on 27 April 2021).
[2] Aghamohammadi, M.R.; Abdolahinia, H. A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded Microgrid. Int. J. Elec. Power 2014, 54, 325-333, doi:10.1016/j.ijepes.2013.07.005.
[3] Ahi, P.; Searcy, C. A comparative literature analysis of definitions for green and sustain-able supply chain management. J. Clean. Prod. 2013, 52, 329-341, doi:10.1016/j.jclepro.2013.02.018.
[4] Al Wahedi, A.; Bicer, Y. Development of an off-grid electrical vehicle charging station hybridized with renewables including battery cooling system and multiple energy storage units. Energy Rep. 2020, 6, 2006-2021, doi:10.1016/j.egyr.2020.07.022.
[5] Alhazmi, Y.A.; Mostafa, H.A.; Salama, M.M.A. Optimal allocation for electric vehicle charging stations using Trip Success Ratio. Int. J. Elec. Power 2017, 91, 101-116, doi:10.1016/j.ijepes.2017.03.009.
[6] Bapna, R.; Thakur, L.S.; Nair, S.K. Infrastructure development for conversion to environmentally friendly fuel. Eur. J. Oper. Res. 2002, 142, 480-496, doi: 10.1016/S0377-2217(01)00309-5.
[7] Bhatti, A.R.; Salam, Z.; Aziz, M.J.B.; Yee, K.P.; Ashique, R.H. Electric vehicles charging using photovoltaic: Status and technological review. Renew. Sustain. Energy Rev. 2016, 54, 34-47, doi:10.1016/j.rser.2015.09.091.
[8] BYD Company. Product Brochure of Electric Bus. 2017. Available at: https://sg.byd.com/c8/ (accessed on 15 July 2019).
[9] Capar, I.; Kuby, M. An efficient formulation of the flow refueling location model for alternative-fuel stations. IIE. Trans. 2012, 44, 622-636, doi:10.1080/0740817x.2011.635175.
[10] Capar, I.; Kuby, M.; Leon, V.J.; Tsai, Y.J. An arc cover-path-cover formulation and stra-tegic analysis of alternative-fuel station locations. Eur. J. Oper. Res. 2013, 227, 142-151, doi:10.1016/j.ejor.2012.11.033.
[11] Chandra Mouli, G.R.; Bauer, P.; Zeman, M. System design for a solar powered electric vehicle charging station for workplaces. Appl. Energy 2016, 168, 434-443, doi:10.1016/j.apenergy.2016.01.110.
[12] Chen, T.D.; Kockelman, K.M.; Khan, M. Locating electric vehicle charging stations: Parking-based assignment method for Seattle, Washington. Transport. Res. Rec. 2013, 10.3141/2385-04, 28-36, doi:10.3141/2385-04.
[13] Chen, Z.B.; He, F.; Yin, Y.F. Optimal deployment of charging lanes for electric vehicles in transportation networks. Transp. Res. Part B Methodol. 2016, 91, 344-365, doi:10.1016/j.trb.2016.05.018.
[14] Chu, S.; Goldemberg, J.; Arungu-Olende, S.; El-Ashry, M.; Davis, G.; Nakicenovic, N. Lighting the Way: Toward a Sustainable Energy Future; InterAcademy Council: Am-sterdam, Netherlands, 2007.
[15] Chung, S.H.; Kwon, C. Multi-period planning for electric car charging station locations: A case of Korean Expressways. Eur. J. Oper. Res. 2015, 242, 677-687, doi:10.1016/j.ejor.2014.10.029.
[16] Ciel & Terre International. 2019. Available online: https://www.ciel-et-terre.net/ (ac-cessed on 18 September 2019).
[17] Copernicus Climate Data Store. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 27 June 2020).
[18] Data Bank for Atmospheric & Hydrologic Research (DBAHR). Taiwan Meteorological Data. Available online: https://dbar.pccu.edu.tw/ (accessed on 24 June 2020).
[19] E-Force. E-Trucks 18-44t Specifications. 2018. Available at: https://eforce.ch/images/pdf/Datenblatt-E-Trucks-EN.pdf (accessed on 28 July 2019).
[20] European Chamber of Commerce Taiwan. 2018. Available online: https://www.ecct.com.tw/update-on-taiwans-energy-and-carbon-reduction-policies/# (accessed on 25 July 2019).
[21] European Environment Agency (EEA). Electric Vehicles in Europe; European Environ-ment Agency: Copenhagen, Denmark, 2016.
[22] Figueiredo, R.; Nunes, P.; Brito, M.C. The feasibility of solar parking lots for electric vehicles. Energy 2017, 140, 1182-1197, doi:10.1016/j.energy.2017.09.024.
[23] Frade, I.; Ribeiro, A.; Goncalves, G.; Antunes, A.P. Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal. Transport. Res. Rec. 2011, 10.3141/2252-12, 91-98, doi:10.3141/2252-12.
[24] Fuller, M. Wireless charging in California: Range, recharge, and vehicle electrification. Transp. Res. Part C Emerg. Technol. 2016, 67, 343-356, doi:10.1016/j.trc.2016.02.013.
[25] García-Olivares, A.; Solé, J.; Osychenko, O. Transportation in a 100% renewable energy system. Energy Convers. Manag. 2018, 158, 266-285, doi:10.1016/j.enconman.2017.12.053.
[26] Ghamami, M.; Kavianipour, M.; Zockaie, A.; Hohnstadt, L.R.; Ouyang, Y.F. Refueling infrastructure planning in intercity networks considering route choice and travel time de-lay for mixed fleet of electric and conventional vehicles. Transp. Res. Part C Emerg. Technol. 2020, 120, doi:10.1016/j.trc.2020.102802.
[27] , M.; Zockaie, A.; Nie, Y. A general corridor model for designing plug-in electric vehicle charging infrastructure to support intercity travel. Transp. Res. Part C Emerg. Technol. 2016, 68, 389-402, doi:10.1016/j.trc.2016.04.016.
[28] Gkavanoudis, S. I.; Oureilidis, K. O.; Kryonidis, G. C.; Demoulias, C. S. A control method for balancing the SoC of distributed batteries in Islanded converter-interfaced Microgrids. Advances in Power Electr. 2016, 11, doi.org/10.1155/2016/8518769.
[29] Grunditz, E.A.; Thiringer, T. Performance analysis of current BEVs based on a compre-hensive review of specifications. IEEE Trans. Transp. Electrif. 2016, 2, 270-289, doi:10.1109/Tte.2016.2571783.
[30] He, F.; Wu, D.; Yin, Y.F.; Guan, Y.P. Optimal deployment of public charging stations for plug-in hybrid electric vehicles. Transp. Res. Part B Methodol. 2013, 47, 87-101, doi:10.1016/j.trb.2012.09.007.
[31] He, Y.W.; Kockelman, K.M.; Perrine, K.A. Optimal locations of US fast charging stations for long-distance trip completion by battery electric vehicles. J. Clean. Prod. 2019, 214, 452-461, doi:10.1016/j.jclepro.2018.12.188.
[32] Helmers, E.; Dietz, J.; Weiss, M. Sensitivity analysis in the life-cycle assessment of electric vs. combustion engine cars under approximate real-world conditions. Sustainability 2020, 12, doi:10.3390/su12031241.
[33] Hodgson, M.J. A flow-capturing location-allocation model. Geogr. Anal. 1990, 22, 270-279, doi.org/10.1111/j.1538-4632.1990.tb00210.x.
[34] Hong, Y.Y.; Lai, Y.Z.; Chang, Y.R.; Lee, Y.D.; Lin, C.H. Optimizing energy storage capacity in islanded microgrids using immunity-based multiobjective planning. Energies 2018, 11, doi: 10.3390/en11030585.
[35] Huang, Y.X.; Li, S.Y.; Qian, Z.S. Optimal deployment of alternative fueling stations on transportation networks considering deviation paths. Netw. Spat. Econ. 2015, 15, 183-204, doi:10.1007/s11067-014-9275-1.
[36] International Energy Agency (IEA). CO2 Emissions from Fuel Combustion Highlights; International Energy Agency: Paris, France, 2014.
[37] International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050; IRENA: Abu Dhabi, UAE, 2018.
[38] International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2018; IRENA: Abu Dhabi, UAE, 2019.
[39] Ip, A.; Fong, S.; Liu, E. Optimization for allocating BEV recharging stations in urban areas by using hierarchical clustering. In Proceedings of the 6th International Conference on Advanced Information Management and Service (IMS), Seoul, Korea, 2010; pp. 460-465.
[40] Jochem, P.; Brendel, C.; Reuter-Oppermann, M.; Fichtner, W.; Nickel, S. Optimizing the allocation of fast charging infrastructure for electric vehicles along the German Autobahn. J. Bus. Econ. 2016, 86, 513–535.
[41] Jochem, P.; Szimba, E.; Reuter-Oppermann, M. How many fast-charging stations do we need along European highways? Transp. Res. Part D Transp. Environ. 2019, 73, 120-129, doi:10.1016/j.trd.2019.06.005.
[42] Kim, J.Y.; Jeon, J.H.; Kim, S.K.; Cho, C.; Park, J.H.; Kim, H.M.; Nam, K.Y. Coopera-tive control strategy of energy storage system and microsources for stabilizing the mi-crogrid during islanded operation. IEEE T. Power Electr. 2010, 25, 3037-3048, doi:10.1109/Tpel.2010.2073488.
[43] Kuby, M.; Lim, S. The flow-refueling location problem for alternative-fuel vehicles. So-cio-Econ. Plan. Sci. 2005, 39, 125–145, doi.org/10.1016/j.seps.2004.03.001.
[44] Lambert, F. Tesla’s Massive Powerpack Battery in Australia Cost $66 Million and al-ready Made up to ~$17 Million. 2018. Available online: https://electrek.co/2018/09/24/tesla-powerpack-battery-australia-cost-revenue/ (accessed on 24 June 2020).
[45] Li, G.Y.; Sun, Q.; Boukhatem, L.; Wu, J.S.; Yang, J. Intelligent vehicle-to-vehicle charging navigation for mobile electric vehicles via VANET-based communication. IEEE Access 2019, 7, 170888-170906, doi:10.1109/Access.2019.2955927.
[46] Li, S.Y.; Huang, Y.X.; Mason, S.J. A multi-period optimization model for the deployment of public electric vehicle charging stations on network. Transp. Res. Part C Emerg. Technol. 2016, 65, 128-143, doi:10.1016/j.trc.2016.01.008.
[47] Liebreich, M. Global Trends in Clean Energy and Transportation. 2018. Available at: https://www.eventsmartenergy.ch/wp-content/uploads/2018/09/9-Michael-Liebreich.pdf (accessed on 5 October 2019).
[48] Lim, S.; Kuby, M. Heuristic algorithms for siting alternative-fuel stations using the Flow-Refueling Location Model. Eur. J. Oper. Res. 2010, 204, 51-61, doi:10.1016/j.ejor.2009.09.032.
[49] Lin, Y.P.; Zhang, K.; Shen, Z.J.M.; Miao, L.X. Charging network planning for electric bus cities: A case study of Shenzhen, China. Sustainability 2019, 11, doi:10.3390/su11174713.
[50] Liu, C.H.; Chau, K.T.; Wu, D.Y.; Gao, S. Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies. P. IEEE 2013, 101, 2409-2427, doi:10.1109/Jproc.2013.2271951.
[51] Lorf, C.; Martinez-Botas, R.F.; Howey, D.A.; Lytton, L.; Cussons, B. Comparative analysis of the energy consumption and CO2 emissions of 40 electric, plug-in hybrid electric, hybrid electric and internal combustion engine vehicles. Transp. Res. Part D Transp. Environ. 2013, 23, 12-19, doi:10.1016/j.trd.2013.03.004.
[52] Mazidi, M.; Zakariazadeh, A.; Jadid, S.; Siano, P. Integrated scheduling of renewable generation and demand response programs in a microgrid. Energy Convers. Manag. 2014, 86, 1118-1127, doi:10.1016/j.enconman.2014.06.078.
[53] Institute of Transportation MOTC. Available online: https://www.iot.gov.tw/mp-1.html (accessed on 13 April 2021).
[54] MirHassani, S.A.; Ebrazi, R. A flexible reformulation of the refuelling station location problem. Transport. Sci. 2013, 47, 617-628, doi:10.1287/trsc.1120.0430.
[55] Miyazato, Y.; Tobaru, S.; Uchida, K.; Muarapaz, C.C.; Howlader, A.M.; Senjyu, T. Mul-ti-objective optimization for equipment capacity in off-grid smart house. Sustainability 2017, 9, doi:10.3390/su9010117.
[56] Mourad, A.; Hennebel, M.; Amrani, A.; Hamida, A. B. Deploying Fast-charging Stations for Electric Vehicles Based on Mobility Flows and Local Photovoltaic Production. In Proceedings of 17th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 16-18 September 2020; pp. 1-6.
[57] Freeway Bureau MOTC. Network Map. 2021. Available online: https://www.freeway.gov.tw/english/way_net.aspx (accessed on 11 June 2021).
[58] Nelder, C.; Rogers, E. Reducing EV Charging Infrastructure Costs; Rocky Mountain In-stitute (RMI): Colorado, USA, 2019.
[59] Nie, Y.; Ghamami, M. A corridor-centric approach to planning electric vehicle charging infrastructure. Transp. Res. Part B Methodol. 2013, 57, 172-190, doi:10.1016/j.trb.2013.08.010.
[60] Noori, M.; Gardner, S.; Tatari, O. Electric vehicle cost, emissions, and water footprint in the United States: Development of a regional optimization model. Energy 2015, 89, 610-625, doi:10.1016/j.energy.2015.05.152.
[61] Onat, N.C.; Kucukvar, M.; Afshar, S. Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis. J. Clean. Prod. 2019, 212, 515-526, doi:10.1016/j.jclepro.2018.12.058.
[62] Rizet, C.; Cruz, C.; Vromant, M. The constraints of vehicle range and congestion for the use of electric vehicles for urban freight in France. Transp. Res. Procedia 2016, 12, 500–507, doi.org/10.1016/j.trpro.2016.02.005.
[63] Ruth, M.; Ozgun, O.; Wachsmuth, J.; Gossling-Reisemann, S. Dynamics of energy transitions under changing socioeconomic, technological and climate conditions in Northwest Germany. Ecol. Econ. 2015, 111, 29-47, doi:10.1016/j.ecolecon.2014.12.025.
[64] Salpakari, J.; Rasku, T.; Lindgren, J.; Lund, P.D. Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation. Appl. Energy 2017, 190, 800-812, doi:10.1016/j.apenergy.2017.01.005.
[65] Serradilla, J.; Wardle, J.; Blythe, P.; Gibbon, J. An evidence-based approach for invest-ment in rapid-charging infrastructure. Energy Policy 2017, 106, 514-524, doi:10.1016/j.enpol.2017.04.007.
[66] Shen, Z.J.M.; Feng, B.; Mao, C.; Ran, L. Optimization models for electric vehicle service operations: A literature review. Transp. Res. Part B Methodol. 2019, 128, 462-477, doi:10.1016/j.trb.2019.08.006.
[67] Shukla, A.; Pekny, J.; Venkatasubramanian, V. An optimization framework for cost effective design of refueling station infrastructure for alternative fuel vehicles. Comput. Chem. Eng. 2011, 35, 1431-1438, doi:10.1016/j.compchemeng.2011.03.018.
[68] Simchi-Levi, D.; Berman, O. A heuristic algorithm for the traveling salesman location problem on networks. Oper. Res. 1988. 36, 478–484, doi.org/10.1287/opre.36.3.478.
[69] SolarPower Europe. Global Market Outlook for Solar Power 2018–2022; SolarPower Europe: Brussels, Belgium, 2018.
[70] Sufyan, M.; Abd Rahim, N.; Tan, C.; Muhammad, M.A.; Raihan, S.R.S. Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation. Plos One 2019, 14, doi:10.1371/journal.pone.0211642.
[71] Taiwan Power Company. Solar and wind energy generation. 2020. Available online: https://www.taipower.com.tw/tc/page.aspx?mid=96 (accessed on 24 June 2020).
[72] The Colas Group. 2019. Available online: http://www.wattwaybycolas.com/ (accessed on 16 August 2019).
[73] Traffic Information Service. Highway Travel Data. 2020. Available online: http://tisvcloud.freeway.gov.tw/ (accessed on 10 June 2020).
[74] Tran, T.H.; Nguyen, T.B.T. Alternative-fuel station network design under impact of station failures. Ann. Oper. Res. 2019, 279, 151-186, doi:10.1007/s10479-018-3054-1.
[75] Transport & Environment. Too Big to Ignore- Truck CO2 Emissions in 2030. 2015. Available online: https://www.transportenvironment.org/publications/too-big-ignore-%E2%80%93-truck-co2-emissions-2030 (accessed on 13 April 2021).
[76] U.S. Environmental Protection Agency (EPA). Fuel Economy Testing and Labeling. 2018. Available at: https://www.fueleconomy.gov/feg/download.shtml (accessed on 15 April 2019).
[77] United Nations Environment Programme (UNEP). Emissions Gap Report 2017; United Nations Environment Programme: Nairobi, Kenya, 2017.
[78] United Nations. Adoption of the Paris Agreement (FCCC/CP/2015/L.9/Rev.1). 2015. Available online: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 7 April 2019).
[79] Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Hossain, E. A comprehen-sive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development. Energies 2017, 10, doi:10.3390/en10081217.
[80] Vieira, F.L.; Vieira, P.A.; Coelho, D.A. A data-driven approach to development of a taxonomy framework for triple bottom line metrics. Sustainability 2019, 11, doi: 10.3390/su11092717.
[81] Wang, G.B.; Xu, Z.; Wen, F.S.; Wong, K.P. Traffic-constrained multiobjective planning of electric-vehicle charging stations. IEEE Trans. Power Del. 2013, 28, 2363-2372, doi:10.1109/Tpwrd.2013.2269142.
[82] Wang, Y.W.; Lin, C.C. Locating road-vehicle refueling stations. Transp. Res. Part E Logist. Transp. Rev. 2009, 45, 821-829, doi:10.1016/j.tre.2009.03.002.
[83] Wang, Y.W.; Wang, C.R. Locating passenger vehicle refueling stations. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 791-801, doi:10.1016/j.tre.2009.12.001.
[84] Waraich, R.A.; Galus, M.D.; Dobler, C.; Balmer, M.; Andersson, G.; Axhausen, K.W. Plug-in hybrid electric vehicles and smart grids: Investigations based on a microsimulation. Transp. Res. Part C Emerg. Technol. 2013, 28, 74-86, doi:10.1016/j.trc.2012.10.011.
[85] Wei, W.; Mei, S.W.; Wu, L.; Shahidehpour, M.; Fang, Y.J. Optimal traffic-power flow in urban electrified transportation networks. IEEE Trans. Smart Grid 2017, 8, 84-95, doi:10.1109/Tsg.2016.2612239.
[86] Wu, D.; Aliprantis, D.C. Modeling light-duty plug-in electric vehicles for national energy and transportation planning. Energy Policy 2013, 63, 419-432, doi:10.1016/j.enpol.2013.07.132.
[87] Xie, F.; Liu, C.Z.; Li, S.Y.; Lin, Z.H.; Huang, Y.X. Long-term strategic planning of inter-city fast charging infrastructure for battery electric vehicles. Transp. Res. Part E Logist. Transp. Rev. 2018a, 109, 261-276, doi:10.1016/j.tre.2017.11.014.
[88] Xie, R.; Wei, W.; Khodayar, M.E.; Wang, J.H.; Mei, S.W. Planning fully renewable powered charging stations on highways: A data-driven robust optimization approach. IEEE Trans. Transp. Electrif. 2018b, 4, 817-830, doi:10.1109/Tte.2018.2849222.
[89] Zhang, A.P.; Kang, J.E.; Kwon, C. Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles. Transp. Res. Part B Methodol. 2017a, 103, 5-29, doi:10.1016/j.trb.2017.04.016.
[90] Zhang, H.C.; Hu, Z.C.; Song, Y.H. Power and transport nexus: Routing electric vehicles to promote renewable power integration. IEEE Trans. Smart Grid 2020, 11, 3291-3301, doi:10.1109/Tsg.2020.2967082.
[91] Zhang, H.C.; Moura, S.J.; Hu, Z.C.; Song, Y.H. PEV Fast-charging station siting and sizing on coupled transportation and power networks. IEEE Trans. Smart Grid 2018, 9, 2595-2605, doi:10.1109/Tsg.2016.2614939.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top