:::

詳目顯示

回上一頁
題名:探究高中學生對化學實驗中測量之理解
作者:馮松林
作者(外文):Sung-Lin Feng
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:段曉林
學位類別:博士
出版日期:2006
主題關鍵詞:化學實驗化學測量實驗教學過程的理解測量的理解chemistry experimentchemistry measurementexperiment teachingprocedure understandingunderstanding of measurement
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(2) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:27
本研究之目的在探究高中生在化學實驗中對測量之理解,研究聚焦於高二學生學習酸鹼滴定實驗後,學生對實驗目的之看法、在不同的測量過程所展現對測量之理解、以及學生對測量結果之論証方式等,並分析影響學生對測量理解之因素。
本研究之資料收集,第一階段進行學生酸鹼滴定實驗實作,提供學生真實的實驗情境做測量的操作及數據之收集,第二階段依實驗目的、過程和結果設計理解測量之問卷,讓學生依實驗操作的情況回答問題,第三階段則與學生進行晤談。在分析所收集之質性與量化資料後,本研究發現,學生認為學校的實驗是一種準實驗的環境,學生通常不重視亦不注意實驗的目的為何,只知要獲得實驗結果,忽視對於實驗測量過程須具有科學化操作的要求,學生亦不太知道測量精確度的表示和作圖方法。對學生而言實驗的測量只是完成一個作業,而不是在展現對科學方法的理解。化學實驗的測量過程,可視為是學生追求準確值的過程,在此過程中學生會以誤差大小的判斷或誤差如何消除兩個取向,做為決定重測判斷、決定測量次數、刪除數據求平均、及準確與否的重要考量。綜合分析可發現,學生對學校化學實驗之理解及學生對誤差的認知等兩個因素,是影響學生在酸鹼滴定實驗測量過程之操作與決策的主要原因。
最後,本研究有以下三項建議:一、在化學實驗課程中,應提供學生認識化學探究方法的機會,設計課程提昇學生對測量過程的理解,加強學生對測量誤差的認識;第二、老師應重視實驗的探究學習,並要求學生在實驗過程中表現合乎科學方法的理解與行為;第三、應重新思考各項科學過程技能的內涵,深入探究學生對各種科學過程的理解。
The purpose of this study was to explore senior high school students’ understanding of measurement in chemistry experiment. The study particularly founded on investigating 11th grades students’ understanding of the purposes of chemistry experiment, in different measurement procedures, and students’ argumentations between chemistry theory and experiment data.
Research data were collected by laboratory experiment observation, questionnaires, interview, and students’ experiment reports. Data were analyzed by using constant comparison and analytic induction method. The results of the study indicated that students did not aware the purposes of experiment. They only want to accomplish the experiment. During the measurement procedures, students didn’t really know how to present the data and result precisely, drawing the proper graph of acid and base titration curve. For students, measurement in chemistry experiment is a procedure to peruse precision data results. In these procedures, the extent of measurement error and how to decrease measurement error are two important factors that influence students’ decisions about re-measurement, eliminating improper data, and comparing the accuracy of data.
Detailed analyses showed that students’ attitude about laboratory experiment and perceptions measurement error are major factors that influence students’ measurement operating and decisions making. The implication of the chemistry teaching and further researching will be discussed in the paper.
參考文獻

一、中文部份
林煥祥(2002):第一議題:科學教育目標、現況與前瞻-子題一之1:中小學科學教育。第一次全國科學教育會議公聽會提案資料,7-13。
周何主編(2005):國語活用辭典。台北市:五南圖書。
黃長司、鍾崇燊、黃芳裕(2004):高中物質科學化學篇。台中市:康熙圖書。
高敬文(1989):我國國小學童測量概念發展研究。初等教育研究,1, 182-219。
翁秀玉(1997):國小自然科教師傳達科學本質之行動研究。國立彰化師範大學科學教育研究所碩士論文。(未出版)
許良榮(1998):國小自然科過程技能教學的潛在問題。國教輔導,38(1),19-22。
許瑛玿、吳慧珍(2002):網路合作學習與科學過程技能的學習。科學教育月刊,254,16-27。
許榮富(1986):科學過程技能與科學態度及創造思考力相關性分析研究。論文發表於中華民國七十四年度科學教育學術研討會,231-259。台北市:國立台灣師範大學理學院。
連坤德、毛松霖(1992):高中生物理科測量及儀器使用技能之評量工具研究。中華民國物理教育學術研討會。台北:國立台灣師範大學。
郭文禎(1999):國小學生投入實驗活動的方式與其對實驗看法之關係。國立彰化師範大學科學教育研究所碩士論文。(未出版)
郭重吉、許玫理(1992):從科學哲學觀點的演變探討科學教育的過去與未來。彰化師範大學學報,3,531-560。
陳文典(1993):國小學童對測量概念的認識。科學教育學刊,1,111-134。new window
教育部(1993):高級中學課程標準。台北市:教育部。
教育部(1999):國民教育九年一貫課程綱要:「自然科學與生活科技」課程綱要。台北市:教育部。
黃偉蓉、林秋麗、陳文典(1993):國小學童對長度測量的認識。國立台北師範學院學報,6,43-66。
熊召弟(1996):臺北公立高中(高一)學生科學過程技能和邏輯思考能力之探討研究。國立台北師範學院學報,9,545-578。
譚寧君(1999):從兒童的測量迷思概念看教師對兒童測量知識的了解。國立台北師範學院學報,12,407-436。new window

二、英文部份
Allie, S., Buffler, A., Kaunda, L., Campbell, B., & Lubben, F. (1998). First-year physics students’ perceptions of the quality of experimental measurements. International Journal of Science Education, 20(4), 447-459.
Allie, S., & Buffler, A. (1996). A course in tools and procedures for Physics1. American Journal of Physics, 66(7), 613-624.
American Association for the Advancement of Science (1993). Benchmarks for science literacy. New York: Oxford University Press.
APU (1985). Science at age 15, Report No. 1. London: DES.
APU (1988). Science at age 13, Review report. London: DES.
Buffler, A., Allie, S., Lubben, F., & Campbell, B. (2001). The development of first year physics students’ ideas about measurements in terms of point and set paradigms. International Journal of Science Education, 23, 1137-1156.
Cauzinille-Marmeche, E., Meheut, M., S�嫫��, M.-G., & Weil-Barais, A. (1985). The influence of a priori ideas on the esperimental approach. Science Education, 69, 201-211.
Coelho, S. M., & S�嫫��, M-G. (1998). Pupils’ reasoning and practice during hands-on activities in the measurement phase. Research in Science and Technological Education, 16, 79-96.
Davidowitz, B., Lubben, F., & Rollnick, M. (2001). Undergraduate Science and Engineering Students' Understanding of the Reliability of Chemical Data. Journal of Chemical Education, 78(2), 247-252.
Del Carlo, D., & Bodner, G. (2004). Students’ perceptions of academic dishonesty in the chemistry classroom laboratory. Journal of Research in Science Teaching, 41, 47-64.
Denzin, N. K. (1978). The Research Act: a theoretical introduction to sociological methods (2nd ed.). New York: McGraw-Hill.
Department of Education and Science (1985). Science 5-16: A Statement of Policy. London, HMSO.
Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Milton Keynes: Open University Press.
Duggan, S., Johnson, P., & Gott, R. (1996). A critical point in investigative work: Defining variables. Journal of Research in Science Teaching, 33, 461-477.
Fairbrother, R., & Hackling, M. (1997). Is this the right answer? International Journal of Science Education, 19, 887-894.
Fisher, D., Harrison, A., Henderson, D., & Hofstein, A. (1999). Laboratory learning environments and practical tasks in senior secondary science classes. Research in Science Education, 28, 353-363.
Gabel, D. (1999). Improving teaching and learning through chemistry education research: A look to the future. Journal of Chemical Education, 76, 548-553
Germann, P. J., & Aram, R. J. (1996). Student performances on the science processes of recording data, analyzing data, drawing conclusions and providing evidence. Journal of Research in Science Teaching, 33(7), 773-789.
Germann, P. J., Aram, R. J., & Burke, G. (1996). Identifying patterns and relationships among the responses of seventh-grade students to the science process skill of designing experiments. Journal of Research in Science Teaching, 33(1), 79-99.
Giere, R. N. (1991). Understanding Scientific Reasoning, 3rd edition. Fort Worth, TX: Holt, Rinehart and Winston.
Gott, R., & Duggan, S. (1995). Investigative Work in the Science Curriculum. Philadelphia: Open University Press.
Habermas, J. (1971). Knowledge and Human Interests. Boston: Beacon Press.
Hackling, M., & Garnett, P. J. (1992). Expert novice differences in science investigation skills. Research In Science Education, 22, 170-177.
Hewson, P. W. (1985). Epistemological commitments in the learning of science: Examples from dynamics. European Journal of Science Education, 7, 163-172.
Hodson, D. (1991). Practical work in school science: time for a reappraisal. Studies in Science Education, 19, 175-184.
Hodson, D. (1993). Re-thinking old ways: towards a more critical approach to practical work in school science. Studies in Science Education, 22, 85-142
Hodson, D. (1996). Practical work in school science: exploring some directions for change. International Journal of Science Education, 18, 755-760.
Hofstein, A., & Lunetta, V. N. (2003). The laboratory in science education: foundations for the twenty-first century. Science Education, 88, 28-54.
Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students’ reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663-687.
Johnstone, A. H. (1991). Why is science difficult to learn? things are seldom what they seem. Journal of Computer Assisted Learning, 7, 701-703.
Kanari, Z. & Millar, R. (2004) Reasoning from Data: How Students Collect and Interpret Data in Science Investigations, Journal of Research in Science Teaching, 41(7), 748-769.
Kirschner, P. A. (1988). Epistemology, practical work and academic skill in science education. Science and Education, 1(3), 273-299.
Kirschner, P. A., & Meester, M. A. M. (1988). The laboratory in higher science education: Problems, premises and objectives. Higher Education, 17, 99-119.
Kuhn, D., Amsel, E., & O’Loughlin, M. (1988). The development of scientific thinking skills. London: Academic Press.
Lubben, F., Buffler, A., Allie, S., & Campbell, B. (2001). Point and set reasoning in practical science measurement by entering university freshmen. Science Education, 85, 311-327.
Lubben, F., & Millar, R. (1996). Children’s ideas about the reliability of experimental data. International Journal of Science Education, 18, 955-968.
Lunetta, V. N. (1996). The school science laboratory: historical perspectives and contexts for contemporary teaching. In B. J. Fraser & K. G. Tobin (Eds.), International Handbook of Science Education (pp. 249-262). Dordreche, Nertherlands: Kluwer Academic Publishers.
Lunetta, V. N., & Tmir, P. (1979) Matching lab activities with teaching goals. The Science Teacher, 46, 22-24.
Mashhadi, A., & Woolnough, B. (1998). Students’ conceptions of the “Reality Status” of electrons. Paper presented at the annual meeting of the Singapore educational research association, Singapore.
Masnick, A. M., & Morris, B. J. (2002). Reasoning from data: The effect of sample size and variability on children’s and adults’ conclusions. In W. D. Gray & C. D. Schunn (Eds.), Proceedings of the 24th annual conference of the Cognitive Science Society (pp. 643-648). Mahwah, NJ: Lawrence Erlbaum.
Matthews, M. R. (2004). Idealisation and Galileo’s pendulum discoveries: historical, philosophical and pedagogical considerations. Science & Education, 13, 689-715.
Maxwell, J. A. (1996). Qualitative research design: an interactive approach. Newbury Park, CA: Sage.
Metz, K. (1995). Reassessment of developmental constraints on children’s science instruction. Review of Educational Research, 65, 93-127.
Millar, R. (1991). A means to an end: the role of processes in science education. In B. E. Woolnough (Eds.), Practical science (pp.43-52). Philadelphia: Open University Press.
Millar, R. (2004). The role of practical work in the teaching and learning of science. Paper prepared for the Committee: High School Science Laboratories: Role and Vision, National Academy of Sciences, Washington, DC.
Millar, R., & Driver, R. (1987). Beyond process. Studies in Science Education, 14, 33-62.
Millar, R., Gott, R., Lubben, F., & Duggan, S. (1996). Children’s performance of investigative tasks in science: A framework for considering progression. In M. Hughes (Eds.), Progression in Learning (pp 82-108). Clevedon, UK:Multilingual Matters.
Millar, R., Le Marechal. J-F., & Tiberghien, A. (1999). ‘Mapping’ the domain: varieties of practical work. In J. Leach & A. Paulsen (Eds.), Practical Work in Science Education (pp. 33-59). Roskilde: Roskilde University Press.
Millar, R., & Lubben, F. (1996). Investigative work in science: The role of prior expectations and evidence in shaping conclusions. Education, 3, 28-34.
Millar, R., Lubben, F., Gott, R. & Duggan, S. (1994). Investigating in the school science laboratory: conceptual and procedural knowledge and their influence on performance. Research Papers in Education, 9(2), 207-248.
Nakhleh, M. B., Polles, J., & Malina, E. (2002). Learning chemistry in a laboratory environment. In J. K. Gilbert et al (eds.), Chemical Education: Towards Research-based Practice (pp.69-94). Dordrecht, Netherlands: Kluwer Academic Publishers.
National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
Nola, R. (2004). Pendula, models, constructivism and reality. Science & Education, 13, 349-377.
Osborne, J. (1996). Beyond constructivism. Science Education, 80, 53-82
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41, 994-1020.
Padilla, M. J. (1980). Science activities- for thinking. School Science and Mathematics, LXXX, 601-608.
Pfundt, H., & Duit, R. (1994). Bibliography: Students’ alternative frameworks and science education. Kiel: Institute of Science Education at the University of Kiel.
Rollnick, M., Lubben, F., Lotz, S., & Dlamini, B. (2002). What do underprepared students learn about measurement from introductory laboratory work? Research in Science Education, 32, 1-18.
Roth, W. M. (1994). Experimenting in a constructivist high school physics laboratory. Journal of Research in Science Teaching, 31, 197-223.
Ryder, J., & Leach, J. (2000). Interpreting experimental data: the views of upper secondary school and university science students. International Journal of Science Education, 22(10), 1069-1084.
Samarapungavan, A., & Wiers, R.W. (1997). Children's thoughts on the origin of species. Cognitive Science, 21, 147-177.
Scott, P., & Leach, J. (1998). Learning science concepts in the secondary classroom (third edition), in Ratcliffe, M. (Eds.) ASE secondary science teachers’ handbook. London: Simon and Schuster.
S�嫫��, M-G., Journeaux, R., & Larcher, C. (1993). Learning the statistical analysis of measurement error. International Journal of Science Education, 15(4), 427-438.
So, W. W. (2003). Learning science through investigations: an experience with Hong Kong primary school children. International Journal of Science and mathematics Education, 1, 175-200.
Song, J., & Black, P. J. (1992). The effect of concept requirements and task contexts on pupils' performance in control of variables. International Journal of Science Education, 14 (1), 83-93.
Strike, K. A., Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147-176). Albany: State University of New York Press.
Strauss, A. (1987). Qualitative analysis for social scientists. Cambridge: Cambridge University Press.
Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.
Tamir, P. (1991). Practical work in school science: an analysis of current practice. In B. Woolnough (Eds.), Practical science (pp. 13-30). Buckingham: Open University Press.
Taylor, J. A., & Dana, T. M. (2003). Secondary school physics teachers’ conceptions of scientific evidence: an exploratory case study. Journal of Research in Science Teaching, 8, 721-736.
Tobin, K. (1990). Research on science laboratory activities: In pursuit of better questions and answers to improve learning. School Science and Mathematics, 90, 403-418.
Toulmin, S. (1958). The Uses of Argument. Cambridge, UK, Cambridge University Press.
Tsai, C. C. (2003). Taiwanese science students’ and teachers’ perceptions of the laboratory learning environments: exploring epistemological gaps. International Journal of Science Education, 25, 847-860.
Tytler, R., & Peterson, S. (2004). From “Try It and See” to strategic exploration: characterizing young children’s scientific reasoning. Journal of Research in Science Teaching, 41, 94-118.
Vellom, R. P., & Anderson, C. W. (1999). Reasoning about data in middle school science. Journal of Research in Science Teaching, 36(2), 179-199.
Watson, R. (2000). The role of practical work. In M. Monk & J. Osborne (Eds.), Good practice in science teaching: What research has to say (pp. 57-71). Buckingham: Open University Press.
Woolnough, B. (1991). Practical science. Milton Keynes: Open University Press.
Woolnough, B., & Allsop, T. (1985). Practical work in science. Cambridge: Cambridge University Press.
Yore, L. D., Hand, B., Goldman, S. R., Hildebrand, G. M., Osborne, J. F., Treagust, D. F., & Wallace, C.S. (2004). New directions in language and science education research. Reading Research Quarterly, 39,347-352.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE