:::

詳目顯示

回上一頁
題名:次最大腳踏車功率計測試評估心肺適能的信效度:基於儲備心率百分比開發最大攝氧量預測模型
作者:李芳
作者(外文):LI, FANG
校院名稱:國立體育大學
系所名稱:運動科學研究所
指導教授:黃啟彰
何金山
學位類別:博士
出版日期:2022
主題關鍵詞:心肺適能最大攝氧量次最大腳踏車功率計測試預測模型cardiorespiratory fitnessmaximal oxygen uptakesubmaximal cycle ergometer testprediction model
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
背景與目的: 最大攝氧量是衡量心肺適能的黃金指標,對於一般群眾運動訓練計劃的制定與調整是非常必要的。然而,最大攝氧量的直接量測需要借助氣體分析儀進行監測,儀器設備昂貴,操作程式複雜。為了降低心肺適能的檢測成本,本研究基於次最大腳踏車功率計測試並結合人體測量參數開發了最大攝氧量預測模型。方法: 在本研究中共有150位健康男性 (年齡: 18-30歲) 完成了身體組成量測和最大運動測試。所有受試者的最大攝氧量都是通過電動負載運動測功腳踏車配合氣體分析儀進行直接量測的。心率傳感器被用於監測受試者在運動測試過程中的心率反應。使用次最大腳踏車功率計測試過程中的第六階運動強度 (%HRR6),以及年齡、身體質量指數、體重、體脂率、儲備心率 (heart rate reserve, HRR),通過多元線性回歸分析推導出的最大攝氧量預測模型為BMI模型、PBF模型HRR和PBF模型%HRR6。多元決定係數 (R²)、變異係數 (coefficient of variation, CV)、絕對標準誤 (standard error of estimate, SEE) 和相對標準誤 (%SEE) 被用於評估這3個預估模型的擬合度和精確性。斯皮爾曼等級相關係數 (Spearman rank correlation coefficient) 和組內相關係數 (intraclass correlation coefficient, ICC) 分別被用於分析最大攝氧量預測值和實測值之間的相關性,以及驗證最大攝氧量回歸模型的可靠性。本研究使用預測殘差平方和 (predicted residual error sum of squares, PRESS) 和恆定誤差 (constant error, CE) 統計方法對最大攝氧量回歸模型進行兩次獨立的交叉驗證。Bland–Altman plots被用來評估最大攝氧量實際測量值和預測值之間的一致性水平。結果:年齡 (r = -0.356)、體重 (r = -0.527)、身體質量指數 (r = -0.520)、體脂率 (r = - 0.615)、儲備心率 (HRR, r = 0.266)、%HRR6 (r = -0.356) 皆與最大攝氧量顯著相關。相較於BMI模型和PBF模型HRR,PBF模型%HRR6呈現了較高的決定係數 (R²) 和較低的預估標準誤 (SEE)、SEE%、變異係數。PBF模型%HRR6可以解釋最大攝氧量的63.3%,預估標準誤為4.349 mL·kg-1·min-1。交叉驗證分析結果顯示,BMI模型、PBF模型HRR和PBF模型%HRR6皆具有良好的穩定性。結論:這篇研究表明基於次最大腳踏車功率計測試建立的PBF模型%HRR6能夠提高最大攝氧量的預測準確性。一般民眾或選手可以使用該模型來評估自身的心肺適能水平和運動訓練效果,從而為後期運動訓練計劃的擬定或調整提供依據。
Background and purpose: Maximal oxygen uptake (VO2max) is the golden indicator for measuring cardiorespiratory fitness, and it is very necessary for the development and adjustment of exercise training programs in the general public. However, the direct measurement of VO2max needs to be monitored with a gas exchange analyzer, which is expensive and complicated. In order to reduce the examining cost of cardiorespiratory fitness, this study developed VO2max prediction models based on submaximal cycle ergometer test combined with anthropometric parameters. Methods: A total of 150 healthy men (age: 18-30 years) completed body composition measurements and the maximal exercise test in this study. The VO2max of all subjects was directly measured on an electromagnetically braked bicycle ergometer with a gas analyzer. The heart rate sensor was used to monitor the subjects' heart rate response during exercise testing. Using age, body mass index, body weight, percent body fat, heart rate reserve (HRR), as well as the sixth-order exercise intensity (%HRR6) during the VO2max exercise test, the maximal oxygen uptake prediction models derived by multiple linear regression analysis were BMI model, PBF modelHRR and PBF model%HRR6. The multivariate coefficient of determination (R²), coefficient of variation (CV), standard error of estimate (SEE), and relative standard error of estimate (%SEE) were used to evaluate the fitness and accuracy of these prediction models. Spearman rank correlation coefficient and intraclass correlation coefficient (ICC) were used to analyze the correlation between predicted and measured VO2max values, and to verify the reliability of VO2max regression models, respectively. This study performed two independent cross-validations of VO2max regression models using predicted residual error sum of squares and constant error statistics. Bland–Altman plots were used to assess the level of agreement between actual measured and predicted VO2max values. Results: Age (r = -0.356), body weight (r = -0.527), body mass index (r = -0.520), percent body fat (r = -0.615), heart rate reserve (HRR, r = 0.266), %HRR6 (r = -0.356) were significantly correlated to VO2max. Compared with the BMI model and the PBF modelHRR, the PBF model%HRR6 showed a higher coefficient of determination (R²) and a lower standard error of estimate (SEE), SEE%, and coefficient of variation. The PBF model%HRR6 could explain 63.3% of VO2max, with SEE of 4.349 mL·kg-1·min-1. The results of cross-validation analysis suggested that the BMI model, PBF modelHRR and PBF model%HRR6 all had good stability. Conclusions: This study demonstrates that the PBF model%HRR6 based on submaximal cycle ergometer test can improve the prediction accuracy of VO2max. The general public or athletes can use this model to evaluate their own cardiorespiratory fitness level and exercise training effect, so as to provide a basis for the development or adjustment of later exercise programs.
李尹鑫、陳家祥、嚴笠哲、相子元(2018)。腳踏車踩踏功率的應用與發展。體育學報,51(2),145-154。
衛生福利部國民健康署:臺灣肥胖防治策略,2018。https://www.hpa.gov.tw/Pages/EBook. aspx?nodeid=3813。引用2022/01/05。
Albouaini, K., Egred, M., Alahmar, A., & Wright, D. J. (2007). Cardiopulmonary exercise testing and its application. Postgraduate medical journal, 83(985), 675-682. doi: 10.1136/hrt.2007.121558
Arcuri, J. F., Borghi-Silva, A., Labadessa, I. G., Sentanin, A. C., Candolo, C., & Di Lorenzo, V. A. P. (2016). Validity and reliability of the 6-minute step test in healthy individuals: a cross-sectional study. Clinical Journal of Sport Medicine, 26(1), 69-75. doi.org/10.1097/JSM.0000000000000190
Ahmed, I. (2020). COVID-19–does exercise prescription and maximal oxygen uptake (VO2max) have a role in risk-stratifying patients?. Clinical Medicine, 20(3), 282-284. doi.org/10.7861/clinmed.2020-0111
Al-Mallah, M.H.; Juraschek, S.P.; Whelton, S.; Dardari, Z.A.; Ehrman, J.K.; Michos, E.D.; et al. (2016). Sex differences in cardiorespiratory fitness and all-cause mortality: the Henry Ford ExercIse Testing (FIT) Project. Mayo Clin. Proc., 91(6), 755-762. doi: 10.1016/j.mayocp.2016.04.002
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (2002). ATS statement: guidelines for the six minute walk test. Am J Respir Crit Care Med., 166(1):111–117. doi: 10.1164/ajrccm.166.1.at1102
Aires, L., Silva, P., Silva, G., Santos, M. P., Ribeiro, J. C., & Mota, J. (2010). Intensity of physical activity, cardiorespiratory fitness, and body mass index in youth. Journal of Physical Activity and Health, 7(1), 54-59. doi: 10.1123/jpah.7.1.54
Akalan, C., Robergs, R., & Kravitz, L. (2008). Prediction of VO2max from an individualized submaximal cycle ergometer protocol. Journal of Exercise Physiology Online, 11(2), 1-17.
Astrand PO, Ryhming I. (1954). A nomogram for calculation of aerobic capacity (physical ftness) from pulse rate during sub-maximal work. J. Appl. Physiol., 7(2), 218–221. doi: 10.1152/jappl.1954.7.2.218
Astrand, P.O. (1960). Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand., 49, 45–60.
Björkman, F. M. E. (2017). Validity and reliability of a submaximal cycle ergometer test for estimation of maximal oxygen uptake (Doctoral dissertation, Gymnastik-och idrottshögskolan, GIH). doi: 0000-0001-8353-3766
Britton, Ú., Issartel, J., Fahey, G., Conyngham, G., & Belton, S. (2020). What is health-related fitness? Investigating the underlying factor structure of fitness in youth. European Physical Education Review, 26(4), 782-796. doi: 10.1177/1356336X19882060
Beekley, M. D., Brechue, W. F., Dehoyos, D. V., Garzarella, L., Werber-Zion, G., & Pollock*, M. L. (2004). Cross-validation of the YMCA submaximal cycle ergometer test to predict VO2max. Research quarterly for exercise and sport, 75(3), 337-342. doi: 10.1080/02701367.2004.10609165
Billinger, S.A., Van, S.E., McClain, M., Lentz, A.A. and Good, M.B. (2012). Recumbent stepper submaximal exercise test to predict peak oxygen uptake. Medicine & Science in Sports & Exercise, 44, 1539-1544. doi: 10.1249/MSS.0b013e31824f5be4
Björkman, F., Ekblom-Bak, E., Ekblom, Ö., & Ekblom, B. (2016). Validity of the revised Ekblom Bak cycle ergometer test in adults. European journal of applied physiology, 116(9), 1627-1638. doi: 10.1007/s00421-016-3412-0
Björkman, F., Ekblom, Ö., Ekblom Bak, E., & Bohman, T. (2021). The ability of a submaximal cycle ergometer test to detect longitudinal changes in VO2max. BMC Sports Sci Med Rehabil., 13(1),156. doi: 10.1186/s13102-021-00387-w
Buckley, J. P., Sim, J., Eston, R. G., Hession, R., & Fox, R. (2004). Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. British journal of sports medicine, 38(2), 197-205. doi: 10.1136/bjsm.2003.005389
Beutner, F., Ubrich, R., Zachariae, S., Engel, C., Sandri, M., Teren, A., & Gielen, S. (2015). Validation of a brief step-test protocol for estimation of peak oxygen uptake. European journal of preventive cardiology, 22(4), 503-512. doi:10.1177/2047487314533216
Bohannon, R. W., Bubela, D. J., Wang, Y. C., Magasi, S. S., & Gershon, R. C. (2015). Six-minute walk test versus three-minute step test for measuring functional endurance. Journal of strength and conditioning research, 29(11), 3240-3244. doi: 10.1519/JSC.0000000000000253
Bennett, H., Parfitt, G., Davison, K., & Eston, R. (2016). Validity of submaximal step tests to estimate maximal oxygen uptake in healthy adults. Sports Medicine, 46(5), 737-750. doi: 10.1007/s40279-015-0445-1
Bachmann, J. M., DeFina, L. F., Franzini, L., Gao, A., Leonard, D. S., Cooper, K. H., ... & Willis, B. L. (2015). Cardiorespiratory fitness in middle age and health care costs in later life. Journal of the American College of Cardiology, 66(17), 1876-1885. doi: 10.1016/j.jacc.2015.08.030
Berrington de Gonzalez, A., Hartge, P., Cerhan, J. R., Flint, A. J., Hannan, L., MacInnis, R. J., ... & Thun, M. J. (2010). Body-mass index and mortality among 1.46 million white adults. New England Journal of Medicine, 363(23), 2211-2219. doi: 10.1056/NEJMoa1000367
Brawner, C. A., Keteyian, S. J., & Ehrman, J. K. (2002). The relationship of heart rate reserve to VO2 reserve in patients with heart disease. Medicine and Science in Sports and Exercise, 34(3), 418-422. doi: 10.1097/00005768-200203000-00006
Byrne, N. M., & Hills, A. P. (2002). Relationships between HR and VO2 in the obese. Medicine & Science in Sports & Exercise, 34(9), 1419-1427. doi: 10.1097/00005768-200209000-00004
Berglund, I. J., Sørås, S. E., Relling, B. E., Lundgren, K. M., Kiel, I. A., & Moholdt, T. (2019). The relationship between maximum heart rate in a cardiorespiratory fitness test and in a maximum heart rate test. Journal of science and medicine in sport, 22(5), 607-610. doi: 10.1016/j.jsams.2018.11.018
Chatterjee, S., Chatterjee, P., Mukherjee, P. S., & Bandyopadhyay, A. (2004). Validity of Queen’s College step test for use with young Indian men. British journal of sports medicine, 38(3), 289-291. doi: 10.1136/bjsm.2002.002212
Chatterjee, S., Chatterjee, P., & Bandyopadhyay, A. (2005). Validity of Queen's College Step Test for estimation of maximum oxygen uptake in female students. Indian J Med Res, 121(1), 32-35.
Cao, Z. B., Miyatake, N., Aoyama, T., Higuchi, M., & Tabata, I. (2013). Prediction of maximal oxygen uptake from a 3-minute walk based on gender, age, and body composition. Journal of Physical Activity and Health, 10(2), 280-287. doi: 10.1123/jpah.10.2.280
Cooney, J. K., Moore, J. P., Ahmad, Y. A., Jones, J. G., Lemmey, A. B., Casanova, F., Maddison, P. J., & Thom, J. M. (2013). A simple step test to estimate cardio-respiratory fitness levels of rheumatoid arthritis patients in a clinical setting. International journal of rheumatology, 2013, 174541. doi: 10.1155/2013/174541
Christensen, R. A., Arneja, J., St. Cyr, K., Sturrock, S. L., & Brooks, J. D. (2021). The association of estimated cardiorespiratory fitness with COVID-19 incidence and mortality: A cohort study. Plos one, 16(5), e0250508. doi: 10.1371/journal.pone.0250508
CHEUNG, P. P. (2012). A Review of Various Step Test Protocols for Use in Assessing Aerobic Fitness in Schools. Asian Journal of Physical Education & Recreation, 18(2),74-81. doi: 10.24112/ajper.181849
Collis, T., Devereux, R.B., Roman, M.J., de Simone, G., Yeh, J.L., Howard, B.V., et al. (2001). Relations of stroke volume and cardiac output to body composition: the strong heart study. Circulation, 103(6), 820-825. doi: 10.1161/01.cir.103.6.820
Chung, Y. C., Huang, C. Y., Wu, H. J., Kan, N. W., Ho, C. S., Huang, C. C., & Chen, H. T. (2021). Predicting maximal oxygen uptake from a 3-minute progressive knee-ups and step test. PeerJ, 9, e10831. doi: 10.7717/peerj.10831
Cheng, J. C., Chiu, C. Y., & Su, T. J. (2019). Training and evaluation of human cardiorespiratory endurance based on a fuzzy algorithm. Int. J. Environ. Res. Public Health, 16(13), 2390. doi: 10.3390/ijerph16132390
Church, T. S., LaMonte, M. J., Barlow, C. E., & Blair, S. N. (2005). Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes. Archives of internal medicine, 165(18), 2114-2120. doi: 10.1001/archinte.165.18.2114
Cao, Z. B., Miyatake, N., Higuchi, M., Miyachi, M., Ishikawa-Takata, K., & Tabata, I. (2010a). Predicting VO2max with an objectively measured physical activity in Japanese women. Medicine & Science in Sports & Exercise, 42(1), 179-186. doi: 10.1249/MSS.0b013e3181af238d
Cao, Z.B., Miyatake, N., Higuchi, M., Miyachi, M., & Tabata, I.(2010b). Predicting VO(2max) with an objectively measured physical activity in Japanese men. Eur J Appl Physiol, 109(3):465-472. doi: 10.1007/s00421-010-1376-z
Cunha, F. A., Midgley, A., Montenegro, R., Vasconcellos, F., & Farinatti, P. (2015). Utility of a non-exercise VO2max prediction model for designing ramp test protocols. International journal of sports medicine, 94(10), 796-802. doi: 10.1055/s-0034-1395590
Chęsy, A., Chęsy, G., Sikorski, W., Rakowski, A., Rakowski, P., Zegarski, T., ... & Tafil-Klawe, M. (2016). Cardiopulmonary efficeincy evaluation in women between 50 and 80 years of age in Kujawsko-Pomorskie Voivodeship, Poland. Medical and Biological Sciences, 30(1), 5-10. doi: 10.12775/MBS.2016.007
Dunn, A., Marsden, D.L., Barker, D., van Vliet, P., Spratt, N.J., Callister, R. (2019). Evaluation of three measures of cardiorespiratory fitness in independently ambulant stroke survivors. Physiother. Theory Pract., 35, 622–632. doi: 10.1080/09593985.2018.1457746
DiMenna, F.J., Jones, A.M. (2009). ‘‘Linear’’ versus ‘‘nonlinear’’ VO2 responses to exercise: reshaping traditional beliefs. J. Exerc. Sci. Fit., 7(2), 67–84. doi: 10.1016/S1728-869X(09)60009-5
Dourado, V.Z., Nishiaka, R.K., Simões, M.S.M.P., Lauria, V.T., Tanni, S.E., Godoy, I., et al. (2021). Classification of cardiorespiratory fitness using the six-minute walk test in adults: Comparison with cardiopulmonary exercise testing. Pulmonology, 27(6), 500-508. doi: 10.1016/j.pulmoe.2021.03.006
de Sousa, N., Bertucci, D. R., de Sant'Ana, G. M., Padua, P., & da Rosa, D. M. (2021). Incremental and decremental cardiopulmonary exercise testing protocols produce similar maximum oxygen uptake in athletes. Scientific reports, 11(1), 13118. doi: 10.1038/s41598-021-92191-2
Dexheimer, J. D., Brinson, S. J., Pettitt, R. W., Schroeder, E. T., Sawyer, B. J., & Jo, E. (2020). Predicting Maximal Oxygen Uptake Using the 3-Minute All-Out Test in High-Intensity Functional Training Athletes. Sports, 8(12), 155. doi: 10.3390/sports8120155
Ding, C., Chan, Z., & Magkos, F. (2016). Lean, but not healthy: the ‘metabolically obese, normal-weight’ phenotype. Current opinion in clinical nutrition and metabolic care, 19(6), 408-417. doi: 10.1097/MCO.0000000000000317
Denham, J., Scott-Hamilton, J., Hagstrom, A. D., & Gray, A. J. (2020). Cycling power outputs predict functional threshold power and maximum oxygen uptake. The Journal of Strength & Conditioning Research, 34(12), 3489-3497. doi: 10.1519/JSC.0000000000002253.
de Lima, L. R. A., Silva, D. A. S., do Nascimento Salvador, P. C., Alves Junior, C. A. S., Martins, P. C., de Castro, J. A. C., ... & Petroski, E. L. (2019). Prediction of peak VO2 in Children and Adolescents with HIV From an Incremental Cycle Ergometer Test. Research quarterly for exercise and sport, 90(2), 163-171. doi: 10.1080/02701367.2019.1571676
Dalleck, L. C., & Kravitz, L. (2006). Relationship between% heart rate reserve and% VO2 reserve during elliptical crosstrainer exercise. Journal of sports science & medicine, 5(4), 662-671.
Elsaidy, W. S. I. M. (2011). Evaluating the validity and reliability of Harvard step test to predict VO2max in terms of the step height according to the knee joint angle. Theories Applications International Edition, 1(2), 126-32.
Ekblom‐Bak, E., Björkman, F., Hellenius, M. L., & Ekblom, B. (2014). A new submaximal cycle ergometer test for prediction of VO2max. Scandinavian journal of medicine & science in sports, 24(2), 319-326. doi: 10.1111/sms.12014
Evans, H. J., Ferrar, K. E., Smith, A. E., Parfitt, G., & Eston, R. G. (2015). A systematic review of methods to predict maximal oxygen uptake from submaximal, open circuit spirometry in healthy adults. Journal of science and medicine in sport, 18(2), 183-188. doi: 10.1016/j.jsams.2014.03.006
Fuller, A., Okwose, N., Scragg, J., Eggett, C., Luke, P., Bandali, A., et al. (2021) . The effect of age on mechanisms of exercise tolerance: Reduced arteriovenous oxygen difference causes lower oxygen consumption in older people. Exp. Gerontol., 149, 111340. doi: 10.1016/j.exger.2021.111340
Flegal, K. M., Kit, B. K., Orpana, H., & Graubard, B. I. (2013). Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. Jama, 309(1), 71-82. doi: 10.1001/jama.2012.113905
Facioli, T. P., Philbois, S. V., Gastaldi, A. C., Almeida, D. S., Maida, K. D., Rodrigues, J. A., ... & Souza, H. C. (2021). Study of heart rate recovery and cardiovascular autonomic modulation in healthy participants after submaximal exercise. Scientific Reports, 11(1), 3620. doi: 10.1038/s41598-021-83071-w
GBD 2015 Obesity Collaborators. (2017). Health effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine, 377(1), 13-27. doi: 10.1056/NEJMoa1614362
Guiraud T, Léger L, Long A, Thébault N, Tremblay J, & Passelergue P. (2010). VO2 requirement at different displayed power outputs on five cycle ergometer models: a preliminary study. Br J Sports Med, 44(6), 449-454. doi: 10.1136/bjsm.2007.044826.
Giavarina, D. Understanding bland altman analysis. Biochem. Med. 2015, 25, 141–151.
Golding, L. A., Myers, C. R., & Sinning, W. E. (1989). Y's way to physical fitness: the complete guide to fitness testing and instruction. YMCA of the USA.
Grant, C. C., Murray, C., Janse Van Rensburg, D. C., & Fletcher, L. (2013). A comparison between heart rate and heart rate variability as indicators of cardiac health and fitness. Frontiers in physiology, 4, 337. doi: 10.3389/fphys.2013.00337
García, R.C.F.; De Oliveira, R.M.; Martínez, E.C.; Neves, E.B. VO2 estimation equation accuracy to young adults. Arch. Med. 2019, 20, 33–39. doi: 10.30554/archmed.20.1.3476.2020
Hsieh, T. H., Lee, J. J., Yu, E. W. R., Hu, H. Y., Lin, S. Y., & Ho, C. Y. (2020). Association between obesity and education level among the elderly in Taipei, Taiwan between 2013 and 2015: a cross-sectional study. Scientific Reports, 10(1), 1-9. doi: 10.1038/s41598-020-77306-5
Hong, S. H., Yang, H. I., Kim, D. I., Gonzales, T. I., Brage, S., & Jeon, J. Y. (2019). Validation of Submaximal Step Tests and the 6-Min Walk Test for Predicting Maximal Oxygen Consumption in Young and Healthy Participants. International journal of environmental research and public health, 16(23), 4858. doi: 10.3390/ijerph16234858
Huggett, D. L., Connelly, D. M., & Overend, T. J. (2005). Maximal aerobic capacity testing of older adults: a critical review. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60(1), 57-66. doi: 10.1093/gerona/60.1.57
Holiday, D. B., Ballard, J. E., & McKeown, B. C. (1995). PRESS-related statistics: regression tools for cross-validation and case diagnostics. Medicine and science in sports and exercise, 27(4), 612-620. doi: 10.1249/00005768-199504000-00022
Howald H., Hoppeler, H., Claassen, H., Mathieu, O., & Straub R. (1985). Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch, 403(4), 369-376. doi: 10.1007/BF00589248
Heyward, V., & Gibson, A. (2013). Cardiorespiratory Fitness Assessment and Prescription. Advanced Fitness Assessment and Exercise Prescription.
Jiménez-Pavón, D., Lavie, C. J., & Blair, S. N. (2019). The role of cardiorespiratory fitness on the risk of sudden cardiac death at the population level: A systematic review and meta-analysis of the available evidence. Progress in cardiovascular diseases, 62(3), 279-287. doi: 10.1016/j.pcad.2019.05.003
Jessup, G.T., Riggs, C.E., Lambert, J., Miller, W.D. (1977). The effect of pedalling speed on the validity of the Astrand-Rhyming aerobic work capacity test. J Sports Med Phys Fitness, 17, 367–371.
Jamnick, N. A., By, S., Pettitt, C. D., & Pettitt, R. W. (2016). Comparison of the YMCA and a custom submaximal exercise test for determining VO2max. Med. Sci. Sports Exerc., 48(2), 254-259. doi: 10.1249/MSS.0000000000000763
Kokkinos, P., Kaminsky, L. A., Arena, R., Zhang, J., & Myers, J. (2018). A new generalized cycle ergometry equation for predicting maximal oxygen uptake: the Fitness Registry and the Importance of Exercise National Database (FRIEND). European journal of preventive cardiology, 25(10), 1077-1082. doi: 10.1177/2047487318772667
Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of chiropractic medicine, 15(2), 155-163. doi: 10.1016/j.jcm.2016.02.012
Kieu, N., Jung, S. J., Shin, S. W., Jung, H. W., Jung, E. S., Won, Y. H., Kim, Y. G., & Chae, S. W. (2020). The Validity of the YMCA 3-Minute Step Test for Estimating Maximal Oxygen Uptake in Healthy Korean and Vietnamese Adults. Journal of lifestyle medicine, 10(1), 21–29. doi: 10.15280/jlm.2020.10.1.21
Kang, H. T., Lee, H. R., Lee, Y. J., Linton, J. A., & Shim, J. Y. (2013). Relationship between employment status and obesity in a Korean elderly population, based on the 2007–2009 Korean National Health and Nutrition Examination Survey (KNHANES). Archives of gerontology and geriatrics, 57(1), 54-59. doi: 10.1016/j.archger.2013.02.004
Kodama, S., Saito, K., Tanaka, S., Maki, M., Yachi, Y., Asumi, M., ... & Sone, H. (2009). Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA, 301(19), 2024-2035. doi: 10.1001/jama.2009.681
Kang, W. Y., Hwang, S. H., Hwang, S. H., Kim, W., Park, K. H., Hong, Y. J., ... & Jeong, M. H. (2012). Effects of weight change on clinical outcomes in overweight and obese patients with acute myocardial infarction who underwent successful percutaneous coronary intervention. Chonnam medical journal, 48(1), 32-38. doi: 10.4068/cmj.2012.48.1.32
Kaminsky, L.A., Arena, R., Myers, J. (2015). Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: data from the Fitness Registry and the Importance of Exercise National Database. Mayo Clin Proc., 90(11), 1515–1523. doi: 10.1016/j.mayocp.2015.07.026
Li, F., Chang C.-H., Ho, C.-A., Wu, C.-Y., Yeh, H.-C., Chan, Y.-S., Cheng, J.-Y., ChangChien, W.-S., Ho, C.-S. (2022). The Determination of Step Frequency in 3-min Incremental Step-in-Place Tests for Predicting Maximal Oxygen Uptake from Heart Rate Response in Taiwanese Adults. Int. J. Environ. Res. Public Health., 19(1), 563. doi: 10.3390/ijerph19010563
Londeree, B., Moffitt-Gerstenberger, J., Padfield, J.A., Lottmann, D. (1977). Oxygen consumption of cycle ergometry is nonlinearly related to work rate and pedal rate. Med. Sci. Sports Exerc., 29(6), 775–80. doi: 10.1097/00005768-199706000-00007
Lee, D. Y., Lee, M. Y., & Sung, K. C. (2018). Prediction of mortality with a body shape index in young Asians: comparison with body mass index and waist circumference. Obesity, 26(6), 1096-1103. doi: 10.1002/oby.22193
Lee, O., Lee, S., Kang, M., Mun, J., & Chung, J. (2019). Prediction of maximal oxygen consumption using the Young Men’s Christian Association-step test in Korean adults. European journal of applied physiology, 119(5), 1245-1252. doi: 10.1007/s00421-019-04115-8
Li, F., Chang, C. H., Chung, Y. C., Wu, H. J., Kan, N. W., ChangChien, W. S., ... & Huang, C. C. (2021). Development and validation of 3 min incremental step-in-place test for predicting maximal oxygen uptake in home settings: A submaximal exercise study to assess cardiorespiratory fitness. International journal of environmental research and public health, 18(20), 10750. doi: 10.3390/ijerph182010750
Lorenzo, I., Pessoa Filho, D. M., Peinado, A. B., PEINADO, P. J. B., & Calderon, F. J. (2017). Predicting maximal oxygen uptake in a generalized population. Medicina dello Sport, 70(1), 20-35. doi: 10.23736/S0025-7826.16.02911-2
Lounana, J., Campion, F., Noakes, T. D., & Medelli, J. (2007). Relationship between% HRmax,% HR reserve,% VO2max, and% VO2 reserve in elite cyclists. Medicine and science in sports and exercise, 39(2), 350-357. doi: 10.1249/01.mss.0000246996.63976.5f
Matsuo, T., So, R., & Takahashi, M. (2020b). Estimating cardiorespiratory fitness from heart rates both during and after stepping exercise: a validated simple and safe procedure for step tests at worksites. European Journal of Applied Physiology, 120(11), 2445-2454. doi: 10.1007/s00421-020-04457-8
Matsuo, T., So, R., & Takahashi, M. (2020a). Workers' physical activity data contribute to estimating maximal oxygen consumption: a questionnaire study to concurrently assess workers' sedentary behavior and cardiorespiratory fitness. BMC public health, 20(1), 22. doi: 10.1186/s12889-019-8067-4
Mayorga-Vega, D., Aguilar-Soto, P., Viciana, J. (2015). Criterion-Related Validity of the 20-M Shuttle Run Test for Estimating Cardiorespiratory Fitness: A Meta-Analysis. J. Sports Sci. Med., 14, 536–547.
Milanović, Z., Pantelić, S., Trajković, N., Sporiš, G., Kostić, R., & James, N. (2013). Age-related decrease in physical activity and functional fitness among elderly men and women. Clinical interventions in aging, 8, 549-556. doi: 10.2147/CIA.S44112
Maritz, J. S., Morrison, J. F., Peter, J., Strydom, N. B., & Wyndham, C. H. (1961). A practical method of estimating an individual's maximal oxygen intake. Ergonomics, 4(2), 97-122. doi: 10.1080/00140136108930512
Magrani, P., & Pompeu, F. A. M. S. (2010). Equations for predicting aerobic power (VO2) of young Brazilian adults. Arquivos brasileiros de cardiologia, 94, 763-770. doi: 10.1590/s0066-782x2010005000054
Malek, M. H., Berger, D. E., Housh, T. J., Coburn, J. W., & Beck, T. W. (2004). Validity of VO2max Equations for Aerobically Trained Males and Females. Medicine and science in sports and exercise, 36, 1427-1432. doi: 10.1249/01.mss.0000135795.60449.ce
Mookerjee, S., Surmacz, C., Till, M., & Weller, B. (2005). Validation of an equation for predicting energy cost of arm ergometry in women. European journal of applied physiology, 95(2), 115-120. doi: 10.1007/s00421-005-1397-1
Mazzoleni, M. J., Battaglini, C. L., Martin, K. J., Coffman, E. M., Ekaidat, J. A., Wood, W. A., & Mann, B. P. (2018). A dynamical systems approach for the submaximal prediction of maximum heart rate and maximal oxygen uptake. Sports Engineering, 21(1), 31-41. doi: 10.1007/s12283-017-0242-1
Nunes, R. A.M., Souza Vale, R.G., Sima˜o, R, de Salles, BF, Reis, VM, Silva Novaes, J, Miranda, H, Rhea, MR, and Cunha Medeiros, A. (2009). Prediction of VO2max during cycle ergometry based on submaximal ventilatory. J Strength Cond Res, 23(6), 1745-1751. doi: 10.1519/JSC.0b013e3181b45c49
Nunes, R. A.M, Castro, J.B.P., Machado, A.F., Silva, J.B., Godoy, E.S., Menezes, L.S., Bocalini, D.S., Vale, R.G.S. (2016). Estimation of VO2max for Elderly Women. JEPonline, 19(6), 180-190.
Nunes, R., Castro, J., Silva, L., Silva, J., Godoy, E., Lima, V., Venturini, G., Oliveira, F., & Vale, R. (2017). Estimation of specific VO2max for elderly in cycle ergometer. Journal of Human Sport and Exercise, 12(4), 1199-1207. doi: 10.14198/jhse.2017.124.06
Nunes, R., Silva, J., Machado, A., Menezes, L., Bocalini, D., Seixas, I., Lima, V., & Vale, R. (2019). Prediction of VO2max in healthy non-athlete men based on ventilatory threshold. Retos: nuevas tendencias en educación física, deporte y recreación, (35), 136-139.
Nes, B. M., Janszky, I., Vatten, L. J., Nilsen, T. I., Aspenes, S. T., & Wisløff, U. (2011). Estimating V̇O2peak from a nonexercise prediction model: the HUNT Study, Norway. Medicine and science in sports and exercise, 43(11), 2024-2030. doi: 10.1249/MSS.0b013e31821d3f6f
Noonan, V., & Dean, E. (2000). Submaximal exercise testing: clinical application and interpretation. Physical therapy, 80(8), 782-807. doi: 10.1093/ptj/80.8.782
Niedziela, J., Hudzik, B., Niedziela, N., Gąsior, M., Gierlotka, M., Wasilewski, J., ... & Rozentryt, P. (2014). The obesity paradox in acute coronary syndrome: a meta-analysis. European journal of epidemiology, 29(11), 801-812. doi: 10.1007/s10654-014-9961-9
Ofstad, A. P., Sommer, C., Birkeland, K. I., Bjørgaas, M. R., Gran, J. M., Gulseth, H. L., & Johansen, O. E. (2019). Comparison of the associations between non-traditional and traditional indices of adiposity and cardiovascular mortality: an observational study of one million person-years of follow-up. International Journal of Obesity, 43(5), 1082-1092. doi: 10.1038/s41366-019-0353-9
Okutucu, S., Karakulak, U. N., Aytemir, K., & Oto, A. (2011). Heart rate recovery: a practical clinical indicator of abnormal cardiac autonomic function. Expert review of cardiovascular therapy, 9(11), 1417-1430. doi: 10.1586/erc.11.149
Prospective Studies Collaboration. (2009). Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. The Lancet, 373(9669), 1083-1096. doi: 10.1016/S0140-6736(09)60318-4
Preethi, B. L., & Jaisri, J. (2014). Risk stratification of body mass index. NJMR, 4, 1-6.
Park, Y., Kim, N. H., Kwon, T. Y., & Kim, S. G. (2018). A novel adiposity index as an integrated predictor of cardiometabolic disease morbidity and mortality. Scientific reports, 8(1), 1-8. doi: 10.1038/s41598-018-35073-4
Pandey, A., Kraus, W.E., Brubaker, P.H., Kitzman, D.W. (2020). Healthy aging and cardiovascular function: Invasive hemodynamics during rest and exercise in 104 healthy volunteers. JACC Heart Fail., 8(2), 111-121. doi: 10.1016/j.jchf.2019.08.020
Plácido, J., Ferreira, J. V., Oliveira, F. D., Sant’Anna, P., Monteiro-Junior, R. S., Laks, J., & Deslandes, A. C. (2019). Association among 2-min step test, functional level and diagnosis of dementia. Dementia & neuropsychologia, 13(1), 97-103. doi: 10.1590/1980-57642018dn13-010011
Pedrosa, R., & Holanda, G. (2009). Correlation between the walk, 2-minute step and TUG tests among hypertensive older women. Brazilian Journal of Physical Therapy, 13(3), 252-256.
Passfield L, Hopker JG, Jobson S, Friel D, & Zabala M. (2017). Knowledge is power: Issues of measuring training and performance in cycling. J Sports Sci, 35(14), 1426-1434. doi: 10.1080/02640414.2016.1215504.
Pyky, R., Jauho, A. M., Ahola, R., Ikäheimo, T. M., Koivumaa-Honkanen, H., Mäntysaari, M., ... & Korpelainen, R. (2015). Profiles of sedentary and non-sedentary young men–a population-based MOPO study. BMC public health, 15(1), 1-10. doi: 10.1186/s12889-015-2495-6
Robergs, R. A., & Landwehr, R. (2002). The surprising history of the" HRmax= 220-age" equation. Journal of Exercise Physiology Online, 5(2), 1-10.
Rodgers, W. M., Hall, C. R., Duncan, L. R., Pearson, E., & Milne, M. I. (2010). Becoming a regular exerciser: Examining change in behavioural regulations among exercise initiates. Psychology of Sport and exercise, 11(5), 378-386. doi: 10.1016/j.psychsport.2010.04.007
Ross, R., Blair, S. N., Arena, R., Church, T. S., Després, J. P., Franklin, B. A., ... & Wisløff, U. (2016). Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation, 134(24), e653-e699. doi: 10.1161/CIR.0000000000000461
Rost, S., Freuer, D., Peters, A., Thorand, B., Holle, R., Linseisen, J., & Meisinger, C. (2018). New indexes of body fat distribution and sex-specific risk of total and cause-specific mortality: a prospective cohort study. BMC Public Health, 18(1), 427. doi: 10.1186/s12889-018-5350-8
Rao, A. V., Phadke, A. V., Patil, P. B., & Joshi, A. R. (2014). Comparison of non-exercise test and step test in estimation of aerobic capacity (VO2max) in young adults. Natl J Physiol Pharm Pharmacol, 4(3), 218-220. doi: 10.5455/njppp.2014.4.150420141
Riebe, D., Ehrman, J.K., Liguori, G., Magal, M. (2016). Clinical exercise testing and interpretation. ACSM’s guidelines for exercise testing and prescription, 10th edn. Wolters Kluwer, Philadelphia, 111–142.
Raghuveer, G., Hartz, J., Lubans, D. R., Takken, T., Wiltz, J. L., Mietus-Snyder, M., ... & American Heart Association Young Hearts Athero, Hypertension and Obesity in the Young Committee of the Council on Lifelong Congenital Heart Disease and Heart Health in the Young. (2020). Cardiorespiratory fitness in youth: an important marker of health: a scientific statement from the American heart association. Circulation, 142(7), e101-e118. doi: 10.1161/CIR.0000000000000866
Roberts, S. (2019). Åstrand-Rhyming and YMCA: A Compare and Contrast Literature Review of Two Submaximal Cycle Ergometer Tests.
Schjerve, I. E., Tyldum, G. A., Tjønna, A. E., Stølen, T., Loennechen, J. P., Hansen, H. E., et al. (2008). Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clinical science, 115(9), 283-293. doi: 10.1042/CS20070332
Schultz, S. A., Byers, J., Benzinger, T. L., Reeds, D., Vlassenko, A. G., Cade, W. T., & Goyal, M. S. (2020). Comparison of the Ekblom-Bak submaximal test to a maximal test in a cohort of healthy younger and older adults in the United States. Frontiers in physiology, 11, 550285. doi: 10.3389/fphys.2020.550285
Schober, P., Boer, C., Schwarte, L.A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesth. Analg., 126, 1763–1768. doi: 10.1213/ANE.0000000000002864
Schulze, M. B. (2019). Metabolic health in normal-weight and obese individuals. Diabetologia, 62(4), 558-566. doi: 10.1007/s00125-018-4787-8
Strauss, M., Foshag, P., Jehn, U., Brzęk, A., Littwitz, H., & Leischik, R. (2021). Higher cardiorespiratory fitness is strongly associated with lower cardiovascular risk factors in firefighters: a cross-sectional study in a German fire brigade. Scientific Reports, 11(1), 2445. doi: 10.1038/s41598-021-81921-1
Sui, X., LaMonte, M. J., & Blair, S. N. (2007). Cardiorespiratory fitness as a predictor of nonfatal cardiovascular events in asymptomatic women and men. American journal of epidemiology, 165(12), 1413-1423. doi: 10.1093/aje/kwm031
Sopalard, M., Leelarungrayub, J., & Klaphajone, J. (2016). Variation of knee angle and leg length for predicting VO2max in healthy male volunteers using the Queen's College step test. Journal of Physical Education and Sport, 16(2), 275-280. doi: 10.7752/jpes.2016.02044
Schwendinger, F., & Pocecco, E. (2020). Counteracting physical inactivity during the COVID-19 pandemic: Evidence-based recommendations for home-based exercise. International journal of environmental research and public health, 17(11), 3909. doi: 10.3390/ijerph17113909
Skattebo, Ø., Calbet, J.A., Rud, B., Capelli, C., Hallén, J. (2020). Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiol., 230(2), e13486. doi: 10.1111/apha.13486
Sartor, F., Vernillo, G., De Morree, H. M., Bonomi, A. G., La Torre, A., Kubis, H. P., & Veicsteinas, A. (2013). Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. Sports Med., 43(9), 865-873. doi: 10.1007/s40279-013-0068-3
Stanforth, P. R., Ruthven, M. D., Gagnon, J., Bouchard, C., Leon, A. S., Rao, D. C., ... & Wilmore, J. H. (1999). Accuracy of prediction equations to estimate submaximal VO2 during cycle ergometry: the HERITAGE Family Study. Medicine and science in sports and exercise, 31(1), 183-188. doi: 10.1097/00005768-199901000-00028
Swain, D. P., Parrott, J. A., Bennett, A. R., Branch, J. D., & Dowling, E. A. (2004). Validation of a new method for estimating VO2max based on VO2 reserve. Medicine and science in sports and exercise, 36(8), 1421–1426. doi: 10.1249/01.mss.0000135774.28494.19
Swain, D. P., Leutholtz, B. C., King, M. E., Haas, L. A., & Branch, J. D. (1998). Relationship between% heart rate reserve and% VO2 reserve in treadmill exercise. Medicine and science in sports and exercise, 30(2), 318-321. doi: 10.1097/00005768-199802000-00022
Van Kieu, N. T., Jung, S. J., Shin, S. W., Jung, H. W., Jung, E. S., Won, Y. H., ... & Chae, S. W. (2020). The validity of the YMCA 3-minute step test for estimating maximal oxygen uptake in healthy Korean and Vietnamese adults. Journal of lifestyle medicine, 10(1), 21-29. doi: 10.15280/jlm.2020.10.1.21
Väisänen, D., Ekblom, Ö., Ekblom-Bak, E., Andersson, E., Nilsson, J., & Ekblom, M. (2020). Criterion validity of the Ekblom-Bak and the Åstrand submaximal test in an elderly population. European journal of applied physiology, 120(2), 307-316. doi: 10.1007/s00421-019-04275-7
Willis, B. L., Gao, A., Leonard, D., DeFina, L. F., & Berry, J. D. (2012). Midlife fitness and the development of chronic conditions in later life. Archives of internal medicine, 172(17), 1333-1340. doi: 10.1001/archinternmed.2012.3400
World Health Organization. Top ten causes of death. December 9, 2020. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed November 5, 2021.
World Health Organization (WHO). Obesity and Overweight. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (2021).
Webb, C., Vehrs, P. R., George, J. D., & Hager, R. (2014). Estimating VO2max using a personalized step test. Measurement in Physical Education and Exercise Science, 18(3), 184-197. doi: 10.1080/1091367X.2014.912985
World Health Organization. Country, WHO region and global statistics. Available online: https://www.who.int/data/gho/publications/world-health-statistics (accessed on 5 January 2022).
World Health Organization. World health statistics. https://www.who.int/data/gho/publications/world-health-statistics (accessed on 5 January 2022).
Zwiren, L.D., Freedson, P.S., Ward, A., Wilke, S., Rippe, J.M. (1991). Estimation of VO2max: a comparative analysis of five tests. Res. Q. Exerc. Sports, 62 (1), 73-78. doi: 10.1080/02701367.1991.10607521
Zhang, R., Zhan, L., Sun, S., Peng, W., & Sun, Y. (2017). Validity of a newly-designed rectilinear stepping ergometer submaximal exercise test to assess cardiorespiratory fitness. Journal of sports science & medicine, 16(3), 357.
Zoladz, J. A., Duda, K., & Majerczak, J. (1998). Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans. European journal of applied physiology and occupational physiology, 77(5), 445-451. doi: 10.1007/s004210050358
Zhou, B. F., the Cooperative Meta-analysis Group of Working Group on Obesity in China (2002). Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomedical and environmental sciences: BES, 15(1), 83-96.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE