:::

詳目顯示

回上一頁
題名:長期分解性壓力對骨骼肌AMPK訊息系統之影響
作者:陳宗與
作者(外文):Chung-Yu Chen
校院名稱:國立體育大學
系所名稱:體育研究所
指導教授:蔡櫻蘭
郭家驊
學位類別:博士
出版日期:2010
主題關鍵詞:糖尿病醣類代謝運動肥胖葡萄糖轉運體diabetescarbohydrate metabolismexerciseobesityglucose transporter
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:61
低氧刺激與運動訓練兩種模式已被證實能改變骨骼肌系統代謝功能,目前了解,骨骼肌醣類代謝狀態會受到AMPK與CAMK兩訊息路徑系統調節。因此,本研究第一個實驗為探討不同輕微低氧曝露時程對AMPK訊息路徑與胰島素敏感度之影響;第二個實驗則是比較急性運動與運動訓練對肥胖Zucker鼠葡萄糖耐受度之影響,同時探討AMPK訊息路徑與CAMK II蛋白所扮演之角色。方法:本研究第一個實驗將56隻SD (Spargue Dawley)鼠依體重配對方式分成每日低氧8小時與1小時兩大組,各大組則再細分為控制組、單次低氧組與八週低氧組。第二個實驗將24隻Zucker胖鼠與24隻Zucker瘦鼠依體重配對方式分成胖與瘦兩大組,每大組又細分為控制組、單次運動1小時組及六週長期運動訓練組。結果:在實驗一部份,我們發現每天8小時且連續八週間歇性低氧能明顯減低副睪脂肪量、改善葡萄糖耐受度、增加胰島素敏感度與增加微血管密度;連續八週每天1小時低氧後,僅在胰島素敏感度與微血管密度與控制組比較後有差異。在基因表現部份,單次低氧8小時後明顯增加PGC-1α、VEGF及GLUT4基因表現,在AMPK-PGC-1α-GLUT4及VEGF蛋白表現部份,低氧8小時和1小時兩大組與控制組比較後無明顯差異。在實驗二部份,我們發現長期運動訓練明顯改善Zucker鼠葡萄糖耐受度與增加磷檬酸合成酶的活性,但在GLUT1、GLUT4、PGC-1α基因表現上,單次1小時運動後對Zucker鼠無明顯影響。胖與瘦Zucker鼠在基礎狀態下之AMPK α-thr 172與CAMK II-thr 286磷酸化和CAMK II蛋白表現即有明顯差異,但運動訓練後胖鼠能明顯趨於正常化表現狀態,在PGC-1α蛋白表現部份,胖與瘦Zucker鼠在基礎狀態下有明顯差異,瘦鼠在六週運動訓練後明顯提高PGC-1α蛋白表現。結論:本研究實驗一發現每天低氧8小時且連續八週後明顯改善葡萄糖耐受度與胰島素敏感度,但此正面效益在每天低氧1小時組較不明顯。連續八週每天低氧8小時所帶來改善胰島素敏感度與葡萄糖耐受度之效果,可能與降低脂肪量和增加微血管密度有關,似乎與GLUT4、VEGF、和PGC-1α蛋白表現沒有關連。實驗二發現在基礎狀態下,肥胖Zucker鼠與瘦Zucker鼠之CAMK II-thr 286磷酸化與CAMK II蛋白表現、AMPK α-thr 172磷酸化有明顯差異,但經由六週的游泳訓練後能明顯使此現象趨向於正常化(normalize)。運動訓練改善肥胖Zucker鼠葡萄糖耐受度的效果,部份可能的原因與增加粒線體密度有關,似乎與GLUT1、GLUT4、PGC-1α蛋白表現無直接關連。本研究的結果將有助於了解長期間歇性低氧與運動訓練對骨骼肌醣類代謝調節機轉之影響,此結果在未來可做為治療或改善葡萄糖耐受度與胰島素敏感度的應用策略。
Hypoxia and exercise training are the well known factors, which can cause functional changes in skeletal muscle. Glucose metabolism in skeletal muscle is mediated by AMPK and CAMK II signaling pathway, which is crucial in normal and obese subjects. The first study was purposed to investigate the different duration of mild hypoxia exposure on AMPK signaling and insulin sensitivity. The second study was aimed to compare the acute exercise and exercise training effect on glucose tolerance in obese Zucker rat. This study also demonstrate the role of AMPK signaling and CAMK II protein expression in Zucker rats. Methods: In the first study, Spargue Dawley (n=56) rats were divided into two groups; 8 hr/day mild hypoxia exposure group and 1 hr/day mild hypoxia exposure group. Each group was followed 3 treatments: control, acute mild hypoxia and 8-week mild hypoxia. In the second study, obese Zucker rats (n=24) and lean littermates (n=24) were assigned into following 3 treatments; control, acute 1-hr exercise and six-week chronic exercise training. Results: In first part of the study, significantly decreased epididymal fat mass, improved glucose tolerance, enhanced insulin sensitivity, and increased capillary density was observed with 8 hr/day with 8-week mild hypoxia treatment. Only in insulin sensitivity and capillary density were significantly increased in 1 hr/day with 8-week mild hypoxia treated group. Furthermore, acute 8-hour mild hypoxia exposure significantly elevated PGC-1α, VEGF and GLUT4 mRNA levels. However, the protein expression of AMPK, phospho-AMPK, PGC-1α, GLUT4 and VEGF in both red and white quadriceps muscles were not significantly different among groups under acute and chronic mild hypoxia conditions. In second study, exercise training significantly improved glucose tolerance and increased citrate synthase activity in both obese and lean Zucker rats. However, no significant difference in GLUT1, GLUT4, and PGC-1α mRNA levels were observed in red gastrocnemius muscle between the control and acute exercise groups. Interestingly, the phosphorylation of AMPK-thr 172, CAMK II-thr 286, and PGC-1α protein level in obese Zucker rat were significantly higher than lean littermates under basal state, but this phenomenon could be reversed after six-week exercise training. In addition, the PGC-1α level was significantly increased in lean Zucker rats following six-week exercise training. Conclusions: The first study demonstrated significant improvements in glucose tolerance and insulin sensitivity by 8 hr/day with 8-week mild intermittent hypoxia. However, this beneficial effect was not apparent in 1 hr/day with 8-week mild intermittent hypoxia group. This improvement in glucose tolerance and insulin sensitivity appears to be related to the elevated muscle capillary density and decreased fat accumulation; it seems not to be related with increased GLUT4, VEGF, and PGC-1α protein expression. The second study showed significantly higher CAMK II-thr 286 and AMPK-thr 172 phosphorylation in obese Zucker rat than in lean rats; however, six weeks exercise training could reverse this phenomenon. Improved glucose tolerance by exercise training in both obese and lean Zucker rats appear to be related to increased mitochondria density rather than elevated GLUT1, GLUT4, and PGC-1α protein expression. This study confirmed that mild intermittent hypoxia and exercise training would be affective to improve glucose tolerance and increase insulin sensitivity, which can adopt as therapeutic strategy for type 2 diabetic patients.
Aguirre, V., Uchida, T., Yenush, L., Davis, R., & White, M.F. (2000). The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). Journal of Biological Chemistry, 275, 9047- 9054.
Antonescu, C. N., Huang, C., Niu, W., Liu, Z., Eyers, P. A., Heidenreich, K. A., Bilan, P. J., & Klip, A. (2005). Reduction of insulin-stimulated glucose uptake in L6 myotubes by the protein kinase inhibitor SB203580 is independent of p38MAPK activity. Endocrinology, 146, 3773-3781.
Aravindan, N., Aravindan, S., Shanmugasundaram, K., & Shaw, A. (2007). Periods of systemic partial hypoxia induces apoptosis and inflammation in rat skeletal muscle. Molecular Cell Biochemistry, 302, 51-58.
Argiles, J. (1989). The obese Zucker rat: A choice for fat metabolism. 1969-1988: Twenty years of research on the insights of Zucker mutation. Progress in Lipid Research, 28, 53-66.
Aschenbach, W. G., Hirshman, M. F., Fujii, N., Sakamoto, K., Howlett, K. F., & Goodyear, L. J. (2002). Effect of AICAR Treatment on Glycogen Metabolism in Skeletal Muscle. Diabetes, 51(3), 567-573.
Aschenbach, W., Sakamoto, K., & Goodyear, L. (2004). 5'-adenosine monophosphate-activated protein kinase, metabolism and exercise. Sports Medicine, 34, 91-103.
Banchero, N., Gimenez, M., Rostami, A., & Eby, S. (1976). Effects of simulated altitude on O2 transport in dogs. Respiratory Physiology, 27(3), 305-321.
Baron, A., Steinberg, H., Chaker, H., Leaming, R., Johnson, A., & Brechtel, G. (1995). Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. Journal of Clinical Investigation, 96(2), 786-792.
Banerjee, R. R., Rangwala, S. M., Shapiro, J. S., Rich, A. S., Rhoades, B., Qi, Y., Wang, J., Rajala, M. W., Pocai, A., Scherer, P. E., et al. (2004). Regulation of fasted blood glucose by resistin. Science, 303, 1195-1198.
Bergeron, R., Russell, R. R.,Young, L. H., Ren, J. M., Marcucci, M., Lee, A., et al. (1999). Effect of AMPK activation on muscle glucose metabolism in conscious rats. American Journal of Physiology-Endocrinology and Metabolism, 276(5), E938-944.
Bergeron, R., Ren, J. M., Cadman, K. S., Moore, I. K., Perret, P., Pypaert, M., et al. (2001). Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. American Journal of Physiology-Endocrinology and Metabolism, 281(6), E1340-1346.
Bjorntorp, P., Bergman, H., & Varnauskas, E. (1969). Plasma free fatty acid turnover rate in obesity. Acta medical scandinavica, 185, 351-356.
Boden, G., Chen, X., Ruiz, J., White, J., & Rossetti, L. (1994). Mechanisms of fatty acid-induced inhibition of glucose uptake. Journal of Clinical Investigation, 93(6), 2438-2446.
Bruss, M. D., Arias, E. B., Lienhard, G. E., & Cartee, G. D. (2005). Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes, 54, 41-50.
Cai, D., Yuan, M., Frantz, D.F., Melendez, P.A., Hansen, L., Lee, J., et al. (2005). Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nature Medicine, 11, 183-190.
Carling, D. (2004). The AMP-activated protein kinase cascade - a unifying system for energy control. Trends in Biochemical Sciences, 29, 18-24.
Cartee, G. D., Douen, A. G., Ramlal, T., Klip, A., & Holloszy, J. O. (1991). Stimulation of glucose transport in skeletal muscle by hypoxia. Journal of Applied Physiology, 70(4), 1593-1600.
Chalkley, S., Hettiarachchi, M., Chisholm, D., & Kraegen, E. (1998). Five-hour fatty acid elevation increases muscle lipids and impairs glycogen synthesis in the rat. Metabolism, 47(9), 1121-1126.
Chen, Z., Mitchelhill, K., Michell, B., Stapleton, D., Rodriguez-Crespo, I., Witters, L., et al. (1999). AMP-activated protein kinase phosphorylation of endothelial NO synthase. Federation of European Biochemical Societies letters, 443(3), 285-289.
Chen, Z-p., Heierhorsta, J., Manna, R. J., Mitchelhilla, K. I., Michella, B. J., Wittersb, L. A., et al. (1999). Expression of the AMP-activated protein kinase beta1 and beta 2 subunits in skeletal muscle. Federation of European Biochemical Societies lettesr, 460, 343-348.
Cheung, P., Salt, I., Davies, S., Hardie, D., & Carling, D. (2000). Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Journal of Biological Chemistry, 346, 659-669.
Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F., & Maity, A. (2001). Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. Journal of Biological Chemistry, 276, 9519-9525.
Christ, C. Y., Hunt, D., Hancock, J., Garcia-Macedo, R., Mandarino, L. J., & Ivy, J. L. (2002). Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese Zucker rats. Journal of Applied Physiology, 92, 736-744.
Chiu, L. L., Chou, S. W., Cho, Y. M., Ho, H. Y., Ivy, J. L., Hunt, D., et al. (2004). Effect of prolonged intermittent hypoxia and exercise training on glucose tolerance and muscle GLUT4 protein expression in rats. Journal of Biomedical Science, 11(6), 838-46.
Chou, S., Chiu, L., Cho, Y., Ho, H., Ivy, J., Ho, C., et al. (2004). Effect of systemic hypoxia on GLUT4 protein expression in exercised rat heart. Japanese Journal of Physiology, 54(4), 357-363.
Cortez, M. Y., Torgan, C. E., Brozinick, J. T. Jr., & Ivy, J. L.(1991a). Efect of pyruvate and dihydroxacetone consumptionn on the growth and metabolic state of obese Zucker rats. American Journal of Clinical Nutrition, 53, 847-853.
Cortez, M. Y., Torgan, C. E., Brozinick, J. T. Jr., & Ivy, J. L.(1991b). Insulin resistance of obese Zucker rats exercise trained at two different intensities. American Journal of Physiology, 261, E613-619.
Czech, M. P., Richardson, D. K., Becjer, S. G., Walters, C. G., Gotomer, W., & Heinrich, J. (1978). Insulin response in skeletal muscle and fat cells of genetically obese Zucker rat. Metabolism, 27, 1967-1981.
Defronzo, R. A., Jacot, E., Jequier, E., Maeder, E., Wahren, J., & Felber, J. P. (1981). The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes, 30, 1000-1007.
Deveci, D., Marshall, J. M., & Egginton, S. (2001). Relationship between capillary angiogenesis, fiber type, and fiber size in chronic systemic hypoxia. American Journal of Physiology-Heart and Circulatory Physiology, 281(1), H241-252.
Dill, R. P., Chadan, S. G., Li, C., & Parkhouse, W. S. (2001). Aging and glucose transporter plasticity in response to hypobaric hypoxia. Mechanism of Ageing and Development, 122(6), 533-545.
Dresner, A., Laurent, D., Marcucci, M., Griffin, M., Dufour, S., Cline, G., et al. (1999). Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. Journal of Clinical Investigation, 103(2), 253-259.
Durante, P.E., Mustard, K. J., Park, S. H., Winder, W. W., & Hardie, D. G. (2002). Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles. American Journal of Physiology-Endocrinology and Metabolism, 283, E178-186.
Ebeling, P., Bourey, R., Koranyi, L., Tuominen, J. A., Groop, L. C., Henriksson, J., et al. (1993). Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (GLUT-4) concentration, and glycogen synthase activity. Journal of Clinical Investigation, 92(4), 1623-1631.
Emanuelli, B., Peraldi, P., Filloux, C., Chavey, C., Freidinger, K., Hilton, D.J., et al. (2001). SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-_ in the adipose tissue of obese mice. Journal of Biological Chemistry, 276, 47944-47949.
Etgen G. J., Wilson, Jr, C. M., Jensen, J., Cushman, S. W., & Ivy, J. L. (1996). Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat. American Journal of Physiology-Endocrinology and Metabolism, 271, E294-E301.
Facchini, F. S., Hua, N., Abbasi, F., & Reaven, G. M. (2001). Insulin resistance as a predictor of age-related diseases. Journal of Clinical Endocrinology & Metabolism, 86, 3574-3578.
Feldser, D., Agani, F., Iyer, N. V., Pak, B., Ferreira, G., & Semenza, G. L. (1999) Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Research, 59, 3915-3918.
Finck, B., & Kelly, D. (2006). PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. Journal of Clinical Investigation, 116(3), 615-622.
Fisher, J. S., Gao, J., Han, D. H., Holloszy, J. O., & Nolte, L. A. (2002). Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. American Journal of Physiology, 282, E18-E23.
Flier, J. S. (2006). TLR4 links innate immunity and fatty acidinduced insulin resistance. Journal of Clinical Investigation, 116, 3015-3025.
Funahashi, T., Nakamura, T., & Shimomura, I. (1999). Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Internal Medicine, 38, 202-6.
Fryer, L., Hajduch, E., Rencurel, F., Salt, I., Hundal, H., Hardie, D., et al. (2000). Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes, 49(12), 1978-1985.
Frisbee, J. C. (2005). Hypertension-independent microvascular rarefaction in the obese Zucker rat model of the metabolic syndrome. Microcirculation, 12, 383-392.
Frisbee, J. C. (2005). Reduced nitric oxide bioavailability contributes to skeletal muscle microvessel rarefaction in the metabolic syndrome. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 289, R307-R316.
Fujii, N., Jessen, N., & Goodyear, L. J. (2006). AMP-activated protein kinase and the regulation of glucose transport. American Journal of Physiology-Endocrinology and Metabolism, 291, E867-E877.
Gavi, S., Stuart, L.M., Kelly, P., Melendez, M.M., Mynarcik, D.C., Gelato, M.C., et al. (2007). Retinolbinding protein 4 is associated with insulin resistance and body fat distribution in nonobese subjects without type 2 diabetes. Journal of Clinical Endocrinology & Metabolism, 92, 1886-1890.
Genuth, S. M. (1998). The endocrine system. In Berne RM and Levy MN (eds): Physiology-4th edition. Mosby, St. Louis.
Gordon, E.S. (1964). Lipid metabolism, diabetes mellitus, and obesity. Advanced Internal Medicine, 12, 66-102.
Gonyea, W., Ericson, G.C., & Bonde-Petersen, F. (1977). Skeletal muscle fiber splitting induced by weight-lifting exercise in cats. Acta Physiologica Scandinavica, 99,105-109.
Goodyear, L. J., King, P. A., Hirshman, M. F., Thompson, C. M., Horton, E. D. & Horton, E. S. (1990). Contractile activity increases plasma membrane glucose transporters in absence of insulin. American Journal of Physiology-Endocrinology and Metabolism, 258, E667-E672.
Graham, T. E., Yang, Q., Bluher, M., Hammarstedt, A., Ciaraldi, T. P., Henry, R. R., Wason, C. J., Oberbach, A., Jansson, P. A., Smith, U., et al. (2006). Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. New England Journal Medicine, 354, 2552-2563.
Hardie, D. G., Carling, D., & Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annual Review Biochemistry, 67, 821-855.
Hardie, D, Salt, I., Hawley, S., & Davies, S. (1999). AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochemical Journal, 338(Pt3), 717-722.
Hardie, D. G. (2004). The AMP-activated protein kinase pathway-new players upstream and downstream. Journal of Cell Science, 117(23), 5479-5487.
Hayashi, T., Hirshman, M. F., Fujii, N., Habinowski, S. A., Witters, L. A., & Goodyear, L. J. (2000). Metabolic stress and altered glucose transport. Activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes, 48, 527-531.
Hayashi, T., Hirshman, M., Kurth, E., Winder, W., & Goodyear, L. (1998). Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes, 47(8), 1369-1373.
Holloszy, J. O., & Narahara, H. T. (1965). Studies of tissue permeability. X. Changes in permeability to 3-methylglucose associated with contraction of isolated frog muscles. Journal of Biological Chemistry, 240, 3493-3500.
Helmreich, E. J. M. (2001). The biochemistry of cell signaling. Regulation by a hormone: the insulin response. (pp.137-154). Oxford University Press, New York.
Hickner, R. C., Fisher, J. S., Ehsani, A. A., & Kohrt, W. M. (1997). Role of nitric oxide in skeletal muscle blood flow at rest and during dynamic exercise in humans. American Journal of Physiology-Heart and Circulatory Physiology, 273(1), H405-410
Holmes, B. F., Kurth-Kraczek, E. J & Winder, W. W. (1999). Chronic activation of 5-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. Journal of Applied Physiology, 87, 1990-1995.
Hotamisligil, G. (1999). The role of TNFalpha and TNF receptors in obesity and insulin resistance. Journal of Internal Medicine, 245(6), 621-625.
Hosogai, N., Fukuhara, A., Oshima, K., Miyata, Y., Tanaka, S., Segawa, K., et al. (2007). Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes, 56(4), 901-911.
Ivy, J. L., Brozinick, J. T. Jr., Torgan, C. E., & Kastello, G. M. (1989). Skeletal muscle glucose transport in obese Zucker rats after exercise training. Journal Applied
Physiology, 66, 2635-2641.
Ivy, J. L., Cortez, M. Y., Chandler, R. M., Byrne, H. K., & Miller, R. H. (1994). Effects of pyruvate on the metabolism and insulin resistance of obese Zucker rats. American Journal of Clinical Nutrition, 59, 331-337.
Ivy, J. L., Zderic, T. W., & Fogt, D. L. (1999). Prevention and treatment of non-insulin-dependent diabetes mellitus. Exercise and Sport Science Reviews, 27, 1-35.
Janke, J., Engeli, S., Boschmann, M., Adams, F., Bohnke, J., Luft, F.C., et al. (2006). Retinol-binding protein 4 in human obesity. Diabetes, 55, 2805-2810.
Jason, R.B., Matthew, W. H. & Joseph A. H. (2005). Fat as an endocrine organ: influence of exercise. Journal of Applied Physiology, 99, 757-764.
Jensen, M. D., Haymond, M. W., Rizza, R. A., Cryer, P. E., & Miles, J. M. (1989). Influence of body fat distribution on free fatty acid metabolism in obesity. Journal of Clinical Investigation, 83, 1168-1173.
Kahn, C. R.(1994). Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43, 1066-1084.
Kahn, B. B & Flier, J. S. (2000). Obesity and insulin resistance. Journal of Clinical Investigation, 106(4), 473-481.
Kane, S., Sano, H., Liu, S.C., A sara, J. M., Lane, W. S., Garner, C. C., et al. (2002). A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. Journal of Biological Chemistry, 277, 22115-22118.
Katz, A., Nyomba, B. L., & Bogardus, C. (1988). No accumulation of glucose in human skeletal muscle during euglycemic hyperinsulinemia. American Journal of Physiology, 255, E942-945.
Koh, H., Hirshman, M. F., Fujii, N., Arnolds, D. E., Rogers, M. J, Mukai, N., et al. (2005). Skeletal muscle knockout of LKB1 causes AICAR resistance but improves glucose tolerance (Abstract). Diabetes, 54, Suppl, A384.
Kook, S., Son, Y., Lee, K., Lee, H., Chung, W., Choi, K., et al. (2008). Hypoxia affects positively the proliferation of bovine satellite cells and their myogenic differentiation through up-regulation of MyoD. Cell Biology International, 32(8), 871-878.
Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404, 635-643.
Kuo, C. H., Ding, Z., & Ivy, J. L. (1996). Interaction of exercise training and clenbuterol on GLUT-4 protein in muscle of obese Zucker rats. American Journal of Physiology, 271(5 Pt 1), E847-854.
Kuo, C. H., Browning, K. S., & Ivy J. L. (1999). Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise. Acta physiological scandinavica, 165(2), 193-201.
Lanza-Jacoby, S., & Kaplan, M. L. (1984). Alterations in skeletal muscle proteins in obese and nonobese rats. Internal Journal of Obesity, 8, 451-456.
Lee, J. H., Chan, J. L., Yiannakouris, N., Kontogianni, M., Estrada, E., Seip, R., et al. (2003). Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. Journal of Clinical Endocrinology and Metabolism, 88, 4848-4856.
Lee, W. C., Chen, J. J., Hunt, D., Hou, C. W., Lai, Y. C., Lin, F. C., et al. (2004). Effects of hiking at altitude on body composition and insulin sensitivity in recovery drug addicts. Preventive Medicine, 39(4), 681-688.
Leturque, A., Loizeau, M., Vaulont, S., Salminen, M., & Girard, J. (1996). Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT4 in skeletal muscle. Diabetes, 45, 23-27.
Levy, A. P., Levy, N.S., Wegner, S., & Goldberg, M. A. (1995). Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. Journal of Biological Chemistry, 270, 13333-13340.
Lewis, G. F., Carpentier, A., Adeli, K., & Giacca, A. (2002). Disordered Fat Storage and Mobilization in the Pathogenesis of Insulin Resistance and Type 2 Diabetes. Endocrinology Review, 23(2), 201-229.
Li, J., Hu, X., Selvakumar, P., Russell, R. R., Cushman, S. W., Holman, G. D., & Young, L. H. (2004). Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle. American Journal of Physiology-Endocrinology and Metabolism, 287, E834-E841.
Lund, S., Holman, G., Schmitz, O., & Pedersen, O. (1995). Contraction Stimulates Translocation of Glucose Transporter GLUT4 in Skeletal Muscle Through a Mechanism Distinct from that of Insulin. Proceedings of the National Academy of Sciences, 92(13), 5817-5821.
Matsuzawa, T., Funahashi, T., & Nakamura, T. (1999). Molecular mechanisms of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. Annals of the New York Academy of Sciences, 892, 146-54.
Mathupala, S. P., Rempel, A., & Pedersen, P. L. (2001). Glucose catabolism in cancercells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. Journal of Biological Chemistry, 276, 43407-43412.
McGee, S. L., Howlett, K. F., Starkie, R. L., Cameron-Smith, D., Kemp, B. E, & Hargreaves, M. (2003). Exercise Increases Nuclear AMPK {alpha}2 in Human Skeletal Muscle. Diabetes, 52, 926-928.
Michael, L. F., Wu, Z., Cheatham, R. B., Puigserver, P., Adelmant, G., Lehman, J. J., et al. (2001). Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proceedings of the National Academy of Sciences, 98(7), 3820-3825.
Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 34, 267-273.
Musi, N., Fujii, N., Hirshman, M. F., Ekberg, I., Froberg, S., Ljungqvist, O., Thorell, A., & Goodyear, L. J. (2001). AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise.
Diabetes, 50, 921-927.
Mu, J., Brozinick, J., Valladares, O., Bucan, M., & Birnbaum, M. (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Molecular Cell, 7(5), 1085-1094.
Nesher, R., Karl, I. E., & Kipnis, D. M. (1985). Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. American Journal of Physiology-Cell Physiology, 249, C226-C232.
Noriyuki, O., Rei, S., & Kenneth, W. (2005). AMP-Activated Protein Kinase Signaling Stimulates VEGF Expression and Angiogenesis in Skeletal Muscle. Circulation Research, 96, 838-846.
Ojuka, E. (2004). Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proceedings of the Nutrition Society, 63(2), 275-278.
Patti, M. E., Butte, A. J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., et al. (2003). Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proceedings of the National Academy of Sciences, USA 100, 8466-8471.
Panisello, P., Torrella, J., Esteva, S., Pages, T., & Viscor, G. (2008). Capillary supply, fibre types and fibre morphometry in rat tibialis anterior and diaphragm muscles after intermittent exposure to hypobaric hypoxia. European Journal of Applied Physiology, 103(2), 203-213.
Petersen, K. F., Dufour, S., Befroy, D., Garcia, R., & Shulman, G. I. (2004). Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. New England Journal of Medicine, 350, 664-671.
Ploug, T., Galbo, H., & Richter, E. A. (1984). Increased muscle glucose uptake during contractions: no need for insulin. American Journal of Physiology- Endocrinology and Metabbolism, 247, E726-E731.
Prior, B. M., Yang, H. T., & Terjung, R. L. (2004). What makes vessels grow with exercise training? Journal of Applied Physiology, 97(3), 1119-1128.
Qi, Y., Nie, Z., Lee, Y.S., Singhal, N.S., Scherer, P.E., Lazar, M.A., et al. (2006). Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes, 55, 3083-3090.
Rattigan, S., Clark, M., & Barrett, E. (1997). Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes, 46(9), 1381-1388.
Reaven, G. M. (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 37, 1595-1607.
Reynold, T. H., Brozinick, J. T., Rogers, M. A., & Cushman, S. W. (1997). Effects of exercise training on glucose transport and cell surface GLUT-4 in isolated rat epitrochlearis muscle. American Journal of Physiology, 272, E320-E325.
Richter, E. A., Garetto, L. P., Goodman, M. N., & Ruderman, N. B. (1982). Muscle glucose metabolism following exercise in the rat. Increased sensitivity to insulin. Journal of Clinical Investigation, 69, 785-793.
Sano, H., Kane, S., Sano, E., Miinea, C. P., Asara, J. M., Lane, W. S., et al. (2003). Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. Journal of Biological Chemistry, 278, 14599-14602.
Scarpulla, R. C. (2002). Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochimica et Biophysica Acta, 1576, 1-14.
Scott, J. W., Hawley, S. A., Green, K. A., Anis, M., Stewart, G., Scullion, G. A., et al. (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. Journal of Clinical Investigation, 113, 274-284.
Semenza, G. L., Nejfelt, M. K., Chi, S. M., & Antonarakis, S. E. (1991). Hypoxia-inducible nuclear factors bind to an enhancer element located 3_ to the human erythropoietin gene. Proceedings of the National Academy of Sciences, 88, 5680-5684.
Shepherd, P. R., & Kahn, B. B. (1999). Glucose Transporters and Insulin Action - Implications for Insulin Resistance and Diabetes Mellitus. New England Journal Medicine, 341, 248-257.
Shoelson, S. E., Lee, J., & Goldfine, A. B. (2006). Inflammation and insulin resistance. Journal of Clinical Investigation, 116, 1793-1801.
Sillau, A., Aquin, L., Bui, M., & Banchero, N. (1980). Chronic hypoxia does not affect guinea pig skeletal muscle capillarity. Pflugers Arch, 386(1), 39-45.
Shulman, G. I. (2000). Cellular mechanisms of insulin resistance. Journal of Clinical Investigation, 106, 171-176.
Shuldiner, A. R., Yang, R., & Gong, D. W. (2001). Resistin, obesity, and insulin resistance-the emerging role of the adipocyte as an endocrine organ. New England Journal of Medicine, 345, 1345-1356.
Snyder, G., Wilcox, E., & Burnham, E. (1985). Effects of hypoxia on muscle capillarity in rats. Respiratory Physiology, 62(1), 135-140.
Somwar, R., Kim, D. Y., Sweeney, G., Huang, C., Niu, W., Lador, C., et al. (2001). GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochemical Journal, 359, 639-649.
Stapleton, D., Woollatt, E., Mitchelhill, K. I., Nicholl, J. K., Fernandez, C. S., Michell, B. J., et al. (1997). AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. Federation of European Biochemical Science Letters, 409, 452-456.
Sriwijitkamol, A., Ivy, J. L., Christ-Roberts, C., DeFronzo, R. A., Mandarino, L. J., & Musi, N. (2006). LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training. American Journal of Physiology- Endocrinology and Metabbolism, 290, E925-E932.
Steppan, C. M., Wang, J., Whiteman, E. L., Birnbaum, M. J., & Lazar, M. A. (2005). Activation of SOCS-3 by resistin. Molecular Cell Biology, 25, 1569-1575.
Suwa, M., Nakano, H., & Kumagai, S. (2003). Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. Journal of Applied Physiology, 95(3), 960-968.
Takashima, N., Tomoike, H., & Iwai, N. (2006). Retinol-binding protein 4 and insulin resistance. New England Journal Medicine, 355, 1394-1395.
Terada, S., Goto, M., Kato, M., Kawanaka, K., Shimokawa, T., & Tabata, I. (2002). Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochemical and Biophysical Research Communications, 296(2), 350-354.
Thomson, D. M., & Gordon, S. E. (2005). Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation. Journal of Applied Physiology, 98, 557-564.
Torgan, C. E., Brozinick, J. T. Jr., Willems, M. E. T., & Ivy, J. L. (1990). Substrate utilization during acute exercise in obese Zucker rats. Journal of Applied Physiology, 69, 1987-1991.
Tsao, T. S., Burcelin, R., Katz, E. B., Huang, L., & Charron, M. J. (1996). Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle. Diabetes, 45, 28-36.
Wallberg-Henriksson, H., & Holloszy, J. O. (1984). Contractile activity increases glucose uptake by muscle in severely diabetic rats. Journal of Applied Physiology, 57, 1045-1049.
Warnotte, C., Gilon, P., Nenquin, M., & Henquin, J. C. (1994). Mechanisms of the stimulation of insulin release by saturated fatty acids. A study of palmitate effects in mouse beta-cells. Diabetes, 43(5), 703-711.
Wheatley, C. M., Rattigan, S., Richards, S. M., Barrett E. J, & Clark, M. G. (2004). Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. American Journal of Physiology-Endocrinology and Metabolism, 287, E804-E809.
Winder, W. W., & Hardie, D. G. (1999). AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. American Journal of Physiology, 277(1 Pt 1), E1-10.
Winder, W. W. (2001). Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. Journal of Applied Physiology, 91,1017-1028.
Winder, W. W., Holmes, B. F., Rubink, D. S., Jensen, E. B., Chen, M., & Holloszy, J. O. (2000). Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. Journal of Applied Physiology, 88, 2219-2226.
Wright, D. C., Hucker, K. A., Holloszy, J. O., & Han, D. H. (2004). Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes, 53, 330-335.
Wright, D. C., Geiger, P. C., Holloszy, J. O., & Han, D. H. (2005). Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. American Journal of Physiology- Endocrinology and Metabbolism, 288, E1062-E1066.
Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., et al. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell , 98, 115-124.
Xia, Y., Warshaw, J. B., & Haddad, G. G. (1997). Effect of chronic hypoxia on glucose transporters in heart and skeletal muscle of immature and adult rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 273(5), R1734-1741.
Xi, X., Han, J., & Zhang, J. Z. (2001). Stimulation of glucose transport by AMP-activated protein kinase (AMPK) via activation of p38 mitogenactivated protein kinase (MAPK). Journal of Biological Chemistry, 276, 41029-41034.
Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C.J., et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation, 112, 1821-1830.
Yang, Q., Graham, T.E., Mody, N., Preitner, F., Peroni, O.D., Zabolotny, J.M., et al. (2005). Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436, 356-362.
Youn, J. H., Gulve, E. A., & Holloszy, J. O. (1991). Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. American Journal of Physiology- Cell Physiology, 260, C555-C561.
Young, M., Radda, G., & Leighton, B. (1997). Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. Biochemical Journal, 322 ( Pt 1), 223-228.
Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L., Li, Z.W., Karin, M., et al. (2001). Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikk-β. Science, 293, 1673-1677.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top