:::

詳目顯示

回上一頁
題名:Higher-Order IRT與Higher-Order DINA混合模型探究
作者:楊智為 引用關係
作者(外文):Yang, Chih-Wei
校院名稱:國立臺中教育大學
系所名稱:教育測驗統計研究所
指導教授:郭伯臣
學位類別:博士
出版日期:2014
主題關鍵詞:multilevel-DINAHO-IRTHO-DINA認知診斷模式階層性結構multilevel-DINAHO-IRTHO-DINAcognitive diagnostic modelhierarchical structure
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:7
近年來,階層式的測量模式漸漸地被重視,如試題反應理論中的higher-order item response theory (HO-IRT)及認知診斷模型中的higher-order deterministic input noisy and gate model (HO-DINA)。HO-IRT模式可以測量整體能力(overall ability)及領域能力(domain ability)兩個階層的量尺能力;HO-DINA模式可以測量整體能力並同時提供認知診斷的訊息。本研究提出HO-IRT與HO-DINA之混合模型multilevel DINA (ML-DINA),透過模擬研究探討各變項(量尺間迴歸係數、量尺個數、人數、試題參數等)對混合模型參數估計之影響,以及探討認知屬性加入結構關係之成效。研究結果發現
1. ML-DINA模式可以估計兩個階層的能力量尺,同時提供良好的認知診斷訊息回饋。
2. 樣本數(N>1000)對ML-DINA模式參數估計沒有明顯的影響。
3. 量尺間迴歸係數0.7以上,ML-DINA模式有較佳的估計結果。
4. 次級量尺個數的增加可以提升整體能力、量尺間迴歸係數及領域能力的估計精準度。
5. 試題參數較小時,可以獲得較佳的參數估計
6. 加入結構關係有助於提升整體組型(pattern)辨識率
In recent years, some higher-order item response theory (HO-IRT) models and higher-order DINA (HO-DINA) models were proposed. HO-IRT models can provide the overall ability and domain abilities estimators simultaneously. HO-DINA can provide the overall ability and cognitive diagnosis information in the same model.
The purpose of this study is to develop a hybrid model of HO-IRT and HO-DINA models which is called multilevel DINA (ML-DINA). The first level is overall ability and the second level is domain abilities. The third level is cognitive attributes based on DINA model. The feasibility of the proposed model is investigated by a simulation study with variables (regression coefficients, number of subscales, sample sizes, item parameters).
The major findings of this study are summarized as follows:
1. The overall ability, domain abilities, cognitive attributes, regression coefficients and item parameters, are estimated simultaneously in this model.
2. The accuracy of the estimates was relatively unaffected by the sample size.
3.The more accurate estimates of ML-DINA, when the regression coefficients were larger than 0.7.
4. Better estimates in both abilities scales can be obtained when more subscales were tested.
5.The higher quality of guessing and slip parameters brought about better item parameter estimation and classification accuracy.
6. The prior distribution associated with hierarchical structure were useful to increase the pattern correct classification rate.
中文部份
余民寧(1995)。認知診斷測驗的發展趨勢。教育研究,45,14-22.new window
余民寧(2009)。試題反應理論(IRT)及其應用。臺北市:心理出版社。
涂金堂(2003)。認知診斷評量的探究。臺南師範學院學報,37(2):67-97。new window

英文部份
Ackerman, T. A. (1992). A didactic explanation of item bias, item impact, and item validity from a multidimensional perspective. Journal of Educational Measurement, 29(1), 67-91.
Adams, R. J., Wilson, M., & Wang, W. C. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21(1), 1-23.
Birnbaum, A. (1968). Some latent trait model and their use in inferring an examinee’s ability. In F. M. Lord and M. R. Novick, Statistical theories of mental test scores, 17-20. Reading, Mass: Addison-Wesley.new window
Cheng, Y. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT. Psychometrika, 74(4), 619–632.
de la Torre, J., & Lee, Y. S. (2010). A note on the invariance of the DINA model parameters. Journal of Educational Measurement, 47(1), 115-127.
de la Torre, J., Hong, Y., & Deng, W. (2010). Factors affecting the item parameter estimation and classification accuracy of the DINA model. Journal of Educational Measurement, 47(2), 227-249.
de la Torre, J., & Song, H. (2009). Simultaneous estimation of overall and domain abilities: A higher-order IRT model approach. Applied Psychological Measurement, 33(8), 620-639.
de la Torre, J., & Douglas, J. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika,73(4), 595-624.
de la Torre, J., & Hong, Y. (2010). Parameter estimation with small sample size a higher-order IRT model approach. Applied Psychological Measurement, 34, 267-285.
de la Torre, J., & Patz, R. (2005). Making the most of what we have: A practical application of multidimensional item response theory in test scoring. Journal of Educational and Behavioral Statistics, 30, 295-311.new window
de la Torre, J., & Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika. 69(3),333-353.
de la Torre, J. (2009a). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115-130.
de la Torre, J. (2009b). A cognitive diagnosis model for cognitively-based multiple-choice options. Applied Psychological Measurement, 33, 163-183.
DeCarlo L.T. (2011) On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35(1), 8-26.
Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 59-374.new window
Gierl, M. J., Leighton J. P., & Hunka S. M. (2007).Using the attribute hierarchy method to make diagnostic inferences about examinees’ cognitive skills.for education: Theory and practices.
Hattie, J. (1981). Decision criteria for determining unidimensional and multidimensional normal ogive models of latent trait theory. Armidale, New South Wales, Australia: The University of New England, Center for Behavioral Studies.
Henson, R. A., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29 (4), 262-277.
Huebner, A. (2010).Cognitive diagnostic computer adaptive assessments. Journal of Educational Measurement, 46 (3), 293-313.
Junker, B., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272.
Leighton, J. P., Gierl, M. J., & Hunka, S. (2004). The attribute hierarchy model: An approach for integrating cognitive theory with assessment practice. Journal of Educational Measurement, 41, 205–236.
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Eribaum Associates.
Mckinley, R. L., & Reckase, M. D. (1983). MAXLOG: A computer program for the estimation of the parameters of a multidimensional logistic model. Behavior Research Methods & Instrumentation, 15, 389-390.
OECD (2013). PISA 2015 Collaborative Problem Solving Framework. OECD Publishing.
OECD (2012). PISA 2009 Technical Report. Paris: OECD Publishing.
OECD (2010). PISA 2009 Assessment Framework-Key competencies in reading, mathematics and science. Paris: OECD Publishing.
Reckase, M. D., & Mckinley, R. L. (1991). The discrimination power of items that measure more than one ability. Applied Psychological Measurement, 15, 361-373.
Rupp, A., & Templin, J. (2008). The effects of q-matrix misspecification on parameter Estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78-96.
Rasch, G. (1980). Probability models for some intelligence and attainment tests. Chicago: The University of Chicago Press (Original edition published in 1960).
Sheng, Y., & Wikle, C. K. (2008). Bayesian multidimensional IRT models with a hierarchical structure. Educational and Psychological Measurement, 68(3), 413-430.
Sympson, J. B. (1978). A model for testing with the multidimensional items. In D. J. Weiss (Ed.). Item response theory and computerized adaptive testing conference proceedings. MN: University of Minnesota press.
Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconception based on item response theory.Journal of Educational Measurement, 20, 345-354.
Tatsuoka, K. K. (1985).A probabilistic model for diagnosing misconceptions by the pattern classification approach.Journal of Educational Statistics, 10, 55-73.
Templin, J. L., Henson, R. A., L. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287–305.
Wu, M. L., Adams, R. J., & Wilson, M. R. (1998), ConQuest [Computer software and manual], Camberwell, Victoria, Australia: Australian Council for Educational Research..
Wang, W.-C., Chen, P.-H., & Cheng, Y.-Y. (2004). Improving measurement precision of test batteries using multidimensional item response models. Psychological Methods, 9, 116-136new window
Wainer, H., Vevea, J. L., Camacho, F., Reeve, B., Rosa, K., Nelson, L., et al. (2001). Augmented scores: ‘‘Borrowing strength’’ to compute scores based on small number of items. In D. Thissen & H. Wainer (Eds.), Test scoring (pp. 343-387). Mahwah, NJ: Lawrence Erlbaum.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE