:::

詳目顯示

回上一頁
題名:青年學生於理論競爭論證過程中對其支持理論侷限的覺察
作者:丁信中 引用關係
作者(外文):Hsin-Chung Ting
校院名稱:國立高雄師範大學
系所名稱:科學教育研究所
指導教授:楊芳瑩
洪振方
學位類別:博士
出版日期:2004
主題關鍵詞:科學理論侷限競爭理論科學論證批判思考科學本質權威者效應通識教育科學史scientific theory limitationscompeting theoriesscientific argumentationcritical thinkingthe nature of scienceauthoritygeneral educationscience history
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(2) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:2
  • 共同引用共同引用:0
  • 點閱點閱:0
本研究的目的在於探討:(1)青年學生對中生代恐龍滅絕事件的理論支持狀況,以及(2)在「恐龍於中生代全數滅絕說」與「部分小型恐龍演化為鳥類說」競爭理論之間,為其支持理論辯護和向競爭理論挑戰的論證過程中,是否能覺察支持理論所存在的侷限性,並且(3)分析影響青年學生對支持理論侷限覺察的可能因素。研究對象為修習科學通識課的大學生,樣本數為98位。研究方法為半結構式問卷及內容分析法。問題情境為中生代恐龍滅絕事件。研究工具包含自編理論侷限覺察問卷、自編中生代恐龍滅絕與否競爭理論文本、康乃爾批判思考量表Z級、與了解科學本質量表等。研究資料的處理,依據資料的性質分別採用量化統計與質性分析的方式,進行分析結果的綜合探討。
研究結果顯示:(1)青年學生對支持理論侷限覺察的行為表現,多為實徵與邏輯侷限向度覺察,缺乏社群與歷史侷限向度覺察,除了對支持理論侷限的覺察外,有38% (13位)生物組受試者產生關於「滅絕定義」侷限的覺察;(2)競爭理論訊息呈現後,改變支持理論者佔全體受試者的39% (38位),而支持理論改變者於理論反思向度邏輯侷限的覺察優於未改變者,這說明支持理論改變者非無意識或受權威效應而改變其支持理論的選擇;(3)在整體和理論反思向度邏輯侷限覺察、與理論應用向度社群侷限的覺察,生物組優於非理工組,在各向度的實徵侷限覺察,理化組皆優於非理工組;(4)在整體與理論反思向度的邏輯侷限、整體與理論應用向度實徵侷限覺察,有據推論者優於無據推論者,整體與理論應用向度實徵侷限覺察,無誤論證者優於有誤論證者;(5)影響青年學生對滅絕定義覺察的主要變項,分別為學科認知的學科背景、與論證能力的證據推論、謬誤論證等;(6)影響青年學生對支持理論侷限覺察的主要預測變項為學科認知的學科背景、與論證能力的證據推論。
There are two major purposes in this research. One was to investigate the theoretical beliefs (the backing theories) of the college students concerning the issue of the dinosaur extinction in the Mesozoic period. The other was to detect students’ awareness of limitations in their backing theories by placing them in the reasoning process of scientific argumentation between two competing hypotheses. One hypothesis says, “All dinosaurs extincted in the Mesozoic period” and the other, “The dinosaurs did not die out completely in the Mesozoic period. Instead, some small dinosaurs evolved and became birds”. The research also analyzed some possible factors that might contribute to the awareness of backing theory limitations. An author-constructed, semi-structured questionnaire was developed to detect students’ thoughts. The questionnaire started with a text created based on authentic scientific data concerning two competing theories for the dinosaur extinction. Subjects were asked to read the text and answer corresponding questions. The content analysis was employed to analyze the qualitative data and Root-Bernstein’s criteria for scientific theories (1984) provided the basic structure of the coding criteria in the study. In addition to the author-constructed questionnaire, Cornell Critical Thinking Test-Z level, and the test of the nature of science (UNOS-se) were used to explore contributors of awareness. Accordingly, the data analyses were both qualitative and quantitative.
The result of the study showed: (1) College student’ awareness of the backing theory limitations was explicated in the empirical and logical domains. They seemingly lacked the sociological and historical considerations over the development of a sound scientific theory. It was also found that 38% of subjects who majored in biology paid specific attention on the definition of “extinction”. (2) After reading the text of competing theories presented in the quesionnaire, 39% of subjects changed their backing theory. The awareness of these students was more explicit in responding to reflective questions, and particularly in the logical domain. This finding implied that subjects who changed their backing theory were not affected by the authority. (3) The awareness of logical limitations was better performed by subjects who were able to make inference based on evidences and more explicit in responding to reflective questions. Meanwhile, the awareness of empirical limitations was better performed by those who did not make any fallacious arguments and more explicit in responding to questions concerning theory applications. (4) The biology students were better than non-science students in noticing the logical limitations of the backing theory in responding to the reflective questions. They also displayed better awareness of sociological limitations in responding to questions concerning theory applications. Subjects majoring in physics and chemistry performed better than those non-science students in the awareness of empirical limitations. (5) By the analysis of variance, the variables contributing statistically to the awareness over the definition of extinction are, academic background, the ability of making influences based on evidence, and the ability of making non-fallacious arguments. (6) According to the stepwise regression, the significant predictors of the college student’s awareness of the backing theory limitations are academic background and the ability to make inferences based on evidences.
參考文獻
中文部分:
丁信中、洪振方和楊芳瑩(2000):從地球科學理論形成過程的結構探討科學學習過程的模式。論文發表於中華民國第十六屆科學教育學術研討會彙編。台北:國立台灣師範大學。
丁信中、楊芳瑩和洪振方(2001):轉換地球科學理論形成過程於科學學習歷程─理論探討。科學教育研究與發展季刊, 22, 1-15。
丁信中、洪振方和楊芳瑩(2001):科學理論形成與精煉的過程對科學學習的意涵。科學教育月刊, 240, 2-14。
王執明(2001a):基礎地球科學(全)。台北:龍騰。
王執明(2001b):物質科學地球科學篇(上) 。台北:龍騰。
毛連塭、吳清山和陳麗華(1991):康乃爾批判思考測驗(Z)級。台北市:台北市立師範學院。
毛連塭、吳清山和陳麗華(1992):康乃爾批判思考測驗修訂報告。初等教育學刊, 1, 1-25。
杜聲鋒(1987):皮亞傑及其思想。台北:遠流。
林陳涌(1995):高中學生對科學本質了解之研究。國科會研究計劃成果報告:計劃編號:NSC 84-2511-S-003-083。
洪振方(1994):從孔恩異例的認知與論證探討科學知識的重建。台北:台灣師範大學科學教育研究所博士論文(未出版)。
許靖華(1993):古海荒漠。台北:天下。
陳育瑛和洪振方(1998):以熱學思想史的動態過程探究科學理論的建構及教學上的啟發。科學教育月刊, 209, 2-12。
張巨青和吳寅華(1994):邏輯與歷史─現代科學方法論的嬗變。台北:淑馨。
張瓊、于祺明和劉文君(1994):科學理論模型的建構。台北:淑馨。
國立編譯館(2001a):國民中學地球科學。台北:國立編譯館。
國立編譯館(2001b):國民中學生物(下冊)。台北:國立編譯館。
楊冠政(2001a):基礎生物篇(全)。台北:龍騰。
楊冠政(2001b):生物(下)。台北:龍騰。
Babbie, E. 著,李美華等譯(1998):社會科學研究方法。台北:時英。
Bloom, B. S. 著,黃光雄等譯(1983):認知領域目標分類。高雄:復文。
Gagn’e, Yekovich, C., & Yekovich, F. 著,岳修平譯(1998):教學心理學─學習的認知基礎。台北:遠流。
Neuman, W. L. 著,朱柔若譯(2000):社會研究方法:質化與量化取向。台北:揚智。
Popper, K.R.著,傅季重、紀樹立、周昌忠、蔣弋為譯(1986):猜想與反駁:科學知識的增長。上海:上海譯文。
英文部分:
Beyer, B. K. (1988).Developing a thinking skills programs. Boston: Allyn and Bacon.
Billig, M. (1987). Arguing and thinking: A rhetorical approach to social psychology. Cambridge: Cambridge University Press.
Binkley, R. W. (1995). Argumentation, education and reasoning. Informal Logic, 17(2), 127-143.
Blair, J. A., & Johnson, R. H. (1987). Argumentation as dialectical, Argumentation, 1, 41-56.
Brewer, W. F., Chin, C. A., & Samarapungavan, A. (1998). Explanation in scientists and children, Minds and Machines, 8, 119-136.
Brewer, W. F.(1999). Scientific theories and naïve theories as forms of mental representation: psychologism revived, Science and Education, 8, 489-505.
Campbell, N. (1953). What is science? New York: Dover Publications.
Carey, S. (1985). Conceptual Change in Childhood. Cambridge: MIT Press.
Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623-654.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312
Dunbar, R. (1995). The trouble with science. Cambridge: Harvard University Press.
Ennis, R. H. (1985). A logical basis for measuring critical thinking skills. Educational Leadership, 43(2), 45-48.
Ennis, R. H., Millman, J. & Tomko, T. N. (1985). Cornell critical thinking tests, Level X and Level Z: Manual. California: Midwest Publications.
Gentner, D., and Stevens, A. L. (1983). Mental Models. Hillsadle, NJ: Erlbaum..
Giere, R. (1984). Understanding Scientific Reasoning (2nd ed). New York: Holt, Rinehart and Winston.
Gilbert, J. K. (1999). On the explanation of change in science and cognition, Science and Education, 8, 543-557.
Gopnik, A. & Wellman, H. M. (1992). Why the child’s theory of mind really is a theory, Mind and Language, 7, 145-171.
Gowin, D. B. (1981). Educating. Ithaca, NY: Cornell University Press.
Hogan, K. (2000). Exploring a process view of students’ knowledge about the nature of science. Science Education, 84, 51-70.
Hogan, K. & Maglienti, M. (2001). Comparing the Epistemological Underpinnings of Students’ and Scientists’ Reasoning about Conclusions. Journal of Research in Science Teaching, 38, 663-687.
Hammer, D. & Elby, A. (2001) On the form of a personal epistemology. In Hofer, B. K. and Pintrich, P. R. (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing. Mahwah, NJ: Erlbaum.
Haberman, S. J. (1978). Analysis of Qualitative Data. New York: Academic Press.
Horner, J. K., & Rubba, P. A. (1979) The laws are mature theories fable. The Science Teacher, 46, 31.
Johnson-Laird, P. N. (1980). Mental Models in cognitive science, Cognitive Science, 4, 71-115.
Lakatos, I. (1970). Falsification and the methodology of scientific research programs. In I. Lakatos and A. Musgrave (Eds.), Criticism and the growth of knowledge (pp.91-196). London: Cambridge University Press.
Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 19, 331-359
Kipnis, N. (1996). The Historical-Investigative Approach to Teaching Science, Science and Education, 5, 277-292.
Kuhn, D. (1993). Science argument: implications for teaching and learning scientific thinking. Science Education. 77(3), 319-337.
Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed). Chicago: University of Chicago Press.
McComas, W. F. (1998). The nature of science in science education. London: Kluwer Academic Publications.
McPeck, J. E. (1990). Teaching critical thinking: dialogue and dialectic. New York: Routledge.
Palmer, D. H. (2003). Investigating the relationship between refutational text and conceptual change. Science Education, 87, 663-684.
Paul, R. W. (1984). Critical thinking: fundamental to education for a free society. Educational Leadership, 42(1), 4-14.
Paul, R. W., & Adamon, K. R. (1990). Critical thinking and the nature of prejudice. In J. A. Binker (Eds.), Critical Thinking (pp.136-169). London: Cambridge University Press.
Perner, J. (1991). Understanding the Representational Mind. Cambridge: MIT Press.
Presseisen, B. Z. (1985). Thinking skills: meaning and models. In A. L. Costa (Eds.), Developing Minds: A Source Book Teaching Thinking. Virginia: ASCD.
Rhodes, G., & Schaible, R. (1989). Fact, Law, and theory, ways of thinking in science and literature. Journal of College Science Teaching, 18, 228-232.
Piaget, J. (1964). Cognitive development in children: Piaget — development and learning. Journal of Research in Science Teaching, 2, 176-186.
Popper, K. R. (1968). Conjectures and refutations: the growth of scientific knowledge, London: Routledge and Kegan Paul.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
Root-Bernstein, R. (1984). On Defining Scientific Theory: Creationism considered. In A. Montagu, Science and Creationism (pp. 64-94). New York: Oxford University Press.
Rumelhart, D. E., & Norman, D. A. (1981). Accretion, turning, and restructuring: Thee modes of learning. In J. W. Cotton and R. Klattzky (Eds.), Semantic factors in cognition (pp. 37-60). Hillsadle, NJ: Erlbaum.
Scriven, M. (1985). Critical for survival. National Forum, 65(1), 43-46.
Sandoval, W. A., & Morrison, K. (2003). High school students’ ideas about theories and theory change after a biological inquiry unit. Journal of Research in Science Teaching, 40, 369-392.
Siegel, H. (1988). Education Reason: Rationality, Critical Thinking and Education. New York: Routledge.
Siegel, H. (1995). Why should educators care about argumentation. Informal Logic, 17(2), 159-176.
Smith, C. L., Maclin, D., Houghton, C., and Hennessey, M. G. (2000). Sixth-grade students’ epistemologies of science: The impact of school science experiences on epistemological development. Cognition and Instruction, 18, 349-422.
Sonleither, F. J. (1989). Theories, laws and all that, National Center for Science Education, Newsletter, 9, 3-4.
Schwitzgebel, E. (1999). Children’s Theories and drive to explain, Science and Education, 8, 457-488.
Toulmin, S. (1969). The use of argument. Cambridge: Cambridge University Press.
von Eemeren, F. H. (1995). A word of difference : The rich state of argumentation theory. Informal Logic, 17(2), 144-158.
Williams, M. D., Hollan, J. D. and Stevens, A. L. (1983). Human Reasoning about a simple physical system, In D. Gentner and Stevens (eds.), Mental Models (pp. 131-153), Hillsadle, NJ: Erlbaum.
Yang, F. Y. (2004). Exploring high school students’ use of evidence and theory in an everyday context:The role of scientific thinking in environmental science decision-making. International Journal of Science Education. In press.
Yang, F. Y. & Anderson, O. R. (2003). Senior high school students'' preference and reasoning modes about nuclear energy use. International Journal of Science Educaiton, 25(2), 221-244.
Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science Education, 81, 483-496.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE