:::

詳目顯示

回上一頁
題名:個體附加器物最大站觸高度之觸動知覺-檢證附加位置、附加重量、與知覺知悉形式因子
作者:黃嘉彬
作者(外文):Huang, Chia-Pin
校院名稱:國立臺灣師範大學
系所名稱:體育學系
指導教授:楊梓楣
學位類別:博士
出版日期:2017
主題關鍵詞:重量知覺知覺知悉知覺形式站觸高度生態心理學weight perceptionperceptual learningperceptual modalitystanding reach heightecological psychology
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:4
當個體穿戴器物或設備時,個體行動與環境之間的關係會因此產生何種變化?以及,行為者如何覺察這樣的改變,而有適當的因應?生態心理學的直接知覺觀點指出,個體經由行動以覺知環境訊息,並透過這些訊息引發適配的行動。本研究實驗一旨在探討個體上肢不同部位附加不同重量器物時,站觸高度的判斷是否會受到器物重量的影響。為使個體作出正確的判斷,於實驗二中加入不同知覺形式搭配不同知覺經驗的方式 (觸動覺、觸動覺後加入視覺、以及觸動覺同時加上視覺),檢驗知覺知悉是否能增進個體在附加器物時的最大站觸高度知覺判斷。實驗一24名參與者,隨機分派於:(一)、先重物後輕物,與(二)、先輕物後重物兩組,每組均須將輕重附加物附加於上臂、前臂、與手背三個部位,總共進行24次的試作。實驗二36名參與者,依照知覺形式分派到三個組別,並於知悉結束後再依據隨機分派的方式,進行輕重物附加於手臂不同部位的最大站觸高度知覺判斷。實驗一以2 (附加順序) x 3 (附加部位) x 2 (重量) 混合設計三因子變異數分析檢驗輕重器物出現順序對輕重器物於不同部位附加時以及手持時的站觸高度知覺差異。實驗二以3 (知覺形式) x 3 (附加部位) x 2 (重量) 混合設計三因子變異數分析,檢驗每種知悉方式對不同重量器物附加於不同手臂部位,知覺附加時以及手持時的站觸高度所造成的差異。實驗一結果顯示,重量順序不會影響個體最大站觸高度知覺,但是器物附著於腕部時的知覺站觸高度大於肘部,且肘部大於肩部;重器物的知覺站觸高度大於輕器物。知覺器物手持時的站觸高度,附加位置不影響個體對器物手持時之高度判斷,但是重量是影響因子。實驗二結果顯示,不同知覺知悉對於器物附加時的最大站觸高度影響無差異,附加位置以及器物重量會影響知覺站觸高度;有視覺知覺知悉的組別,準確性較僅以觸動覺知悉組佳。因此,本研究結論為知覺器物手持時之最大站觸高度,器物附加位置以及重量會影響判斷,若在試作前有視覺知覺知悉的過程,其判斷準確性較佳。
When individuals wear the devices, how do they perceive the relationship between their action and environment? We can investigate such questions based on the direct perception perspective of ecological psychology. Individuals can act to perceive more information from the environment, and get the information about the possibility of their action as well. The main concern of this study is to test whether the weight of the sticks that are attached to different parts of the arm affects the standing reach height. In order to increase the rate of correct judgement, participants are offered by different opportunities for exploration (dynamic touch, visual information after dynamic touch, and dynamic touch with visual information). In experiment 1, we recruited 24 adults as our participants, and they were assigned to two groups randomly. The participants of the first group had to attach heavy sticks prior to light sticks, and they were attached light sticks prior to heavy sticks in the second group. In each group, participants had to attach different sticks to their upper arms, front arms, and the back of their palms. There were 4 trials in each condition, and 24 trials totally. There were 36 participants recruited for the second experiment. They were assigned to three practice groups randomly. The first one was a dynamic touch learning group, the second one was visual perception after dynamic touch learning group, and the last one was a dynamic touch with visual perception learning group. After practicing, they were assigned to judge the stand-reaching height with different sticks attached to upper arms, front arms, and back palms. The maximum stand-reaching height perception was measured when objects were attached to different parts of arms by two 2 (heavy stick first vs. light stick first)  3 (shoulder, elbow, and wrist)  2 (heavy stick vs. light stick) mixed-design three-way ANOVAs to check the relationship between sticks’ weight order and the parts of the arms. In order to check the effects of practice, we testified the results by two 3 (dynamic touch, dynamic touch then visual, and dynamic touch plus visual)  2 (heavy sticks vs. light sticks)  3 (shoulder, elbow, and wrist) mixed-design three-way ANOVAs. The findings of experiment 1 showed that individuals’ perception of maximum reaching height didn’t be influenced by the order of sticks. When the sticks were attached to the wrist, participants had the maximum perception of stand-reaching height, and when heavy sticks were attached, participants have a heigher perception of stand-reaching height then light sticks. The position of attached sticks didn’t affect the perception of maximum stand-reaching height when being asked to hold a stick, but the weight of the sticks does. In experiment 2, perceptual learning from different perceptual modalities didn’t affect the maximum stand-reaching height when sticks were attached. When the sticks were attached to the wrist, individuals had the maxmium perception of stand-reaching height, and they had a higher perception of stand-reaching height when heavier sticks were attached. Learning with visual perception can cause more correct perception when the sticks were attached and asked to hold.
黃嘉君、楊梓楣(2011)。明眼者與盲者對器物可伸取性的知覺與姿勢控制。中華心理學刊,53,21-34。new window

黃嘉君、楊梓楣(2012)。不穩定視覺環境之閱讀姿勢控制。大專體育學刊,14,161-169。new window

黃嘉彬、卓俊伶、陳重佑、楊梓楣(2014)。隙越動作之環境賦使知覺:準確度、預測因子與年齡效應。體育學報,47(1),79-89。new window

楊梓楣、卓俊伶(1998)。接球動作型式的環境限制變項探討。體育學報,25,269-278。new window

Adolph, K. E. (1995). Psychophysical assessment of toddlers’ ability to cope with slopes.
Journal of Experimental Psychology: Human Perception and Performance, 21, 734-750.

Adolph, K. E., Eppler,M. A., & Gibson, E. J. (1993). Crawling versus walking infants’ perception of affordances for locomotion over sloping surfaces. Child Development, 64, 1158-1174.

Amazeen, E. L. (1997). The effects of volume on perceived heaviness by dynamic touch: With and without vision. Ecological Psychology, 9, 245-263.

Amazeen, E. L. (1999). Perceptual independence of size and weight by dynamic touch. Journal of Experimental Psychology: Human Perception and Performance, 25, 102-119.

Amazeen, E. L., & Jarrett, W. D. (2003). The role of rotational inertia in the haptic and haptic + visual size-weight illusions. Ecological Psychology, 15, 317-333.

Amazeen, E. L., & Turvey, M. T. (1996). Weight perception and the haptic size-weight illusion are functions of the inertia tensor. Journal of Experimental Psychology: Human Perception and Performance, 22, 213-232.

Amazeen, E. L., Tzeng, P. H., Valdez, A. B., Vera, D. (2011). Perceived heaviness is influenced by the style of lifting. Ecological psychology, 23, 1-18.

Bhalla, M., & Proffitt, D. R. (1999). Visual-motor recalibration in geographical slant perception. Journal of Experimental Psychology: Human Perception and Performance, 25, 1076-1096.

Bingham, G. P. (1987). Kinematic form and scaling: Further investigations on the visual perception of lifted weight. Journal of Experimental Psychology: Human Perception and Performance, 13, 155-177.

Bingham, G. P. (1988). Task-specific devices and the perceptual bottleneck. Human Movement Science, 7, 225-264.

Bingham, G. P., (1993). Scaling judgments of lifted weight: Lifter size and the role of the standard. Ecological Psychology, 5, 31-64.

Bongers, R. M., Michaels, C. F., & Smitsman, A.W. (2004). Variations of tool and task characteristics reveal that tool-user postures are anticipated. Journal of Motor Behavior, 36, 305-315.

Carello, C. C., & Turvey, M. T. (2000). Rotational dynamics and dynamic touch. In M. Heller (Ed.), Touch, representation, and blindness (pp. 27-66).Oxford, UK: Oxford University Press.

Carello, C., Grosofsky, A., Reichel, F. D., Solomon, H. Y., & Turvey, M. T. (1989). Visually perceiving what is reachable. Ecological Psychology, 1, 27-54.

Cesari, P., Formenti, F., & Olivato, P. (2003). A common perceptual parameter for stair climbing for children, young and old adults. Human Movement Science, 22, 111-124.

Carello, C., Fitzpatrick, P., Domaniewicz, I., Chan, T. C., & Turvey,M. T. (1992). Effortful touch with minimal movement. Journal of Experimental Psychology: Human Perception and Performance, 18, 290-302.

Chang, C-H., Wade, M. G., & Stoffregen, T. A. (2008). Perceiving affordances for aperture passage in an environment-person-person system. Journal of Motor Behavior, 41, 495-500.

Cohen. J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.

Cornus, S., Montagne, G., & Laurent, M. (1999). Perception of a stepping-across affordance. Ecological Psychology, 11, 249-267.

Cordovil, R., & Barreiros, J. (2010). Adults' perception of children's height and reaching capability. Acta Psychologica, 135(1), 24-29.

Cordovil, R., Santos, C., & Barreiros, J. (2012). Perceiving children's behavior and reaching limits in a risk environment. Journal of Experimental Child Psychology, 111(2), 319-330.

Cordovil, R., Andrade, C., & Barreiros, J. (2013). Perceiving children's affordances: recalibrating estimation following single-trial observation of three different tasks. Human Movement Science, 32(1), 270-278.

Day, B. M., Wagman, J. B., & Smith, P. J. K. (2015). Perception of maximum stepping and leaping distance: Stepping affordances as a special case of leaping affordances. Acta Psychologica, 158, 26-35.

Doerrfeld, A., Sebanz, N., & Shiffrar, M. (2012). Expecting to lift a box together makes the load look lighter. Psychological Research, 76, 467-475.

Fajen, B. R. (2005). The scaling of information to action in visually guided braking. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 1107-1123.

Fajen, B. R. (2007a). Affordance-based control of visually guided action. Ecological Psychology, 19(4), 383-410.

Fajen, B. R. (2007b). Rapid recalibration based on optic flow in visually guided action. Experimental Brain Research, 183 (1), 61-74.

Fajen, B. R., Riley, M. A., & Turvey, M. T. (2008). Information, affordances, and the control in sport. Internaitonal Journal of Sports Psychology, 40, 79-107.

Fitzpatrick, P., Carello, C., Schmidt, R. C., & Corey, D. (1994). Haptic and visual perception of an affordace for upright posture. Ecological Psychology, 6(4), 265-278.

Gibson, E. J. (2000). Perceptual learning in development: Some basic concepts. Ecological Psychology, 12(4), 295-302.

Gibson, E. J., & Pick, A. D. (2000). An ecological approach to perceptual learning and development. New York, NY: Oxford University Press.

Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton-Mifflin.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton-Mifflin.

Gibson, J. J., & Gibosn, E. J. (1955). Perceptual learning: Differentiation or enrichment? Psychological Review, 62(1), 32-41.

Gordon, M. S., & Rosenblum, L. D. (2004). Perception of sound-obstructing surfaces using bodyscaled judgments. Ecological Psychology, 16, 87-113.

Hajnal, A., Fonseca, S., Harrison, S., Kinsella-Shaw, J., & Carello, C. (2007). Comparison of dynamic (effortful) touch by hand and foot. Journal of Motor Behavior, 39(2), 82-88.

Hajnal, A., Wagman, J. B., Doyon, J. K., & Clark, J. D. (2016). Perception of stand-on-ability: Do geographical slants feel steeper than they look? Perception, 45(7), 768-786.

Higuchi, T., Cinelli, M. E., Greig, M. A., & Patla, A. E. (2006). Locomotion through apertures when wider space for locomotion is necessary: Adaptation to artificially altered bodily states. Experimental Brain Research, 175, 50-59.

Higuchi, T., Hatano, N., Soma, K., & Imanaka, K. (2009). Perception of spatial requirements for wheelchair locomotion in experienced users with tetraplegia. Journal of Physiological Anthropology, 28, 15-21.

Higuchi, T., Murai, G., Kijima, A., Seya, Y., Wagman, J. B., & Imanaka, K. (2011). Athletic experience influences shoulder rotations when running through apertures. Human Movement Science, 30, 534-549.

Higuchi, T., Takada, H., Matsuura, Y., & Imanaka, K. (2004). Visual estimation of spatial requirements for locomotion in novice wheelchair users. Journal of Experimental Psychology Applied, 10, 55-66.

Hove, P., Riley, M. A., & Shockley, K. (2006). Perceiving affordances of hockey sticks by dynamic touch. Ecological Psychology, 18(3), 163-189.

Ingber, D. E. (1998). The architecture of life. Scientific American, 278, 48-57.

Johnston, L., Hudson, S. M., Richardson, M. J., Gunns, R. E., & Garner, M. (2004). Changing kinematics as a means of reducing vulnerability to attack. Journal of Applied Social Psychology, 34, 514-537.

Kingsnorth, S., & Schmuckler, M. A. (2000). Walking skill versus walking experience as a predictor of barrier crossing in toddlers. Infant Behavior & Development, 23, 331-350.

Kloos, H., & Amazeen, E. L. (2002). Perceiving heaviness by dynamic touch: An investigation of the size-weight illusion in preschoolers. British Journal of Developmental Psychology, 20, 171-183.

Konczak, J., Meeuwsen, H. J., & Cress, M. E. (1992). Changing affordances in stair climbing: The perception of maximum climbability in young and older adults. Journal of Experimental Psychology: Human Perception and Performance, 18, 691-697.

Kozlowski, L., & Cutting, J. (1977). Recognizing the sex of a walker from a dynamic point-light display. Perception & Psychophysics, 21, 575-580.

Kugler, P. N., & Turvey, M. T. (1987). Information, natural law and the self-assembly of rhythmic movement. Hillsdale, NJ: Erlbaum.

Latash, M. L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research, 217, 1-5.

Levine, M. (1985). Principles of community psychology: Perspectives and applications. London: Oxford University Press.

Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210-220.

Mark, L.S. (1987). Eye-height scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance,13, 360-370.

Mark, L. S., Balliett, J. A., Craver, K. D., Douglas, S. D., & Fox, T. (1990). What an actor must do in order to perceive the affordance for sitting. Ecological Psychology, 2(4), 325-366.

Mark, L. S., Nemeth, K., Gardner, D., Dainoff, M. J., Paasche, J., Duffy, M., & Grandt, K. (1997). Postural dynamics and the preferred critical boundary for visually guided reaching. Journal of Experimental Psychology: Human Perception and Performance, 23, 1-15.

Mark, L. S., Ye, L., & Smart, L. J. (2015). Perceiving the Nesting of Affordances for Complex Goal-Directed Actions. In R. Hoffman, P. Hancock, M. Scerbo, R. Parasuraman, & J. Szalma (Eds.), Cambridge Handbook of Applied Perception Research (vol. 1, pp. 547-567). New York, NY: Cambridge University Press

Marsh, K. L., Richardson, M. J., Baron, M. R., & Schmidt, R. C. (2006). Contrasting approaches to peceiving and acting with others. Ecological Psychology, 18(1), 1-38.

Michaels, C. F., & Carello, C. (1981). Direct perception. Englewood Cliffs, NJ: Prentice-Hall.

Michaels, C. F., Weier, Z., & Harrison, S. J. (2007). Using vision and dynamic touch to perceive the affordances of tools. Perception, 36, 750-772.

Naylor, Y. K., & Amazeen, E. L. (2004). The Size-weight illusion in team lifting. Human Factors, 46(2), 349-356.

Oudejans, R. R. D., Michaels, C. F., Bakker, F. C., & Dolne, M. A. (1996). The relevance of action in perceiving affordances: Perception of catchableness of fly balls. Journal of Experimental Psychology-Human Perception and Performance, 22(4), 879-891.

Pagano, C. C., & Turvey, M. T. (1993). Perceiving by dynamic touch the distances reachable with irregular objects. Ecological Psychology, 5(2), 125-151.

Pijpers, J. R., Oudejans, R. R. D., & Bakker, F. C. (2007). Changes in the perception of action capabilities while climbing to fatigue on a climbing wall. Journal of Sports Sciences, 25, 97-110.

Proffitt, D. R. (2006). Embodied perception and the economy of action. Perspectives on Psychological Science, 1, 110-122.

Proffitt, D. R., Bhalla, M., Gossweiler, R., & Midgett, J. (1995). Perceiving geographical slant. Psychonomic Bulletin & Review, 2, 409-428.

Proffitt, D. R., Stefanucci, J., Banton, T., & Epstein, W. (2003). The role of effort in distance perception. Psychological Science, 14, 106-112.

Ramenzoni, V., Davis, T., Riley, M. A., & Shockley, K. (2010). Perceiving action boundaries: Learning effects in perceiving maximum jumping-reach affordances. Attention, Perception, & Psychophysics, 72, 1110-1119.

Ramenzoni, V. C., Riley, M. A., Davis, T., Shockley, K., & Armstrong, R. (2008). Tuning in to another person’s action capabilities: Perceiving maximal jumping-reach height from walking kinematics. Journal of Experimental Psychology: Human Perception and Performance, 34, 919-928.

Regia-Corte, T., & Wagman, J. B. (2008). Perception of affordances for standing on a inclined surface depends on height of center of mass. Experimental Brain Research, 191, 25-35.

Rochat, P. (1995). Perceived reachability for self and for others by 3- to 5-year-old children and adults. Journal of Experimental Child Psychology, 59, 317-333.

Rochat, P., & Wraga, M. (1997). An account of the systematic error in judging what is reach-able. Journal of Experimental Psychology: Human Perception and Performance, 23(1), 199-212.

Runeson, S. (1977). On the possibility of “smart” perceptual mechanisms. Scandinavian Journal of Psychology, 18, 172-179.

Runeson, S., & Frykholm, G. (1981). Visual perception of lifted weight. Journal of Experimental Psychology: Human Perception and performance,7, 733-740.

Runeson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an informational basis for person-and-action perception: Expectation, gender recognition, and deceptive intention. Journal of Experimental Psychology: General, 112, 585-615.

Runeson, S., Juslin, P., & Olsson, H. (2000). Visual perception of dynamic properties: Cue heuristics versus direct perceptual competence. PsychologicalReview, 107, 525-555.

Shaw, R. E., & Kinsella-Shaw, J. M. (1988). Ecological mechanics: A physical geometry for
intentional constraints. Human Movement Science, 7, 155-200.

Schnall, S., Harber, K. D., Stefanucci, J. K., & Prffitt, D. R. (2008). Social support and the perception of geographical slant. Journal of Experimental Social Psychology, 44, 1246-1255.

Shim, J., Carlton, L. G., & Kim, J. (2004). Estimation of lifted weight and produced effort through perception of point-light display. Perception, 33, 277-291.

Shockley, K., Grocki, M., Carello, C., & Turvey, M. T. (2001). Somatosensory attunement to the rigid body laws. Experimental Brain Research, 136, 133-137.

Solomon, H. Y., & Turvey, M. T. (1988). Haptically perceiving the distances reachable with hand-held objects. Journal of Experimental Psychology: Human Perception and Performance, 14, 404-427.

Stoffregen, T. A. (2003). Affordances as properties of the animal-environment system. Ecological Psychology, 15, 115-134.

Stoffregen, T. A., Gorday, K. M., Sheng, Y-Y., & Flynn, S. B. (1999). Perceiving affordances for another person’s actions. Journal of Experimental Psychology: Human Perception and Performance, 25, 120-136.

Stoffregen, T. A., Yang, C. M., & Bardy, B. G. (2005). Affordance judgments and nonlocomotor body movement. Ecological Psychology, 17, 75-104.

Stoffregen, T. A., Yang, C. M., Giveans, M. R., Flanagan, M., & Bardy, B. G. (2009). Movement in the perception of an affordance for wheelchair movement. Ecological Psychology, 21, 1-36.

Turvey, M. T. (2003). Perception: The ecological approach. Encyclopedia of cognitive science. London, UK: Nature Publishing Group.

Turvey, M. T., Burton, G., Amazeen, E. L., Butwill, M., & Carello, C. (1998). Perceiving the width and height of a hand-held object by dynamic touch. Journal of Experimental Psychology: Human Perception and Performance, 24(1), 35-48.

Turvey, M. T., & Carelo, C. (1986). The ecological approach to perceiving-acting: A pictorial essay. Acta Psycologica,63 , 133-155.

Turvey, M. T. & Fonseca, S. T. (2014). The medium of haptic perception: A tensegrity hypothesis. Journal of Motor Behavior, 46(3), 143-187.

van der Meer, A. L. H. (1997). Visual guidance of passing under a barrier. Early Development and Parenting, 6, 149-157.

Wagman, J. B. (2012). Perception of maximum reaching height reflects impending changes in reaching ability and improvements transfer to unpracticed reaching tasks. Experimental Brain Research, 219, 467-476.

Wagman, J. B. (2015). As easy to move as a feather: Perception of lightness as easy to move. Journal of Motor Behavior, 47, 1-3.

Wagman, J. B., & Aspel, S. J. (2011). When can an object feel havier than itself? Perceived heaviness of a wielded object depends on grasp position. Perception, 40, 1384-1386.

Wagman, J. B., Bai, J., & Smith, P. J. K. (2017). Nesting in perception of affordances for stepping and leaping. Attention, Perception, and Psychophysics, 78(6), 1771-1780.

Wagman, J. B., & Carello, C. (2001). Affordances and inertia constraints on tool use. Ecologcial Psychology, 13(3), 173-195.

Wagman, J. B., & Carello, C. (2003). Haptically creating affordances: The user-tool interface. Journal of Experimental Psychology: Applied, 9, 175-186.

Wagman, J. B., & Day, B. M. (2014).Changes in cintext and perception of maximum reaching height. Perception, 43, 129-144.

Wagman, J. B., Carello, C., Schmidt, R. A., & Turvey, M. T. (2009). Is perceptual learning unimodal? Ecological Psychology, 21, 37-67.

Wagman, J. B., & Hajnal, A. (2014). Task specificity and anatomical independence in perception of properties by means of wielded object. Journal of Experimental Psychology: Human Perception and Performance, 40, 2372-2391.

Wagman, J. B. & Hanjal, A. (2016). Use your head! Perception of action possibilities by means of an object attached to the head. Experimental Brain Research, 234, 829-836

Wagman, J. B., & Malek, E. A. (2007). Perception of whether an object can be carried through an aperture depends on anticipated speed. Experimental Psychology, 54, 54-61.

Wagman, J. B., & Malek, E. A. (2008). Perception of affordances for walking under a barrier from proximal and distal points of observation. Ecological Psychology, 20, 65-83.

Wagman, J. B., McBride, D. M., & Trefzger, A. J. (2009). Perceptual experience and posttest improvements in perceptual accuracy and consistency. Perception and Psychophysics, 70(6), 1060-1067.

Wagman, J. B., & Miller, D. B. (2003). Nested reciprocities: The organism-environment system in perception- action and development. Developmental Psychobiology, 42, 317-334.

Wagman, J. B., & Morgan, L. L. (2010). Nested prospectivity in perception: perceived maximum reaching height reflects anticipated changes in reaching ability. Psychonomic Bulletin & Review, 17, 905-909.

Wagman, J. B., & Taylor, K. R. (2005). Perceiving affordances for aperture crossing for the person-plus-object system. Ecological Psychology, 17, 105-130.

Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10, 683-703.

Warren, W. H., & Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled in formation of affordances. Journal ofExperimental Psychology: Human Perception and Performance, 13(3), 371-383.

Weber, E. H. (1978). The sense of touch (H. E. Ross, Ed. & Trans.). London, UK: Academic Press.

Williams, A. M., Davids, K., & Williams, J. G. (1999). Visual perception and action in sport. New York, NY: E & FN Spon.

Withagen, R., & Michaels, C. F. (2007). Transfer of calibration between length and sweet-spot perception by dynamic touch. Ecological Psychiology, 19(1), 1-19.

Witt, J. K., Proffitt, D. R., & Epstein, W. (2004). Perceiving distance: A role of effort and intent. Perception, 33, 577-590.

Witt, J. K., Proffitt, D. R., & Epstein, W. (2005). Tool use affects perceived distance, but only when you intend to use it. Journal of Experimental Psychology: Human Perception and Performance, 31, 880-888.

Wraga, M. (1999). The role of eye height in perceiving affordances and object dimensions. Perception & Psychophysics, 61, 490-507.

Yang, C. (2005). Affordance learning in wheelchairs (Unpublished doctoral dissertation). University of Minnesota, Minneapolis, Minnesota.

Zwart, R., Ledebt, A., Fong, B. F., Vries, H., & Savelsbergh, G. J. (2005). The affordance of gap crossing in toddler. Infant Behavior & Development, 28, 145-154.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE