:::

詳目顯示

回上一頁
題名:沉浸式虛擬實境教材品質檢核指標與評量工具發展之研究
作者:郭盈芝
作者(外文):Ying-Chih Kuo
校院名稱:淡江大學
系所名稱:教育領導與科技管理博士班
指導教授:徐新逸
學位類別:博士
出版日期:2021
主題關鍵詞:沉浸式虛擬實境品質檢核指標評量工具Immersive Virtual RealityQuality Assurance CriteriaTools for Evaluating
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
隨著虛擬實境(VR)技術的成熟,研究指出VR對教學的影響多為正面的助益,在教育和學習上的應用也越來越廣泛。特別是能夠讓學習者深度沉浸在高度真實的學習環境的沉浸式虛擬實境(IVR),因為硬體設備開發成本逐漸降低、網路速度提升及雲端運算技術發展,在教育上的應用快速成長,IVR教材品質的研究也開始受到關注。如何縮短教材開發時間並降低製作錯誤率,是數位學習業者相當關切的議題,唯現行的數位教材品質認證標準,並未考量目前逐漸大量開發的IVR技術特性,產生了IVR教材品質認證的缺口。
為消除上述缺口,本研究旨在:1.發展IVR教材品質檢核構面與指標,2.確認上述IVR教材品質檢核構面與指標的權重,及3.依據上述兩項結果發展IVR教材評量工具。以模糊德菲法及層級分析法進行研究,發展IVR教材品質的檢核構面與指標,及相對權重。並發展評量工具,最後透過調查研究確認評量工具的信效度。
依據研究結果發展出IVR教材品質檢核4構面及15項指標,4構面的權重中,以「教材內容」37.5%為最多,其次為「教學設計」34.0%,接著為「互動回饋」17.9%,最後為「介面設計」10.6%。在檢核指標部分,專家共識認為「教材內容正確性」最為重要,且重要程度權重佔所有指標的21.8%,其權重幾乎為所有其他指標的2倍以上。重要權重第二為「學習目標、教材內容與評量機制具一致性」(權重12.2%)。而「互動回饋」雖僅有「學習任務有提供適當且清楚的回饋」及「學習者能與素材進行互動」2項指標,但其權重分別於所有指標的第4及第5,互動回饋在IVR教材中的重要性可見一斑。
在本研究也發現過去數位教材重視的「學習任務有合理的順序」,在IVR教材當中卻非關鍵要素。此外,也發現IVR教材品質指標在不同知識類型並無差異。值得一提的是,本研究也證實IVR與VR教材的檢核標準確有差異,在「虛擬環境的畫面具擬真性」、「虛擬環境能提供具沉浸感的畫面品質」、「虛擬環境呈現之訊息量適宜」及「學習者能與素材進行互動」等4項與沉浸感及互動有關的指標,都是過去未納入的指標。
本研究確立了IVR教材品質檢核之構面與指標,並得出各構面與指標之權重,據以發展完成IVR教材評量工具。研究結果確認本研究所發展的教材評量工具在優良教材評估上具信效度,本研究結果可提供IVR教材的製作者有參考依據,作為教師採用IVR教材時的指引,亦提供教材評估者標準化的評量工具。
With the maturity of Virtual Reality (VR) technology, the researches points out that the impact of VR on teaching is mostly positive, and VR is more and more widely used in education and learning. Especially the Immersive Virtual Reality (IVR), which can make learners deeply immersed in a highly simulated learning environment, has been growing rapidly in education due to the gradual reduction of hardware costs, the improvement of network speed and the development of cloud computing technology. The researches on the quality of IVR teaching materials have also begun to attract attention. How to shorten the development time of teaching materials and reduce the error rate of production is an important topic for e-learning industry. But the current quality evaluation standards of digital teaching materials do not take the IVR technical characteristics into accountant, resulting in the gap of IVR teaching materials quality evaluation.
In order to eliminate the above gaps, this study aims to: 1. Develop the IVR textbook quality inspection dimensions and indicators; 2. Confirm the weight of the IVR textbook quality inspection dimensions and indicators; and 3. Develop the IVR textbook evaluation tools based on the above two results. Fuzzy Delphi method and analytic hierarchy process are used to develop the inspection structure, index and relative weight of IVR textbook quality. Finally, the reliability and validity of the assessment tools are confirmed through investigation.
According to the research results, four dimensions and 15 indicators of IVR quality assessment were developed. The weight of "content of teaching materials" dimension is 37.5%, "instructional design" dimension is 34.0%, "interactive feedback" dimension is 17.9%, and "interface design" dimension is 10.6%. As for indicators, experts agreed that "correctness of content" is the most important, and the weight of importance accounts for 21.8% of all indicators, which is almost twice of all other indicators. The second important indicator is "consistency of learning objectives, teaching materials and evaluation mechanism" (weight is 12.2%). Although "interactive feedback" has only two indicators includes "learning tasks provide appropriate and clear feedback" and "learners can interact with materials", the weight rank of these two indicators is respectively in the fourth and fifth among all indicators.
The importance of interactive feedback in IVR teaching materials can be recognized. With the maturity of virtual reality (VR) technology, the research points out that the impact of VR on teaching is mostly positive, and it is more and more widely used in education and learning. Especially the immersive virtual reality (IVR), which can make learners deeply immersed in a highly real learning environment, has been growing rapidly in education due to the gradual reduction of hardware development costs, the improvement of network speed and the development of cloud computing technology, and the research on the quality of IVR teaching materials has also begun to receive attention. How to shorten the development time of teaching materials and reduce the production error rate is a topic of considerable concern for e-learning industry. Only the current quality certification standards of digital teaching materials do not examine the characteristics of IVR technology which is gradually developed
in large quantities, resulting in a gap in the quality certification of IVR teaching materials.
This study has developed the dimensions and indicators of quality of IVR teaching materials, and identify the weight of each dimension and indicator, so as to develop the assessment tools of IVR teaching materials. The results of this study confirm the reliability and validity of the assessment tools developed in this study. The results of this study can provide reference for the producers of IVR teaching materials, guide teachers to adopt IVR teaching materials, and provide standardized assessment tools for evaluators.
上官水雨(2019)。圖文順序及線索對不同類型知識多媒體學習影響的研究。(碩士論文)。取自https://cdmd.cnki.com.cn/Article/CDMD-10065-1019242423.htm
皮連生、卞春麒(1991)。論知識的分類與教學設計。鐵道師院學報,2。
呂淑媛(2015)。概念導向閱讀教學融入國小國語自然類文章對國小五年級學童閱讀理解之影響(碩士論文)。取自https://reurl.cc/pg1Dmd
李宜學(2019)。中小學融合教育推動成效評估指標建構之研究(博士論文)。取自https://hdl.handle.net/11296/fz66jp
吳清山、林天祐(1994)。全面品質管理及其在教育上的應用。初等教育學刊,3,1-28。
吳錦森(2014)。國民小學教育服務品質指標建構之研究(博士論文)。取自https://hdl.handle.net/11296/3av7b4
陳明溥(2005)。數位教材品質規範之規劃與考量。台大教與學期刊電子報,35。
陳殷哲、何采芹(2017)。以層級分析法探究國民小學人事主管職能發展關鍵準則與評核行為。經營管理學刊,12。
徐新逸(2019年11月)。虛擬科技與教育創新:台灣經驗分享。XR體感科技教育國際論壇,台北市華山文創園區。
徐新逸、郭盈芝(2020)。建構虛擬實境教材品質確保之評估指標。教育傳播與科技研究,123,1-19。
徐村和(1998)。模糊德菲層級分析法。模糊系統學刊,1,59-72。
張國恩、宋曜廷(主編)。(2012)。數位學習品質管理【專題】。數位學習教材製作流程之品質管控。141-146 頁。
張慧玲(2003)。幼稚園學校效能指標與權重體系之研究(碩士論文)。取自https://hdl.handle.net/11296/uykakk
張紹勳(2012)。模糊多準則評估法及統計。台北市:五南圖書。
張世璿、丁一顧(2016)。國民小學教師領導核心能力指標建構之研究。新竹教育大學教育學報,33(1),1-38。
黃鶯、彭麗輝、楊心德(2008)。知識分類在教學設計中的作用。教育評論,(5)。
楊錦洲(2009)。服務品質: 從學理到應用。台北市:華泰文化。
教育部(2018)。VR/AR教學應用教材開發與教學實施計畫教材檢核量表。取自http://moevrar.tku.edu.tw/
教育部遠距教學交流暨認證網(2019)。數位教材認證。取自https://ace.moe.edu.tw/
教育部(2020)。校園5G示範教室與學習載具計畫。政府科技發展中程個案計畫書。取自https://www.ey.gov.tw/File/7D038CA1AF9F3EA4
彭文萱、熊召弟(2015)。優質科學電子教科書指標的建立與評鑑研究初探。教科書研究,8(2)。
曾淑惠(2004)。教育評鑑模式。台北市:心理。
梁蓓禎(2018)。非學校型態實驗教育評鑑指標建構與應用(碩士論文)。取自https://hdl.handle.net/11296/943954
鄧振源、曾國雄(1989)。層級分析法(AHP)的內涵特性與應用(上)。中國統計學報,2716,1-20。
潘言(2011)。地標資訊應用於虛擬環境空間方位判別之研究(碩士論文)。取自https://hdl.handle.net/11296/488yc5
數位學習品質服務中心(2012)。數位學習產品證明標章。取自http://www.elq.org.tw/
賴妤璿、孫良誠(2018)。學前特教巡迴輔導教師專業能力指標建構及其權重研究。特殊教育研究學刊。
趙士瑩(2018)。國民中學兼任行政教師行政專業能力指標建構與實證分析之研究(博士論文)。取自https://hdl.handle.net/11296/32g53t
蔣東霖(2017)。國民中小學校長通識素養指標建構與實證分析之研究(博士論)。取自https://hdl.handle.net/11296/tu7fru
蔣明珊、盧台華(2000)。國小資優教材評鑑檢核表建構與試用之研究。特殊教育研究學刊,(19),347-370。

Al-Amri, A., Osman, M., & Musawi, A. A. (2020). The effectiveness of a 3D-virtual reality learning environment (3D-VRLE) on the omani eighth grade students' achievement and motivation towards physics learning. International Journal of Emerging Technologies in Learning, 15(5), 4-16. doi:10.3991/IJET.V15I05.11890
Alhalabi, W. S. (2016). Virtual reality systems enhance students’ achievements in engineering education. Behaviour & Information Technology, 35, 919–925.
Akbulut, A., Catal, C., & Yıldız, B. (2018). On the effectiveness of virtual reality in the education of software engineering. Computer Applications in Engineering Education, 26, 918–927.
An, M. Y., Ko, K. A., & Kang, E. J. (2020). Problems and Directions of Development through Analysis of Virtual Reality-Based Education in Korea. International Journal of Information and Education Technology, 10(8), 552-556. doi:10.18178/ijiet.2020.10.8.1423
ASTD. (2003). (2019, June 5). Retrieved from https://thetranslationcompany.com/translation-directory/translation-associations/american-society-training-development/
Bates, A. T. (2019). Choosing and using media in education: the SECTIONS model. Teaching in a Digital Age-Second Edition. Tony Bates Associates Ltd.
Bagher, M. M. (2020). Immersive VR and Embodied Learning: The Role of Embodied Affordances in the Long-term Retention of Semantic Knowledge. Paper presented at the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces.
Barnett, M. (2005). Using virtual reality computer models to support student understanding of astronomical concepts. Journal of Computers in Mathematics and Science Teaching,24(4), 333–356.
Bhattacharjee, D., Paul, A., Kim, J. H., & Karthigaikumar, P. (2018). An immersive learning model using evolutionary learning. Computers & Electrical Engineering, 65, 236–249.
Bharathi, A. K. B. G., & Tucker, C. S. (2015, August). Investigating the impact of interactive immersive virtual reality environments in enhancing task performance in online engineering design activities. Paper presented at the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 57106, V003T04A004. doi:10.1115/DETC2015-47388
Bouali, N., Nygren, E., Oyelere, S. S., Suhonen, J., & Cavalli-Sforza, V. (2019, November). Imikode: A VR Game to Introduce OOP Concepts. In Proceedings of the 19th Koli Calling International Conference on Computing Education Research, 1-2.
Bowman, D. A., & McMahan, R. P. (2007). Virtual reality: how much immersion is enough?. Computer, 40(7) ,36-43.
Buttussi, F., & Chittaro, L. (2017). Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063-1076.
Chen, L. W., Tsai, J. P., Kao, Y. C., & Wu, Y. X. (2019). Investigating the learning performances between sequence- and context-based teaching designs for virtual reality (VR)-based machine tool operation training. Computer Applications in Engineering Education, 27(5), 1043-1063. doi:10.1002/cae.22133
Checa, D., & Bustillo, A. (2020). A review of immersive virtual reality serious games to enhance learning and training. Multimedia Tools and Applications, 79(9), 5501-5527.
Choi, J. H. (2016). The Future of Education and Culture In dustry Through Virtual Reality. The Future Research Focus, 20-23.
Clark, R. E., & Voogel, A. (1985). Transfer of training principles for instructional design. Educational Technology Research and Development, 33(2), 113-123.
Dalgarno, B., & Lee, M. J. (2010). What are the learning affordances of 3‐D virtual environments? British Journal of Educational Technology, 41(1), 10-32.
Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66–69.
Deming, W. E., & Edwards, D. W. (1982). Quality, productivity, and competitive position, 183. Cambridge, MA: Massachusetts Institute of Technology, Center for Advanced Engineering Study.
Di Natale, A. F., Repetto, C., Riva, G., & Villani, D. (2020). Immersive virtual reality in K‐12 and higher education: A 10‐year systematic review of empirical research. British Journal of Educational Technology, 51(6), 2006-2033. doi:10.1111/bjet.13030
Donevska-Todorova, A., Faggiano, E., Trgalova, J., Lavicza, Z., Weinhandl, R., Clark-Wilson, A., & Weigand, H. G. (2020). Mathematics Education in the Digital Age (MEDA) PROCEEDINGS.
Dolezal, M., Chmelik, J., & Liarokapis, F. (2020). An immersive virtual environment for collaborative geovisualization. doi: arXiv:2010.06279.
Egea-Vivancos, A., & Arias-Ferrer, L. (2020). Principles for the design of a history and heritage game based on the evaluation of immersive virtual reality video games. E-Learning and Digital Media. doi:10.1177/2042753020980103
Epprobate quality grid. (2012). Retrieved 5 June, 2019, from http://epprobate.com/index.php/en/epprobate-quality-grid
Ekstrand, C., Jamal, A., Nguyen, R., Kudryk, A., Mann, J., & Mendez, I. (2018). Immersive and interactive virtual reality to improve learning and retention of neuroanatomy in medical students: A randomized controlled study. CMAJ Open, 6(1), 103–109. https://doi.org/10.9778/cmajo.20170110
Elmqaddem, N. (2019). Augmented reality and virtual reality in education. Myth or reality?. International Journal of Emerging Technologies in Learning (IJET), 14(03), 234-242.
Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: state of the art and perspectives. In The International Scientific Conference eLearning and Software for Education, 1(133), 10–1007.
Fransson, G., Holmberg, J., & Westelius, C. (2020). The challenges of using head mounted virtual reality in K-12 schools from a teacher perspective. Education and Information Technologies, 1-22.
Fogarty, J., McCormick, J., & El-Tawil, S. (2018). Improving student understanding of complex spatial arrangements with virtual reality. Journal of Professional Issues in Engineering Education and Practice, 144(2). 04017013.
Garvin, D. A. (1988). Managing quality: The strategic and competitive edge. Simon and Schuster.
Goepel, K.D. (2018). Implementation of an Online Software Tool for the Analytic Hierarchy Process (AHP-OS). International Journal of the Analytic Hierarchy Process, 10(3), 469-487, doi:https://doi.org/10.13033/ijahp.v10i3.590
Han, I. (2020). Immersive virtual field trips in education: A mixed-methods study on elementary students’ presence and perceived learning. British Journal of Educational Technology, 51(2), 420–435.
Hanson, J., Andersen, P., & Dunn, P. K. (2019). Effectiveness of three-dimensional visualisation on undergraduate nursing and midwifery students’ knowledge and achievement in pharmacology: A mixed methods study. Nurse Education Today, 81, 19-25.
Hamilton, D., McKechnie, J., Edgerton, E., & Wilson, C. (2020). Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education. doi:10.1007/s40692-020-00169-2
Harish Shan (2019, August 10). Virtual Reality. Abstract retrieved from http://harishshan.blogspot.com/2019/08/virtual-reality.html?m=0
Harrington, C. M., Kavanagh, D. O., Quinlan, J. F., Ryan, D., Dicker, P., O'Keeffe, D., ...& Tierney, S. (2018). Development and evaluation of a trauma decision-making simulator in Oculus virtual reality. The American Journal of Surgery, 215(1), 42-47.
Hewawalpita, S., Herath, S., Perera, I., & Meedeniya, D. (2018). Effective learning content offering in MOOCs with virtual reality-an exploratory study on learner experience. Journal of UCS, 24(2), 129–148.
Hentsch, C. (2018). Virtual Reality in Education: How VR can be Beneficial to the Classroom.
Hill, K. Q., & Fowles, J. (1975). The methodological worth of the Delphi forecasting technique. Technological forecasting and social change, 7(2), 179-192.
Hirsch, E., & Allison, C. (2020). DO YOUR MATERIALS MEASURE UP?. The Learning Professional, 41(4), 28-31.
Hickman, L., & Akdere, M. (2018, February). Developing intercultural competencies through virtual reality: Internet of Things applications in education and learning. In 2018 15th learning and technology conference (L&T), 28-31. IEEE.
Howard-Jones, P., Ott, M., van Leeuwen, T., & De Smedt, B. (2015). The potential relevance of cognitive neuroscience for the development and use of technology-enhanced learning. Learning, Media and Technology, 40, 131–151.
Hodgson, P., Lee, V. W., Chan, J. C., Fong, A., Tang, C. S., Chan, L., & Wong, C. (2019). Immersive virtual reality (IVR) in higher education: Development and implementation. In Augmented Reality and Virtual Reality, 161-173.
Jensen, L., & Konradsen, F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515-1529.
Johnson-Glenberg, M. C., & Megowan-Romanowicz, C. (2017). Embodied science and mixed reality: How gesture and motion capture affect physics education. Cognitive Research: Principles and Implications, 2(1), 1-28. https://doi.org/10.1186/s4123 5-017-0060-9
Johnson-Glenberg, M. (2018). Immersive VR and education: Embodied design principles that include gesture and hand controls. Frontiers Robotics AI, 5. doi:10.3389/frobt.2018.00081
Kalawsky, R. S. (2000). The validity of presence as a reliable human performance metric in immersive environments. In 3rd International Workshop on Presence, 1-16.
Kaschak, M. P., Connor, C. M., & Dombek, J. L. (2017). Enacted reading comprehension: using bodily movement to aid the comprehension of abstract text content. PloS one, 12(1). e0169711.
Klippel, A., Zhao, J., Jackson, K. L., La Femina, P., Stubbs, C., Wetzel, R., Oprean, D. (2019). Transforming earth science education through immersive experiences: Delivering on a long held promise. Journal of Educational Computing Research, 57(7), 1745–1771.
Kim, K. G., Oertel, C., Dobricki, M., Olsen, J. K., Coppi, A. E., Cattaneo, A., & Dillenbourg, P. (2020). Using immersive virtual reality to support designing skills in vocational education. British Journal of Educational Technology, 51(6), 2199-2213. doi:10.1111/bjet.13026
Kirschner, P. A. (2002). Cognitive load theory: Implications of cognitive load theory on the design of learning.
Lu, C. M., Wu, P. L., Cheng, Y. M., & Lou, S. J. (2018). Effects on patterns of learning-support design in immersive virtual reality system. Journal of Information Hiding and Multimedia Signal Processing, 9(5), 1305-1317.
Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research and Development, 66(5), 1141-1164.
Maresky, H. S., Oikonomou, A., Ali, I., Ditkofsky, N., Pakkal, M., & Ballyk, B. (2019). Virtual reality and cardiac anatomy: Exploring immersive three‐dimensional cardiac imaging, a pilot study in undergraduate medical anatomy education. Clinical Anatomy, 32(2), 238-243.
Maselli, A., & Slater, M. (2013). The building blocks of the full body ownership illusion. Frontiers in human neuroscience, 7, 83.
Mayer, R. E. (2014). Incorporating motivation into multimedia learning. Learning and Instruction, 29, 171-173.
Merlot, I. I. (2017). Multimedia educational resource for learning and online teaching.
Meyer, L., & Pfeiffer, T. (2020). Comparing Virtual Reality and Screen-based Training Simulations in Terms of Learning and Recalling Declarative Knowledge. DELFI 2020–Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik eV.
Molina-Carmona, R., Pertegal-Felices, M., Jimeno-Morenilla, A., & Mora-Mora, H. (2018). Virtual reality learning activities for multimedia students to enhance spatial ability. Sustainability, 10, 1074.
Mousas, C., Anastasiou, D., & Spantidi, O. (2018). The effects of appearance and motion of virtual characters on emotional reactivity. Computers in Human Behavior, 86, 99-108.
Morley, D. (2000). Open and distance learning quality council: standards in open and distance learning. ODLQC, UK, from: http://www. odlqc. org. uk/odlqc/st-5. htm.
Murcia-López, M., & Steed, A. (2016). The effect of environmental features, self-avatar, and immersion on object location memory in virtual environments. Frontiers in ICT, 3, 1–10.
Murray, T. J., Pipino, L. L., & Van Gigch, J. P. (1985). A pilot study of fuzzy set modification of Delphi. Human Systems Management, 5(1), 76-80.
Nesbit, J. C., Belfer, K., & Leacock, T. (2003). Learning object review instrument (LORI). E-learning research and assessment network, 33-68.
Němec, M., Fasuga, R., Trubač, J., & Kratochvíl, J. (2017, October). Using virtual reality in education. In 2017 15th International Conference on Emerging eLearning Technologies and Applications (ICETA) .1-6.
Ni, L., Krzeminski, M., & Tuer, K. (2006, November). Application of haptic, visual and audio integration in astronomy education. In 2006 IEEE International Workshop on Haptic Audio Visual Environments and Their Applications,152-156.
Nuguri, S. S., Calyam, P., Oruche, R., Gulhane, A., Valluripally, S., Stichter, J., & He, Z. (2020). vSocial: a cloud-based system for social virtual reality learning environment applications in special education. Multimedia Tools and Applications. doi:10.1007/s11042-020-09051-w
O’Connor, M., Deeks, H. M., Dawn, E., Metatla, O., Roudaut, A., Sutton, M., & Glowacki, D. R. (2018). Sampling molecular conformations and dynamics in a multiuser virtual reality framework. Science advances, 4(6), eaat2731.
Olmos-Raya, E., Ferreira-Cavalcanti, J., Contero, M., Castellanos, M. C., Giglioli, I. A. C., & Alcañiz, M. (2018). Mobile virtual reality as an educational platform: A pilot study on the impact of immersion and positive emotion induction in the learning process. EURASIA Journal of Mathematics, Science and Technology Education, 14(6), 2045-2057.
Ott, M., & Tavella, M. (2009). A contribution to the understanding of what makes young students genuinely engaged in computer-based learning tasks. Procedia-Social and Behavioral Sciences, 1(1), 184-188.
Oyelere, S. S., Silveira, I. F., Martins, V. F., Eliseo, M. A., Akyar, Ö. Y., Jauregui, V. C., ... & Tomczyk, Ł. (2020, April). Digital storytelling and blockchain as pedagogy and technology to support the development of an inclusive smart learning ecosystem. In World Conference on Information Systems and Technologies , 397-408. Springer, Cham.
Papachristos, N. M., Vrellis, I., & Mikropoulos, T. A. (2017, July). A comparison between oculus rift and a low-cost smartphone VR headset: immersive user experience and learning. In 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT), 477-481.
Parkhomenko, E., O'Leary, M., Safiullah, S., Walia, S., Owyong, M., Lin, C., Clayman, R. (2019). Pilot Assessment of Immersive Virtual Reality Renal Models as an Educational and Preoperative Planning Tool for Percutaneous Nephrolithotomy. Journal of Endourology, 33(4), 283-288. doi:10.1089/end.2018.0626
Parenté, F. J., & Anderson-Parenté, J. K. (1987). Delphi inquiry systems. Judgmental forecasting, 129-156.
Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), 785-797.
Petkova, V. I., Khoshnevis, M., & Ehrsson, H. H. (2011). The perspective matters! Multisensory integration in ego-centric reference frames determines full-body ownership. Frontiers in psychology,2, 35.
Pellas, N., Dengel, A., & Christopoulos, A. (2020). A Scoping Review of Immersive Virtual Reality in STEM Education. IEEE Transactions on Learning Technologies, 13(4), 748-761.
Pulijala, Y., Ma, M., Pears, M., Peebles, D., & Ayoub, A. (2018). Effectiveness of Immersive Virtual Reality in Surgical Training-A Randomized Control Trial. Journal of Oral and Maxillofacial Surgery, 76(5), 1065-1072. doi:10.1016/j.joms.2017.10.002
Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers and Education, 147. doi:10.1016/j.compedu.2019.103778
Ray, A. B., & Deb, S. (2016). Smartphone based virtual reality systems in classroom teaching - A study on the effects of learning outcome. In 2016 IEEE Eighth International Conference on Technology for Education, 68–71.
Repetto, C., Germagnoli, S., Triberti, S., & Riva, G. (2018). Learning into the wild: a protocol for the use of 360 video for foreign language learning. In International symposium on pervasive computing paradigms for mental health, 56-63. doi:https://doi.org/10.1007/978-3-030-01093-5_8
Ritz, L. T., & Buss, A. R. (2016). A Framework for Aligning Instructional Design Strategies with Affordances of CAVE Immersive Virtual Reality Systems. TechTrends, 60(6), 549-556. doi:10.1007/s11528-016-0085-9
Román-Ibáñez, V., Pujol-López, F. A., Mora-Mora, H., Pertegal-Felices, M. L., & Jimeno-Morenilla, A. (2018). A low-cost immersive virtual reality system for teaching robotic manipulators programming. Sustainability, 10(4), 1102.
Rupp, M. A., Odette, K. L., Kozachuk, J., Michaelis, J. R., Smither, J. A., & McConnell, D. S. (2019). Investigating learning outcomes and subjective experiences in 360-degree videos. Computers & Education, 128, 256-268.
Riva, G., & Waterworth, J. A. (2014). Being present in a virtual world. The oxford handbook of virtuality, 205-221.
Saaty, T. L. (1980). The Analytic Hierarchy Process,641-658.New York: McGraw Hill.
Saaty, T. L., & Vargas, L. G. (2012). The possibility of group choice: pairwise comparisons and merging functions. Social Choice and Welfare, 38(3), 481-496. DOI: https://doi.org/10.1007/s00355-011-0541-6
Sallis, J. F. (1993). Epidemiology of physical activity and fitness in children and adolescents. Critical reviews in food science and nutrition, 33(4-5), 403-408.
Sankaranarayanan, S., Balaji, Y., Castillo, C. D., & Chellappa, R. (2018). Generate to adapt: Aligning domains using generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8503-8512.
Šašinka, C., Stachoň, Z., Sedlák, M., Chmelík, J., Herman, L., Kubíček, P., Juřík, V. (2019). Collaborative immersive virtual environments for education in geography. ISPRS International Journal of Geo-Information, 8(1). doi:10.3390/ijgi8010003
Shi, A., Wang, Y., & Ding, N. (2019). The effect of game–based immersive virtual reality learning environment on learning outcomes: designing an intrinsic integrated educational game for pre–class learning. Interactive Learning Environments. doi:10.1080/10494820.2019.1681467
Shih, S. L., Ou, S. J., Huang, Y. C., & Mu, Y. C. (2019). The difficulties and countermeasures of applying virtual reality to industrial design education C3 - ACM International Conference Proceeding Series. Paper presented at the 3rd International Conference on Education and Multimedia Technology.
Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators & Virtual Environments, 6(6), 603-616.
Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 3, 74.
Stepan, K., Zeiger, J., Hanchuk, S., Del Signore, A., Shrivastava, R., Govindaraj, S., & Iloreta, A. (2017). Immersive virtual reality as a teaching tool for neuroanatomy: Immersive VR as a neuroanatomy teaching tool. International Forum of Allergy & Rhinology, 7(10), 1006–1013. https://doi.org/10.1002/alr.21986
Smith, S. J., Farra, S. L., Ulrich, D. L., Hodgson, E., Nicely, S., & Mickle, A. (2018). Effectiveness of two varying levels of virtual reality simulation. Nursing education perspectives, 39(6), 10-15.
Snelson, C. & Hsu, Y. (2020). Educational 360-Degree Videos in Virtual Reality: A Scoping Review of the Emerging Research. TechTrends, 64, 404–412.
Srinivasa, A. R., Jha, R., Ozkan, T., & Wang, Z. (2020). Virtual reality and its role in improving student knowledge, self-efficacy, and attitude in the materials testing laboratory. International Journal of Mechanical Engineering Education. doi:10.1177/0306419019898824
Sun, C., Hu, W., & Xu, D. (2019). Navigation modes, operation methods, observation scales and background options in UI design for high learning performance in VR-based architectural applications. Journal of Computational Design and Engineering, 6(2), 189-196. doi:10.1016/j.jcde.2018.05.006
Terkildsen, T., & Makransky, G. (2019). Measuring presence in video games: An investigation of the potential use of physiological measures as indicators of presence. International Journal of Human-Computer Studies, 126, 64-80.
UKAuthority. (2019 December 16). VR and AR attract education sector interest. Abstract retrieved from https://www.ukauthority.com/articles/vr-and-ar-attract-education-sector-interest/
Van Merriënboer, J. J., & Kirschner, P. A. (2018). 4C/ID in the context of instructional design and the learning sciences. International handbook of the learning sciences, 169-179.
Vansteenkiste, M., Lens, W., & Deci, E. L. (2006). Intrinsic versus extrinsic goal contents in self-determination theory: Another look at the quality of academic motivation. Educational psychologist, 41(1), 19-31.
Villena Taranilla, R., Cózar-Gutiérrez, R., González-Calero, J. A., & López Cirugeda, I. (2019). Strolling through a city of the Roman Empire: an analysis of the potential of virtual reality to teach history in Primary Education. Interactive Learning Environments, 1–11.
Webster, R. (2016). Declarative knowledge acquisition in immersive virtual learning environments. Interactive Learning Environments,24(6), 1319-1333.
Wu, B., Yu, X., & Gu, X. (2020). Effectiveness of immersive virtual reality using head‐mounted displays on learning performance: A meta‐analysis. British Journal of Educational Technology, 51(6), 1991-2005. doi:http://dx.doi.org/10.1111/bjet.13023
Wu, B. J., Wong, S. K., & Li, T. W. (2019). Virtual titration laboratory experiment with differentiated instruction. Computer Animation and Virtual Worlds, 30(3-4). doi:10.1002/cav.1882
Xie, K., Di Tosto, G., Chen, S.-B., & Vongkulluksn, V. W. (2018). A systematic review of design and technology components of educational digital resources. Computers & Education, 127, 90-106. doi:10.1016/j.compedu.2018.08.011
Xie, K., & Luthy, N. (2017). Textbooks in the digital world. The Conversation.
Yang, C. J., & Wu, C. F. (2020). Study on Learning Effectiveness of Virtual Reality Technology in Retail Store Design Course. In International Conference on Human-Computer Interaction, 327-337.
Yang, F. C. O., Chen, H. H., & Liao, C. J. (2018). Exploring the Effects of Multimedia Design in a Life English VR Serious Game C3 - Proceedings - 2018 7th International Congress on Advanced Applied Informatics, IIAI-AAI 2018. Paper presented at the 7th International Congress on Advanced Applied Informatics, IIAI-AAI 2018.
Yang, J. C., Chen, C. H., & Jeng, M. C. (2010). Integrating video-capture virtual reality technology into a physically interactive learning environment for English learning. Computers & Education, 55(3), 1346–1356.
Yoganathan, S., Finch, D. A., Parkin, E., & Pollard, J. (2018). 360 virtual reality video for the acquisition of knot tying skills: a randomised controlled trial. International Journal of Surgery, 54, 24-27.
Zhao, J., Lafemina, P., Carr, J., Sajjadi, P., Wallgrun, J. O., & Klippel, A. (2020). Learning in the Field: Comparison of Desktop, Immersive Virtual Reality, and Actual Field Trips for Place-Based STEM Education C3 - Proceedings - 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2020. Paper presented at the 27th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2020.
Zhang, A., Wang, K. C., Li, B., Yang, E., Dai, X., Peng, Y., ... & Chen, C. (2017). Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network. Computer‐Aided Civil and Infrastructure Engineering, 32(10), 805-819.
Zizza, C., Starr, A., Hudson, D., Nuguri, S. S., Calyam, P., & He, Z. (2018). Towards a social virtual reality learning environment in high fidelity C3 - CCNC 2018 - 2018 15th IEEE Annual Consumer Communications and Networking Conference. Paper presented at the 15th IEEE Annual Consumer Communications and Networking Conference, CCNC 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE