:::

詳目顯示

回上一頁
題名:應用方向距離函數評估全球主要定期航運公司之環境績效
作者:廖怡惠
作者(外文):LIAO, YI-HUI
校院名稱:國立臺灣海洋大學
系所名稱:航運管理學系
指導教授:李選士
學位類別:博士
出版日期:2024
主題關鍵詞:方向距離函數環境績效環境管制非意欲產出定期航運公司directional distance functionenvironmental performanceenvironmental regulationundesirable outputliner shipping company
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
海運業提供運輸服務,但因其使用大量化石燃料,運輸過程不免排放大量二氧化碳等溫室氣體。為了減少船舶排放溫室氣體,國際海事組織通過各項政策及強制規定要求海運業進行減碳措施。目標為降低國際航線船舶每單位運輸的碳排放,到2030年碳排放與2008年相比降低至少40%,到2050年需降低70%。
本文為瞭解定期航運產業的環境績效,以運力規模佔全球86%以上的11家定期航運公司為受評單位,以資料包絡分析法為框架,應用方向距離函數評估定期航運公司於2019年至2022年的環境績效。方向向量為擴增意欲產出同時縮減非意欲產出,並衡量各受評單位距離生產前緣的最大距離,距離愈大,代表受評單位距離生產前緣愈遠,環境績效表現愈差。
本文運用方向距離函數,以假設固定規模報酬及變動規模報酬模式進行比較定期航運公司的環境績效,實證結果,大部分定期航運公司偏離固定規模報酬下的生產前緣,顯示整體技術效率差,環境績效表現不佳。進一步改以變動規模報酬衡量受評單位,大部分定期航運公司位於生產前緣,純技術效率相對有效率。兩者結果不一致,歸因於大部分定期航運公司在規模上相對無效率。值得一提,2種模式各年度的數值顯示各受評單位往生產前緣靠近趨勢,表示各定期航運公司實施的減碳措施具有成效。另外,本文對非意欲產出採行強勢處置及弱勢處置之假設,比較環境管制對於定期航運公司的影響。實證結果,環境管制對於定期航運公司產生減碳成本,尤其對於擁有龐大船隊的定期航運公司,擁有運力愈多面對的減碳成本愈高,因此,受環境管制影響也愈大。本文主要貢獻提供政策制定者及監督單位檢視定期航運公司實施航舶減碳排的成果,並且提出相應減碳政策,而定期航運公司則可滾動式調整減碳措施以達成船舶淨零碳排的目標。
The maritime industry provides transportation services, but due to the use of large quantities of fossil fuels, the transportation process emits greenhouse gases (GHGs) such as carbon dioxide (CO2). In order to reduce GHG emissions, the International Maritime Organization has adopted various policies and mandatory regulations for the maritime industry to implement carbon reduction measures. The goal is to reduce carbon emissions per unit of transport for ships on international routes by at least 40% by 2030 and 70% by 2050, compared to the baseline of 2008.
This paper aims to evaluate the environmental performance of the liner shipping industry by selecting 11 liner shipping companies as decision-making units. These companies' shipping capacity accounts for more than 86% of the world's total. This study employed the data envelopment analysis method as a framework and utilized the directional distance function to assess the environmental performance of liner shipping companies from 2019 to 2022. The directional vector expands the desirable output and contracts the undesirable output. It measures the maximum distance of each evaluated unit from the production frontier. A greater distance indicates that the assessed unit is farther away from the production frontier and performs less efficiently in terms of environmental performance.
This paper compared the environmental performance of liner shipping companies using the directional distance function under the assumptions of constant returns to scale (CRS) and variable returns to scale (VRS) models. The empirical results showed that most liner shipping companies did not reach the production frontier of overall technical efficiency as established by CRS, indicating low overall technical efficiency and poor environmental performance. Moving on to the VRS, most liner shipping companies located at the production frontier and relatively efficient in terms of pure technical efficiency. The inconsistency between the two results may be due to the relatively inefficient operations of most liner shipping companies in terms of scale. It was worth noting that the values from both models for each year indicated a trend of the assessed units approaching the production frontier. This suggested that the carbon reduction measures implemented by the liner shipping companies have been effective. Furthermore, this paper compared the effects of environmental regulations on liner shipping companies, considering the assumptions of strong and weak disposal of undesirable outputs. The empirical results indicated that environmental regulations impose carbon reduction costs on liner shipping companies, particularly those with large fleets. The larger their capacity, the higher the carbon reduction costs they face, and therefore the impact of environmental regulations. The main contribution of this paper was to provide policymakers and regulators with the opportunity to evaluate the effects of implementing carbon emission reductions by liner shipping companies and to propose corresponding carbon reduction policies. At the same time, liner shipping companies could continuously adjust their carbon reduction measures to achieve the goal of reaching net-zero carbon emissions from ships.
一、中文文獻
1. 高強 (2021)。網路資料包絡分析原理。華泰。
2. 高強、黃旭男(2003)。管理績效評估: 資料包絡分析法。華泰。
3. 曾郁安、施囿丞、吳昌政, & 吳金翰 (2023)。IMO 降低船舶溫室氣體排放新規定之介紹與因應策略。船舶科技(57), 87-108.
4. 蔡蕙安、榮傳陳、銘忠姚 (2019)。國際定期海運市場結構, 營運模式及競爭規範研究。第 24 屆競爭政策與公平交易法學術研討會論文集: 公平交易委員會。https://www.ftc.gov.tw/upload/seminar/24-6.pdf

二、英文文獻
1. Akan, E., & Kiraci, K. (2023). A novel depreciation approach in an uncertain environment: interval type-2 fuzzy sets in the maritime industry. Soft Computing, 27(4), 1941-1969.
2. Alamoush, A. S., Ölçer, A. I., & Ballini, F. (2022a). Port greenhouse gas emission reduction: Port and public authorities' implementation schemes. Research in Transportation Business & Management, 43, 100708.
3. Alamoush, A. S., Ölçer, A. I., & Ballini, F. (2022b). Ports’ role in shipping decarbonisation: A common port incentive scheme for shipping greenhouse gas
emissions reduction. Cleaner Logistics and Supply Chain, 3, 100021.
4. Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., & Staffell, I. (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy conversion and management, 182, 72-88.
5. Bang, H.-S., Kang, H.-W., Martin, J., & Woo, S.-H. (2012). The impact of operational and strategic management on liner shipping efficiency: a two-stage DEA approach. Maritime Policy & Management, 39(7), 653-672.
6. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
7. Becqué, R., Fung, F., & Zhu, Z. (2017). Incentive schemes for promoting green shipping. Natural Resources Defense Council (NRDC): Beijing, China, 2017.
http://www.nrdc.cn/Public/uploads/2017-07-04/595b35e456169.pdf.
8. Bouman, E. A., Lindstad, E., Rialland, A. I., & Strømman, A. H. (2017). State-ofthe-art technologies, measures, and potential for reducing GHG emissions from shipping–A review. Transportation Research Part D: Transport and Environment, 52, 408-421.
9. Bullock, S., Mason, J., & Larkin, A. (2022). The urgent case for stronger climate targets for international shipping. Climate Policy, 22(3), 301-309.
10. Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of economic theory, 70(2), 407-419.
11. Chambers, R. G., Fāure, R., & Grosskopf, S. (1996). Productivity growth in APEC countries. Pacific Economic Review, 1(3), 181-190.
12. Chao, S.-L. (2017). Integrating multi-stage data envelopment analysis and a fuzzy analytical hierarchical process to evaluate the efficiency of major global liner shipping companies. Maritime Policy & Management, 44(4), 496-511.
13. Chao, S.-L., Yu, M.-M., & Hsieh, W.-F. (2018). Evaluating the efficiency of major container shipping companies: A framework of dynamic network DEA with
shared inputs. Transportation Research Part A: Policy and Practice, 117, 44-57.
14. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
15. Chin, A. T., & Low, J. M. (2010). Port performance in Asia: Does production efficiency imply environmental efficiency? Transportation Research Part D:
Transport and Environment, 15(8), 483-488.
16. Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. journal of Environmental
Management, 51(3), 229-240.
17. Cullinane, K., & Cullinane, S. (2019). Policy on reducing shipping emissions: implications for “green ports”. Green Ports, 35-62.
18. Cullinane, K., & Yang, J. (2022). Evaluating the costs of decarbonizing the shipping industry: A review of the literature. Journal of Marine Science and Engineering, 10(7), 946.
19. dos Santos, V. A., Pereira da Silva, P., & Serrano, L. M. V. (2022). The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the
Contribution of Alternative Fuels. Energies, 15(10), 3571.
20. Eyring, V., Gillett, N. P., Achutarao, K., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., . . . McGregor, S. (2021). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC Sixth Assessment Report.
21. Färe, R., Grosskopf, S., Lovell, C. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. The review of economics and statistics, 90-98.
22. Färe, R., Grosskopf, S., & Pasurka, C. A. (2003). Estimating pollution abatement costs: a comparison of'stated'and'revealed'approaches. Available at SSRN 358700. https://ssrn.com/abstract=358700
23. Färe, R., Grosskopf, S., & Pasurka Jr, C. A. (2007). Environmental production functions and environmental directional distance functions. Energy, 32(7), 1055-1066.
24. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society Series A: Statistics in Society, 120(3), 253-281.
25. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., . . .Myhre, G. (2007). Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change.
26. Golnar, M., & Beškovnik, B. (2022). A Multi-Criteria Approach for Evaluating a Sustainable Intermodal Transport Chain Affected by the COVID-19 Pandemic.
Journal of Marine Science and Engineering, 10(11), 1644.
27. Gong, X., Wu, X., & Luo, M. (2019). Company performance and environmental efficiency: A case study for shipping enterprises. Transport Policy, 82, 96-106.
28. Gutiérrez, E., Lozano, S., & Furió, S. (2014). Evaluating efficiency of international container shipping lines: A bootstrap DEA approach. Maritime Economics & Logistics, 16(1), 55-71.
29. Halkos, G., & Petrou, K. N. (2019). Treating undesirable outputs in DEA: A critical review. Economic Analysis and Policy, 62, 97-104.
30. IMO. (2014). RESOLUTION MEPC.245(66) (Adopted on 4 April 2014 ), 2014 guidelines on the method of calculation of the attained energy efficiency design index (EEDI) for new ships, IMO doc. https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.245(66).pdf
31. IMO. (2016). RESOLUTION MEPC.280(70) (Adopted on 28 October 2016), Effective date of implementation of the fuel oil standard in regulation 14.1.3 of MARPOL annex VI. https://www.classnk.or.jp/hp/pdf/activities/statutory/soxpm/resmepc280-70.pdf
32. IMO. (2018). RESOLUTION MEPC.304(72) (adopted on 13 April 2018), Initial IMO strategy on reduction of GHG emissions from ships, IMO doc. MEPC 72/17/add.1, annex 11. https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.304(72).pdf
33. IMO. (2019). RESOLUTION MEPC.323(74) (adopted on 17 May 2019), Invitation to members states to encourage voluntary cooperation between the port and shipping sectors to contribute to reducing GHG emissions from ships. IMO doc., MEPC 74/18/Add.1. https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.323%2874%29.pdf
34. IMO. (2020). Fourth IMO GHG Study 2020. Retrieved from London, UK: https://www.imo.org/en/ourwork/Environment/Pages/Fourth-IMO-greenhouseGas-Study-2020.aspx
35. Faber, J., Hanayama, S., Zhang, S., Pereda, P., Comer, B., Hauerhof, E., & Yuan, H. (2020). Fourth IMO Greenhouse Gas Study 2020: Technical report. International Maritime Organization (2020), pp. 1689-1699.
36. Jimenez, V. J., Kim, H., & Munim, Z. H. (2022). A review of ship energy efficiency research and directions towards emission reduction in the maritime industry. Journal of cleaner production, 366, 132888.
37. Kutin, N., Nguyen, T. T., & Vallée, T. (2017). Relative efficiencies of ASEAN container ports based on data envelopment analysis. The Asian Journal of Shipping and Logistics, 33(2), 67-77.
38. Lagouvardou, S., Psaraftis, H. N., & Zis, T. (2020). A literature survey on marketbased measures for the decarbonization of shipping. Sustainability, 12(10), 3953.
39. Lister, J. (2015). Green shipping: Governing sustainable maritime transport. Global Policy, 6(2), 118-129.
40. Livaniou, S., & Papadopoulos, G. A. (2022). Liquefied Natural Gas (LNG) as a Transitional Choice Replacing Marine Conventional Fuels (Heavy Fuel Oil/Marine Diesel Oil), towards the Era of Decarbonisation. Sustainability, 14(24), 16364.
41. Lun, V. Y., & Marlow, P. (2011). The impact of capacity on firm performance: a study of the liner shipping industry. International Journal of Shipping and
Transport Logistics, 3(1), 57-71.
42. Mandal, S. K., & Madheswaran, S. (2010). Environmental efficiency of the Indian cement industry: an interstate analysis. Energy policy, 38(2), 1108-1118.
43. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021). Climate change 2021: the physical science basis.
Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2.
44. Nations, U. (2015). Paris agreement. Paper presented at the report of the conference of the parties to the United Nations framework convention on climate change (21st session, 2015: Paris).
45. Odeck, J., & Schøyen, H. (2020). Productivity and convergence in Norwegian container seaports: An SFA-based Malmquist productivity index approach.
Transportation Research Part A: Policy and Practice, 137, 222-239.
46. Oggioni, G., Riccardi, R., & Toninelli, R. (2011). Eco-efficiency of the world cement industry: A data envelopment analysis. Energy policy, 39(5), 2842-2854.
47. Panayides, P. M., Lambertides, N., & Savva, C. S. (2011). The relative efficiency of shipping companies. Transportation Research Part E: Logistics and Transportation Review, 47(5), 681-694.
48. Picazo-Tadeo, A. J., Beltrán-Esteve, M., & Gómez-Limón, J. A. (2012). Assessing eco-efficiency with directional distance functions. European journal of operational research, 220(3), 798-809.
49. Picazo-Tadeo, A. J., Reig-Martinez, E., & Hernandez-Sancho, F. (2005). Directional distance functions and environmental regulation. Resource and Energy Economics, 27(2), 131-142.
50. Psaraftis, H. N., Zis, T., & Lagouvardou, S. (2021). A comparative evaluation of market based measures for shipping decarbonization. Maritime Transport Research, 2, 100019.
51. Qi, X., & Song, D.-P. (2012). Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times. Transportation Research Part E: Logistics and Transportation Review, 48(4), 863-880.
52. Romano, A., & Yang, Z. (2021). Decarbonisation of shipping: A state of the art survey for 2000–2020. Ocean & Coastal Management, 214, 105936.
https://www.sciencedirect.com/science/article/pii/S0964569121004191
53. Shephard, R. W. (1970). Theory of cost and production functions: Princeton University Press.
54. Shi, Y. (2016). Reducing greenhouse gas emissions from international shipping: Is it time to consider market-based measures? Marine policy, 64, 123-134.
55. Song, M., An, Q., Zhang, W., Wang, Z., & Wu, J. (2012). Environmental efficiency evaluation based on data envelopment analysis: A review. Renewable and Sustainable Energy Reviews, 16(7), 4465-4469.
56. Placek, M. (2023, June 12). Mediterranean Shipping Company's number of twenty-foot equivalent units (TEUs) from February 2021 to May 2023. Statista. https://www.statista.com/statistics/199446/number-of-teus-of-mediterraneanshg-co-in-december-2011/
57. Sun, J. (2023). The Federal Reserve's Interest Rate Policy and Its Impact Against a Background of Inflation and High Unemployment Rate. Highlights in Business, Economics and Management, 15, 80-85.
58. Tongzon, J. (2001). Efficiency measurement of selected Australian and other international ports using data envelopment analysis. Transportation Research Part A: Policy and Practice, 35(2), 107-122.
59. Tovar, B., & Wall, A. (2019). Environmental efficiency for a cross-section of Spanish port authorities. Transportation Research Part D: Transport and
Environment, 75, 170-178.
60. Traut, M., Larkin, A., Anderson, K., McGlade, C., Sharmina, M., & Smith, T. (2018). CO2 abatement goals for international shipping. Climate Policy, 18(8), 1066-1075.
61. Voltes-Dorta, A., & Martín, J. C. (2016). Benchmarking the noise-oriented efficiency of major European airports: A directional distance function approach. Transportation Research Part E: Logistics and Transportation Review, 91, 259-273.
62. Wan, Z., El Makhloufi, A., Chen, Y., & Tang, J. (2018). Decarbonizing the international shipping industry: Solutions and policy recommendations. Marine pollution bulletin, 126, 428-435.
63. Wang, G., Li, K. X., & Xiao, Y. (2019). Measuring marine environmental efficiency of a cruise shipping company considering corporate social responsibility. Marine policy, 99, 140-147.
64. Watanabe, M., & Tanaka, K. (2007). Efficiency analysis of Chinese industry: a directional distance function approach. Energy policy, 35(12), 6323-6331.
65. Winnes, H., Styhre, L., & Fridell, E. (2015). Reducing GHG emissions from ships in port areas. Research in Transportation Business & Management, 17, 73-82.
66. Woo, J.-K., & Moon, D. S.-H. (2014). The effects of slow steaming on the environmental performance in liner shipping. Maritime Policy & Management, 41(2), 176-191.
67. Wu, Y.-C. J., & Goh, M. (2010). Container port efficiency in emerging and more advanced markets. Transportation Research Part E: Logistics and Transportation Review, 46(6), 1030-1042.
68. Yang, X., & Yip, T. L. (2019). Sources of efficiency changes at Asian container ports. Maritime Business Review, 4(1), 71-93.
69. Zheng, J., Liu, X., & Bigsten, A. (1998). Ownership structure and determinants of technical efficiency: An application of data envelopment analysis to Chinese
enterprises (1986–1990). Journal of Comparative Economics, 26(3), 465-484.

三、網路資料
1. Alphaliner. (2020a). Alphaliner Monthly Monitor December 2020. alphaliner doc.
https://file-eu.clickdimensions.com/axsmarinecomaahwq/files/alphaliner_monthly_monitordec2020.pdf?m
2. Alphaliner. (2020b). Alphaliner Monthly Monitor, January 2020. alphaliner doc.
https://public.alphaliner.com/wpcontent/uploads/2021/08/Alphaliner_Monthly_Monitor_Jan_2020.pdf
3. Alphaliner. (2022). Alphaliner Monthly Monitor February 2022. alphaliner doc.
https://public.axsmarine.com/wp-content/uploads/2022/05/Alphaliner-MonthlyMonitor-Feb-2022.pdf
4. Alphaliner. (2023). Alphaliner TOP 100. Retrieved from
https://alphaliner.axsmarine.com/PublicTop100
5. Mediterranean Shipping Company:https://www.msc.com/
6. A.P. Møller-Maersk:https://www.maersk.com/about
7. CMA CGM Group:https://www.cma-cgm.com/
8. COSCO Shipping Lines: https://lines.coscoshipping.com/home
9. Hapag-Lloyd:https://www.hapag-lloyd.com/en/home.html
10. Ocean Network Express:https://www.one-line.com/en
11. Evergreen Marine Corp.:https://www.evergreen-marine.com/
12. HMM Co Ltd.:https://www.hmm21.com/company.do
13. Yang Ming Marine Transport Corp.:https://www.yangming.com/index.aspx
14. Zim Integrated Shipping Services Ltd.:https://www.zim.com/
15. Wan Hai Lines:https://www.wanhai.com/views/Main.xhtml
16. 能源轉換:https://www.unitjuggler.com/energy-conversion.html
17. 能 源 轉 換 : https://www.justintools.com/unitconversion/energy.php?k1=terajoules&k2=tonne-of-oil-equivalent
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE