:::

詳目顯示

回上一頁
題名:政府政策對新興能源技術擴散與社會影響的評估
作者:周桂蘭
作者(外文):Chou, Kuei-Lan
校院名稱:國立交通大學
系所名稱:科技管理研究所
指導教授:黃仕斌
學位類別:博士
出版日期:2017
主題關鍵詞:政府政策電動車技術擴散社會影響Government PolicyElectric vehicleTechnology diffusionSocial impact
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:5
為了達成溫室氣體減量目標,許多國家愈來愈強調將創新技術導入能源系統,需要建構一個環境友善的消費及生產系統。其中,最重要的關鍵因素是消費者願意及有能力加入綠色消費行為。然而,氣候變遷是一個長期性的議題,減碳目標及技術擴散不可能一夕達成,需要長期的演進。徹底性的技術變動一開始導入使用的成本很高,若無其他利基條件,以自發性(autonomic)技術演進導入,通常會遇到很多市場擴散的障礙,需要相當漫長的時間等待。當既有技術或產品汰舊換新時,將產生所謂的技術鎖定(technology lock-in)效應,因此,需要政府政策即早推動新技術投資,避免既有技術鎖定後,降低未來新技術的市場擴散機會。
當嚴峻的減碳目標再加上政府政策誘因推動,可誘發(induced)新興技術的利基市場形成,鼓勵廠商願意投資新興技術。透過政府政策推動的雙重效應(技術學習效應及市場擴散效應),使得現在高成本的新興能源技術在未來有可能變成具吸引力及經濟可行。因此,各種新興能源技術未來相對的邊際減量成本(MAC)高低變動,將影響新興能源技術被選用的排序組合及政府預算執行的優先順序。近年來,愈來愈多的新興運輸技術,例如:油電混合車、插電式油電混合車、純電動車、氫能車等逐漸走向商業化,提供運輸部門龐大的節能與二氧化碳(CO2)減量潛力。因此,運輸部門未來存在顯著的新興技術推動及需求拉升的技術擴散效果,對於長期溫室氣體減量成本及策略選項組合也會產生戲劇性的影響。
本研究以「政府政策」為研究主軸,連結三大議題:「電動車輛市場擴散」、「減碳效益評估」與「MAC評估方法」,並建構研究主軸與議題之間的因果關聯性。本研究主要的研究目的及貢獻:(1)建構以消費者投資決策觀點的市場擴散模式,建立符合資源公平分配的政府綠色奬勵政策實施的動態調整機制;(2)探討影響運輸部門新技術市場擴散的重要因素,評估不同市場擴散情境對於減碳目標達成的貢獻度影響;(3)釐清氣候變遷議題分析資訊使用的目的性及適用性,降低決策資訊使用的偏誤認知。
In order to achieve the goal of reducing greenhouse gas emissions, many countries are increasingly emphasizing the introduction of innovative technologies into energy systems, which need to build an environment-friendly consumption and production system. The most important key factor is that consumers are willing and affordable to join the green consumer behavior. However, climate change is a long-term issue, carbon reduction targets and technology diffusion can not be achieved overnight, which need long-term evolution. The cost of a radical technological change is very high at the beginning of the introduction, and if there are no other niche conditions, it is often a long time to wait for the autonomic evolution of the technology, which will encounter many obstacles of market diffusion. When the existing technology or product is replaced, the technology lock-in effect would occur. For avoiding the existing technology is locked to impact the new technology market diffusion opportunities, government policy needs to push new technology investment early.
When the severe carbon reduction target, coupled with government policy incentives, can induce the formation of niche markets for emerging technologies, and encourage manufacturers to invest in emerging technologies. The double effect of government policies, which included technical learning effect and market diffusion effect, makes it possible for high-cost emerging energy technologies to become attractive and economic in the future. As a result, the future changes of the margin cost (MAC) between various emerging energy technologies will affect the portfolio of emerging energy technologies and the priority of government budget execution. In recent years, more and more emerging transport technologies, such as hybrid vehicles, plug-in hybrid vehicles, pure electric vehicles, hydrogen vehicles, gradually heading for commercialization, providing huge energy saving and carbon dioxide reduction in the transport sector. Therefore, significant diffusion effects of emerging technologies in the transport sector, which included technology-push and demand-pull, will have a dramatic impact on long-term greenhouse gas reduction costs and strategic portfolio options.
In this study, the "government policy" was the main study core, connecting with three issues, which are the "electric vehicle market spread", "carbon benefit assessment" and "MAC assessment method", to construct the causal relationship. The aim and contribution of this research are as follows: (1) Constructing the market diffusion model by the view of consumer investment decision-making, to appraise the dynamic adjustment mechanism of government green reward policy for the equitable distribution of resources. (2) To explore the important factors influencing the diffusion of new technologies in the transport sector and to assess the impact of different market diffusion scenarios on the contribution of carbon reduction targets. (3) Clarifying the purpose of usage and applicability of information while analyze climate change issues by various MAC method, and reducing the bias of decision-making information.
1.行政院環保署 (2015),「與全球溫室氣體減量同步我國發布國家自定預期貢獻目標」,取自:http://enews.epa.gov.tw/enews/fact_Newsdetail.asp?InputTime=1041117174044。
2.經濟部能源局 (2015),「我國燃料燃燒CO2排放統計與分析」,取自:http://172.16.1.249/eigic/3-7104年我國燃料燃燒二氧化碳排放統計.pdf。
3.經濟部智慧電動車先導運行計畫資訊網, (2015),「持續提供購車誘因展現政策延續性」,取自:http://www.lev.org.tw/iev/strategy02.html。
4.Åhman, M. (2006), "Government policy and the development of electric vehicles in Japan", Energy Policy, Vol.34, pp.433-443.
5.Awan, U., Raza, M. A. (2014), "Green consumer behavior: Empirical study of Swedish consumer behavior", Recent Researches in Economics, pp.89-104.
6.Azar, C., Dowlatabadi, H. (1999), "A review of technical change in assessment of climate policy", Ann. Rev. Energy Environ, Vol. 24, pp.513-544.
7.Baker, E., Clarke, L., Shittu, E. (2008), "Technical change and the marginal cost of abatement", Energy Economics, Vol. 30, pp.2799-2816.
8.Bennaceur K. and Gielen D. (2010), "Energy technology modelling of major carbon abatement options", Int. J. Greenh. Gas Con, Vol. 4, pp.309–315.
9.Berglund, C., Söderholm, P. (2006), "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models", Energy Policy, Vol. 34, pp.1344-1356.
10.Biswas, A., Roy, M. (2015), "Leveraging factors for sustained green consumption behavior based on consumption value perceptions: testing the structural model", Journal of Cleaner Production, Vol. 95, pp.332-340.
11.Bomb, C., McCormick, K., Deurwaarder, E., Kåberger, T. (2007), "Biofuels for transport in Europe: Lessons from Germany and the UK", Energy Policy, Vol. 35, pp.2256-2267.
12.Brand, C., Anable, J., Tran, M. (2013), "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK", Transportation Research Part A, Vol. 49, 132-148.
13.Browne D. and Ryan L. (2011), "Comparative analysis of evaluation techniques for transport policies", Environ. Impact Assess. Rev, Vol. 31, pp.226–233.
14.Brown, M. (2013), "Catching the PHEVer: Simulating electric vehicle diffusion with an agent-based mixed logit model of vehicle choice", Journal of Artificial Socienties and Social Simulation, Vol. 16, pp.1-21.
15.Chandra, A., Gulati, S., Kandlikar, M. (2010), "Green drivers or free riders? An analysis of tax rebates for hybrid vehicles", Journal of Environmental Economics and Management, Vol. 60, pp.78-93.
16.Chen C.C. (2015), "Assessing the pollutant abatement cost of greenhouse gas emission regulation: a case study of Taiwan's freeway bus service industry", Environ. Resour. Econ, Vol. 61, pp.477-495.
17.Chen W. (2005), "The cost of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling", Energy Policy, Vol. 33, pp.885–896.
18.Chen W., Wu Z., He J., Gao P. and Xu S. (2007), "Carbon emission control strategies for China: a comparative study with partial and general equilibrium versions of the China MARKAL model", Energy, Vol. 32, pp.59–72.
19.Cheng, Q., Wang, J., Yin, L. (2014), "A research framework of green consumption behavior based on value-belief-norm theory", Advanced Materials Research, pp.1485-1489.
20.Cherian, J., Jacob, J. (2012), "Green marketing: A study of consumers’ attitude towards environment friendly products", Asian Social Science, Vol. 8, pp.117-126.
21.Corbett J.J., Wang H. and Winebrake J.J. (2009), "The effectiveness and costs of speed reductions on emissions from international shipping, Transp", Res. Part D, Vol. 14, pp.593-598.
22.Daly H.E., Scott K., Strachan Neil and Barrett J. (2015), "Indirect CO2 emission implications of energy system pathways: linking IO and TIMES models for the UK", Environ. Sci. Technol, Vol. 49, pp.10701–10709.
23.Dedinec A., Markovska N., Taseska V. and Duic N., Kaneyce, G. (2013), "Assessment of climate change mitigation potential of the Macedonian transport sector", Energy, Vol. 57, pp.177–187.
24.Dedinec A., Markovska N., Igor R., Velevski G., Gjorgjievska V.T., Grncarovska T.O. and Zdraveva P. (2015), "Economic and environmental evaluation of climate change mitigation measures in the waste sector of developing countries", J. Clean Prod., Vol. 88, pp.234–241.
25.Dequiedt B. and Moran D. (2015), "The cost of emission mitigation by legume crops in French agriculture", Ecol. Econ., Vol. 110, pp.51–60.
26.Delhotal K.C., Chesnaye F.C., Gardiner A., Bates J. and Sankovski A. (2008), "Mitigation of methane and Nitrous Oxide emissions from waste, energy and industry, Energy J: Multi-GREENHOUSE Gas Mitigation and Climate Policy Special Issue 29", pp.180-181. http://dx.doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-3.
27.Delarue, E. D., Ellerman, A. D., D’haeseleer, W.D. (2010), "Robust MACCs? The topography of abatement by fuel switching in the European power sector", Energy, Vol. 35, pp.1465-1475.
28.Dolfsma, W., Leydesdorff, L. (2009), "Lock-in and break-out from technological trajectories: Modeling and policy implications", Technological Forecasting & Social Change, Vol. 76, pp.932-941.
29.Dowlatabadi,H. (1998), "Sensitivity of climate change mitigation estimates to assumptions about technical change", Energy Economics, Vol. 20, pp.473-493.
30.Eory, V., Cairistiona, F.E.T., Moran, D. (2013), "Multiple-Pollutant cost-effectiveness of greenhouse gas mitigation measures in the UK agriculture", Environmental Science & Policy, Vol. 27, pp.55-67.
31.Du L., Hanley A. and Wei C. (2014), "Marginal abatement costs of carbon dioxide emissions in China: a parametric analysis", Environ. Resour. Econ. http://dx.doi.org/10.1007/s10640-014-9789-5.
32.Du L. and Mao J. (2015), "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China", Energy Policy, Vol. 85, pp.347–356.
33.Ek, K., Söderholm, P. (2008), "Norms and economic motivation in the Swedish green electricity market", Ecological Economics, Vol. 68, pp.169-182.
34.Eory V., Cairistiona F.E.T. and Moran D. (2013), "Multiple-Pollutant cost-effectiveness of greenhouse gas mitigation measures in the UK agriculture", Environ. Sci. Policy, Vol. 27, pp.55–67.
35.Flachsland, C., Brunner, S., Edenhofer, O., Creutzig, F. (2011), "Climate policies for road transport revisited(Ⅱ): Closing the policy gap with cap-and-trade", Energy Policy, Vol. 39, pp.2100-2110.
36.Frederiks, E. R., Stenner, K., Hobman, E. V. (2015), "Household energy use: Applying behavioural economics to understand consumer decision-making and behavior", Renewable and Sustainable Energy Reviews, Vol. 41, pp.1385-1394.
37.Fullerton, D., Gan, L., Hattori, M. (2015), "A model to evaluate vehicle emission incentive policies in Japan", Environmental Economics & Policy Studies, Vol. 17, pp.79-108.
38.Gabrial, A., McDowall, W., Ekins, P. (2013), "Decarbonising road transport with hydrogen and electricity: Long term global technology learning scenarios", International Journal of Hydrogen Energy, Vol. 38, pp.3419-3432.
39.Gallaher M.P., Petrusa J.E. and Delhotal C. (2005), "International marginal abatement costs of non-CO2 greenhouse gases", Environ. Sci., Vol. 2, pp.327–337.
40.Gallagher, K. S., Muehlegger, E. (2011), "Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology", Journal of Evironmental Economics and Management, Vol. 61, pp.1-15.
41.Garg A., Shukla P.R., Maheshwari J. and Upadhyay J. (2014), "An assessment of household electricity load curves and corresponding CO2 marginal abatement cost curves for Gujarat state, India", Energy Policy, Vol. 66, pp.568–584.
42.Gillingham, K., Newell, R.G., Pizer, W.A. (2008), "Modeling endogenous technological change for climate policy analysis", Energy Economics, Vol. 30, pp.2734-2753.
43.Goulder, L.H., Mathai, K. (2000), "Optimal CO2 abatement in the presence of induced technological change", Journal of Environmental Economics and Management, Vol. 39, pp.1-38.
44.Goulder, L.H. (2004), "Induced technological change and climate policy", Working Paper for the Pew Center on Global Climate Change, From: https://www.c2es.org/publications/induced-technological-change-and-climate-policy.
45.Grubb, M., Köhler, J., Anderson, D. (2002), "Induced technical change in energy and environmental modeling: Analytic approaches and policy implications", Annu. Rev. Energy Environ., Vol. 27, pp.271-308.
46.Grübler, A., Messner, S. (1998), "Technological change and the timing of mitigation measures", Energy Economics, Vol. 20, pp.495-512.
47.Hagman, J., Ritzén, S., Stier, J. J., Susilo, Y. (2016), "Total cost of ownership and its potential implications for battery electric vehicle diffusion", Research in Transportation Business & Management, Vol. 18, pp.pp.11-17.
48.Haan P. D., Peters, A., Scholz, R.W. (2007), "Reducing energy consumption in road transport through hybrid vehicles: investigation of rebound effects, and possible effects of tax rebates", Journal of Cleaner Production, Vol. 15, pp.1076-1084.
49.Hagman, J., Ritzén, S., Stier, J. J., Susilo, Y. (2016), "Total cost of ownership and its potential implications for battery electric vehicle diffusion", Research in Transportation Business & Management, Vol. 18, pp.11-17.
50.He X. (2015), "Regional differences in China's CO2 abatement cost", Energy Policy, Vol. 80, pp.145–152.
51.Hedenus, F., Azar, C., Lindgren, K. (2005), "Induced technlolgical change in a limited foresight optimization model", Working Paper for EconStor. From: http://hdl.handle.net/10419/74294.
52.He, L., Wang, M., Chen, Wei., Conzelmann, G. (2014), "Incorporating social impact on new product adoption in choice modeling: A case study in green vehicles", Transportation Research Part D, Vol. 32, pp.421-434.
53.Heitmann, N., Peterson, S. (2014), "The potential contribution of the shipping sector to an efficient reduction of global carbon dioxide emissions", Environmental science & Policy, Vol. 42, pp.56-66.
54.Hoffmann P.N., Eide M.S. and Endresen Ø. (2012), "Effect of proposed CO2 emission reduction scenarios on capital expenditure", Marit. Policy Manag., Vol. 39, pp.443–460.
55.Hourcade J., Jaccard M., Bataille C. and Ghersi F. (2006), "Hybrid modeling: new answers to old challenges", Energy J., Vol. 27, pp.1–11.
56.Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., Acquaye, A. (2014), "Integrating economic considerations with operational and embodied emissions into a decision support system for the optimal ranking of building retrofit options", Building and Environment, Vol. 72, pp.82-101.
57.IEA. (2014), "Tracking Clean Energy Progress", From: http://normandmousseau.com/documents/Marleau-1.pdf.
58.IEA. (2016), "Global EV Outlook 2016_Beyond one million electric cars", From: https://www.iea.org/publications/freepublications/publication/Global_EV_Outlook_2016.pdf.
59.Jaakkola, H., Gabbouj, M., Neuvo, Y. (1998), "Fundamentals of technology diffusion and mobile phone case study", Circuits Systems Dignal Processing, Vol. 17, 421-448.
60.Jaccard, M., Murphy, R., Rivers, N. (2004), "Energy-environment policy modeling of endogenous technological change with personal vehicles: combining top-down and bottom-up methods", Ecological Economics, Vol. 51, pp.31-46.
61.Jansson, J., Marell, A., Nordlund, A. (2010), "Green consumer behavior: determinants of curtailment and eco-innovation adoption", Journal of Consumer Marketing, Vol. 27, pp.358-370.
62.Kaufmann, H. R., Panni, M. F. A.K., Orphanidou, Y. (2012), "Factors affecting consumers’ green purchasing behaviou: an integrated conceptual framework", Amfiteatru Economic, Vol. 14, pp.50-69.
63.Kesicki, F., Anandarajah, G. (2011), "The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis", Energy Policy, Vol. 39, pp.7224-7233.
64.Kesicki, F. (2012), "Intertemporal issues and marginal abatement costs in the UK transport sector", Transportation Research Part D, Vol. 17, pp.418-426.
65.Kesicki, F., Ekins, P. (2014), "Marginal abatement cost curves: a call for caution", Climate Policy, Vol.12, pp.219-236.
66.Kesicki F. and Strachan N. (2011), "Marginal abatement cost (MAC) curves: confronting theory and practice, Environ". Sci. Policy, Vol. 14, pp.1195–1204.
67.Kesicki F. (2013a), "Marginal abatement cost curves: combining energy system modelling and decomposition analysis", Environ. Model. Assess., Vol. 18, pp.27–37.
68.Kesicki F. (2013b), "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK", Energy Policy, Vol. 58, pp.142–151.
69.Klepper G. and Peterson S. (2006), "Marginal abatement cost curves in general equilibrium: the influence of world energy prices", Resour. Energy Econ, Vol. 28, pp.1–23.
70.Kiuila O. and Rutherford T.F. (2013a), "The cost of reducing CO2 emissions: integrating abatement technologies into economic modeling", Ecol. Econ., Vol. 87, pp.62–71.
71.Kiuila O. and Rutherford T.F. (2013b), "Piecewise smooth approximation of bottom-up abatement cost curves", Energy Econ., Vol. 40, pp.734–742.
72.Ko F., Huang C., Tseng P., Lin C., Zheng B. and Chiu H. (2010), "Long-term CO2 emissions reduction target and scenarios of power sector in Taiwan", Energy Policy, Vol. 38, pp.288–300.
73.Kok R., Annema J.A. and Wee B.V. (2011), "Cost-effectiveness of greenhouse gas mitigation in transport-a review of methodological approaches and their impact", Energy Policy, Vol. 39, pp.7776–7793.
74.Koljonen T. and Lehtilä A. (2012), "The impact of residential, and transport energy demand uncertainties in Asia on climate change mitigation", Energy Econ., Vol. 34, pp.5410–5420.
75.Kong, D.Y., Bi, X.H. (2014), "Impact of social network and business model on innovation diffusion of electric vehicles in China", Hindawi Publishing Corporation Mathematical Problems in Engineering.
76.Larsson J. and Telle K. (2008), "Consequences of the IPPC's BAT requirements for emissions and abatement costs: a DEA analysis on Norwegian data", Environ. Resour. Econ., Vol. 41, pp.563–578.
77.Laes E. and Couder J. (2014), "Probing the usefulness of technology-rich bottom-up models in energy and climate policies: lessons learned from the Forum project, http://dx.doi.org/10.1016/j.futures2014. 06.001.
78.Lane, B., Potter, S. (2007), "The adoption of cleaner vehicles in the UK: exploring the consumer attitude-action gap", Journal of Cleaner Production, Vol. 15, pp.1085-1092.
79.Lee S., Oh D. and Lee J. (2014), "A new approach to measuring shadow price: reconciling engineering and economic perspectives", Energy Econ. http://dx.doi.org/10.1016/j.eneco, Accepted Manuscript.
80.Lee C.Y. and Zhou P. (2015), "Directional shadow price estimation of CO2, SO2 and NOx in the United States coal power industry 1990-2010", Energy Econ., Vol. 51, pp.493–502.
81.Levihn, F. (2015), "Investments, system dynamics, energy management, and policy: a solution to the metric problem of bottom-up supply curves", Doctoral Thesis in Industrial Economics and Management Stockholm, Sweden.
82.Levihn F., Nuur C. and Laestadius S. (2014), "Marginal abatement cost curves and abatement strategies: taking option interdependency and investments unrelated to climate change into account", Energy, pp.1–9.
83.Lin, P.C., Huang, Y. H. (2012), "The influence factors on choice behavior regarding green products based on the theory of consumption values", Journal of Cleaner Production, Vol. 22, pp.11-18.
84.Loisel R. (2010), "Quota allocation rules in Romania assessed by a dynamic CGE model", Clim. Policy, Vol. 10 (1), pp.87–102.
85.Lorek, S., Spangenberg, J. H. (2014), "Sustainable consumption within a sustainable economy-beyond green growth and green economies", Journal of Cleaner Production, Vol. 63, pp.33-44.
86.Loock, C. M., Staake, T., Thiesse, F. (2013), "Motivating energy-efficient behavior with green IS: An investigation of goal setting and the role of defaults", MIS Quarterly, Vol. 37, pp.1313-1330.
87.Löschel, P. (2002), "Technological change in economic models of environmental policy: a survey", Ecological Economics, Vol. 43, pp.105-126.
88.Ludhiyani, A., Joshi, S., Pathak, R. (2012), "Consumer behavior and strategic finance in green energy", Intellectual Economics, Vol. 6, pp.695-712.
89.Lund, P. (2006), "Market penetration rates of new energy technologies", Energy Policy, Vol. 34, 3 pp.317-3326.
90.Lutsey N. and Sperling D. (2009), "Greenhouse gas mitigation supply curve for the United States for transport versus other sectors", Transp. Res. Part D, Vol. 14, pp.222-229.
91.Marcucci, A., Turton, H. (2015), "Induced technological change in moderate and fragmented climate change mitigation regimes", Technological Forecasting & Social change, Vol. 90, pp.230-242.
92.McKinsey & Company. (2009), "Pathways to a Low-carbon Economy: Version 2 of the Global Greenhouse Gas Abatement Cost Curve".
93.Melo, C.A.de., Jannuzzi, G.de.M., Tripodi, A.F. (2013), "Evaluating public policy mechanisms for climate change mitigation in Brazilian buildings sector", Energy Policy, Vol. 61, pp.1200-1211.
94.Mekaroonreung M. and Johnson A.L. (2014), "A nonparametric method to estimate a technical change effect on marginal abatement costs of U.S. coal power plants", Energy Econ., Vol. 46, pp.45-55.
95.Moran D., Macleod M., Wall E., Eory V., McVittie A., Barnes A., Rees R., Topp C.F.E. and Moxey A. (2011), "Marginal abatement cost curves for UK agricultural greenhouse gas emissions", J. Agric. Econ., Vol. 62, pp.93-118.
96.Morris J., Paltsev S. and Reilly J. (2012), "Marginal abatement costs and marginal welfare costs for greenhouse gas emissions reductions: results from the EPPA model", Environ. Model. Assess., Vol. 17, pp.325-336.
97.Mourato, S., Saynor, B., Hart, D. (2004), "Greening London’s black cabs: a study of driver’s preferences for fuel cell taxis", Energy Policy, Vol. 32, pp.685-695.
98.Nemet, G.F. (2009), "Demand-pull, technology-push, and government-led incentives for non-incremental technical change", Research Policy, Vol. 38, pp.700-709.
99.Norberg-Bohm, V. (1999), "Stimulating green technological innovation: An analysis of alternative policy mechanisms", Policy Sciences, Vol. 32, pp.1338.
100.Nordhaus, W.D. (2009), "The perils of the learning model for modeling endogenous technological change", NBER Working Paper No. 14638. From: http://www.nber.org/papers/w14638.
101.Nordrum S., Lieberman D., Colombo M., Gorski A. and Webb C. (2011), "Assessment of greenhouse gas mitigation options and costs for California petroleum industry facilities: the shape of things to come", Energy Procedia, Vol. 4, pp.5729-5737.
102.Nykvist B. et al. (2015), "Rapidly falling costs of battery packs for electric vehicles", Nature Climate Change, doi:10.1038/nclimate2564.
103.O’Brien, D., Shalloo, L., Crosson, P., Donnellan, T., Farrelly, N., Finnan, J., Hanrahan, K., Lalor, S., Lanigan, G., Thorne, F., Schulte, R. (2014), "An evaluation of the effect of greenhouse gas accounting methods on a marginal abatement cost curve for Irish agricultural greenhouse gas emissions", Environmental Science & Policy, Vol. 39, pp.107-118.
104.Park, H., Lim, J. (2009), "Valuation of marginal CO2 abatement options for electric power plants in Korea", Energy Policy, Vol. 37, pp.1834-1841.
105.Peattie, K. (2010), "Green Consumption: Behavior and Norms", Annual Review Environment and Resources, Vol. 35, pp.195-228.
106.Peng Y., Wenbo L. and Shi C. (2012), "The margin abatement costs of CO2 in Chinese industrial sectors", Energy Procedia, Vol. 14, pp.1792-1797.
107.Potoglou, D., Kanaroglou, P. S. (2007), "Household demand and willingness to pay for clean vehicles", Transportation Research Part D, Vol. 12, pp.264-274.
108.Promjiraprawat K., Winyuchakrit P., Limmeechokchai B., Masui T., Hanaoka T. and Matsuoka Y. (2014), "CO2 mitigation potential and marginal abatement costs in Thai residential and building sectors", Energy Build. http://dx.doi.org/10.1016/j.enbuild2014.02.050.
109.PwC(PricewaterhouseCoopers). (2013), "Charging forward-PwC’s 2012 electric vehicles survey", From: http://www.pwc.com/gx/en/automotive/pdf/pwc-charging-forward-2012-electric-vehicle-survey.pdf.
110.RØdseth K.L. (2013), "Capturing the least costly way of reducing pollution: a shadow price approach", Ecol. Econ., Vol. 92, pp.16-24.
111.Rogan, F., Dennehy, E., Daly, H., Howley, M., Gallachóir, B.P. (2011), "Impacts of an emission based private car taxation policy-First year ex-post analysis", Transportation Research Part A, Vol. 45, pp.583-597.
112.Sands R.D., Schumacher, K. (2009), "Economic comparison of greenhouse gas mitigation options in Germany", Energy Efficiency, Vol. 2, pp.17-36.
113.Santos, G., Behrendt, H., Maconi, L., Shirvani, T., Teytelboym, A. (2010), "Part I: Externalities and economic policies in road transport", Research in Transportation Economics, Vol. 28, pp.2-45.
114.Sang, Y., Bekhet, H. A. (2015), "Modelling electric vehicle usage intentions: an empirical study in Malaysia", Journal of Cleaner Production, Vol. 92, pp.75-83.
115.Sano, F., Akimoto, K., Homma, T., Tomoda, T. (2006), "Analysis of technological portfolios for CO2 stabilizations and effects of technological changes", FEEM Working Paper No. 124.05, From: https://papers.ssrn.com/soL3/papers.cfm?abstract_id=841144.
116.Sarofin M.C., DeAngelo B.J., Beach R.H., Weitz K.A., Bahner M.A. and Figueroa Z.A.M. (2010), "Marginal abatement cost curves for US black carbon emissions", J. Integr. Environ. Sci., Vol. 7, pp.279-288.
117.Sarumathi, S. (2014), "Green purchase behavior-A conceptual framework socially conscious consumer behavior", Global Journal of Finance and Management, Vol. 6, pp.777-782.
118.Sathaye J. and Shukla P.R. (2013), "Methods and Models for costing carbon mitigation", Annu. Rev. Environ. Resour., Vol. 38, pp.137-168.
119.Schäfer A. and Jacoby H.D. (2006), "Experiments with a hybrid CGE-MARKAL model", Energy J., Vol. 27, pp.171-177.
120.Schneider U.A. and McCarl B.A. (2006), "Appraising agricultural greenhouse gas mitigation potentials: effects of alternative assumptions", Agric. Econ. 35, pp.277-287.
121.Schwarz M., Goers S., Schmidthaler M. and Tichler R. (2013), "Measuring greenhouse gas abatement costs in Upper Austria", Int. J. Clim. Change Strategies Manag., Vol. 5, pp.246-266.
122.Schwoon, M., Tol, R.S.J. (2006), "Optimal CO2-abatement with socio-economic inertia and induced technological change", The Energy Journal, Vol. 27, pp.25-59.
123.Selvakkumaran, S., Limmeechokchai, B. (2015), "Low carbon society scenario analysis of transport sector of an emerging economy-The AIM/Enduse modelling approach", Energy Policy, Vol. 8, pp.199-214.
124.Sijm, J.P.M. (2004), "Induced technological change and spillovers in climate policy modeling", Working Paper ECN-C-04-073. From: http://www.ecn.nl/docs/library/report/2004/c04073.pdf.
125.Sinnappan, P., Rahman, A.A. (2011), "Antecedents of green purchasing behavior among Malaysian consumers", International Business Management, Vol. 5, pp.129-138.
126.Skerlos, S. J., Winebrake, J.J. (2010), "Targeting plug-in hybrid electric vehicle policies to increase social benefits", Energy Policy, Vol. 38, pp.705-708.
127.Stevens, C. (2010), "Linking sustainable consumption and production: The government role"", Natural Resources Forum, Vol. 34, pp.16-23.
128.Slowic, P., Lutsey, N. (2016), Evolution of incentives to sustain the transition to a global electric vehicle fleet", The International Council on Clean Transportation, From: http://www.theicct.org/sites/default/files/publications/EV%20Evolving%20Incentives_white-paper_ICCT_nov2016.pdf
129.Taylor, S. (2012), "The ranking of negative-cost emissions reduction measures", Energy Policy, Vol. 48, pp.430-438.
130.Tseng, M. L., Chiu, S. F., Tan, R. R., Anna, B. S. M. (2013), "Sustainable consumption and production for Asia: sustainability through green design and practice", Journal of Cleaner Production, Vol. 40, pp.1-5.
131.Testa, F., Cosic, A., Iraldo, F. (2015), "Determining factors of curtailment and purchasing energy related behaviors", Journal of Cleaner Production, 1-10. (http://dx.doi.org/10.1016/j.jclepro.2015.07.134.)
132.Tomaschek J. (2015), "Marginal abatement cost curves for policy recommendation – a method for energy system analysis", Energy Policy, Vol. 85, pp.376-385.
133.Tran, M., Banister, D., Bishop, J. D.K., McCulloch, M. D. (2013), "Simulating early adoption of alternative fuel vehicles for sustainability", Technological Forecasting & Social Change, Vol. 80, pp.865-875.
134.Tran, M. (2012), "Technology-behavioural modelling of energy innovation diffusion in the UK", Applied Energy, Vol. 95, pp.1-11.
135.Tseng, M. L., Chiu, S. F., Tan, R. R., Anna, B. S. M. (2013), "Sustainable consumption and production for Asia: sustainability through green design and practice", Journal of Cleaner Production, Vol. 40, pp.1-5.
136.U.S. Energy Information Administration. (2013), "NEMS model documentation: Commercial sector demand module", From: https://www.eia.gov/outlooks/aeo/nems/documentation/commercial/pdf/m066(2013).pdf.
137.U.S.EIA. (2015), "Annual Energy Outlook", From: https://www.eia.gov/outlooks/aeo/pdf/0383(2015).pdf.
138.Van den Bergh, K., Delarue, E. (2015), "Quantifying CO2 abatement costs in the power sector", Energy Policy, Vol. 80, pp.88-97.
139.Vermont B. and Cara S.D. (2010), "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture? A meta-analysis", Ecol. Econ., Vol. 69, pp.1373-1386.
140.Virginie, L. (2010), "Residential Electricity demand in China-Can efficiency reverse the growth? Lawrence Berkeley National Laboratory", LBNL-2321E.
141.Vogt-Schilb A. and Hallegatte S. (2014), "Marginal abatement cost curves and the optimal timing of mitigation measures", Energy Policy, Vol. 66, pp.645-653.
142.Wang Q., Cui Q., Zhou D. and Wang S. (2011), "Marginal abatement costs of carbon dioxide in China: a nonparametric analysis", Energy Procedia, Vol. 5, pp.2316-2320.
143.Wächter P. (2013), The usefulness of marginal CO2-e abatement cost curves in Austria", Energy Policy, Vol. 61, pp.1116-1126.
144.Wang, K., Wang, C., Chen, J. (2009), "Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change", Energy Policy, Vol. 37, pp.2930-2940.
145.Wangner, F., Amann, M., Borken-Kleefeld, J., Cofala, J., Höglund-Isaksson, L., Purohit, P., Rafaj, P., Schöpp, W., Winiwarter, W. (2012), "Sectoral marginal abatement cost curves: implications for mitigation pledges and air pollution co-benefits for AnnexⅠcountries", Sustainability Science, Vol. 7, pp.169-184.
146.Ward, D.J. (2014), "The failure of marginal abatement cost curves in optimizing a transition to a low carbon energy supply", Energy Policy, Vol. 73, pp.820-822.
147.Waseda, S. S., Takachiho, Y. S., Chiba, S. O. (2013), "Green consumption and the theory of planned behavior in the context of post-megaquake behaviors in Japan", Advances in Consumer Research, Vol. 41, pp.321-325.
148.Weyant, J.P., Olavson, T. (1999), "Issues in modeling induced technological change in energy, environmental, and climate policy", Environmental Modeling and Assessment, Vol. 4, pp.67-85.
149.Won, J.R., Yoo, Y.B., Lee, K.J. (2009), "Prediction of electricity demand due to PHEVs (Plug-in hybrid electric vehicles) distribution in Korea by using diffusion model", IEEE T&D Asia. From: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5356888
150.Wu, S.I., Chen, J.Y. (2014), "A model of green consumption behavior constructed by the theory of planned behavior", International Journal of Marketing Studies, Vol. 6.
151.Xiao H., Wei Q. and Wang H. (2014), "Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030", Energy Policy, Vol. 69, pp.92-105.
152.Xi, Y., Fei, T., Gehua, W. (2013), "Quantifying co-benefit potentials in the Chinese cement sector during 12th Five Year Plan: an analysis based on marginal abatement cost with monetized environmental effect", Journal of Cleaner Production, Vol. 58, pp.102-111.
153.Young, W., Hwang, K., McDonald, S., Oates, C. J. (2010), "Sustainable consumption: green consumer behavior when purchasing products", Sustainable Development, Vol. 18, pp.20-31.
154.Zwaan B.V.D., Keppo I. and Johnsson F. (2013), "How to decarbonize the transport sector? ", Energy Policy 61, pp.562-573.
155.Zhao, H. H., Gao, Q., Wu, Y. P., Wang, Y., Zhu, X. (2014), "What affects green consumer behavior in China? A case study from Qingdao", Journal of Cleaner Production, Vol. 63, pp.143-151.
156.Zhou, N., Fridley, D., McNeil, M., Zheng, N., Letschert, V., KE, J., Saheb, Y. (2011), "Analysis of potential energy saving and CO2 emission reduction of home appliances and commercial equipments in China", Energy Policy, Vol. 39, pp.4541-4550.
157.Zhou X., Fan L.W. and Zhou P. (2015), "Marginal CO2 abatement costs: findings from alternative shadow price estimates for Shanghai industrial sectors", Energy Policy, Vol. 77, pp.109-117.
158.Zwann, B.C.C. van der, Gerlagh, R., Klaassen, G., Schrattenholzer, L. (2002), "Endogenous technological change in climate change modelling", Energy Economics, Vol. 24, pp.1-19.
159.Zhang, G., Xu, Y., Zhang, J. (2016). "Consumer-Oriented policy towards diffusion of electric vehicles: City-Level evidence from China", Sustainability, Vol. 8, pp.13-43.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top