:::

詳目顯示

回上一頁
題名:「漸進式科學探究模式」的發展與在數理高中生「獨立研究」指導的應用
作者:林淑芳
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:郭重吉
學位類別:博士
出版日期:2008
主題關鍵詞:獨立研究漸進式科學探究數理資優生科學探究能力科學態度科學本質觀科學知識自我引導學習充實三合模式
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:62
「漸進式科學探究模式」的發展與在數理高中生「獨立研究」指導的應用
摘要
本研究以Martin-Hansen所提出科學探究層次的觀點,參考Renzulli的充實三合模式與科學學習的理論,發展出一套獨立研究課程的指導模式「漸進式科學探究模式 (Progession Scientific Inquiry Model, P-SIM),進而探討P-SIM對學生在科學探究能力、科學態度、科學本質觀,與科學知識的學習成果與其歷程。研究對象為台灣中部一所公立高中數理班學生三十名。資料的蒐集歷時二年八個月,包含正式與非正式晤談、課室錄影與觀察、問卷、學習日誌、科學探究能力問卷、科學態度問卷、了解科學本質問卷、自編科學概念問卷、成果作品、課程回饋表等。所蒐集之資料分質與量二部分進行分析;在量的方面對問卷的前測、中測、後測進行t考驗、回饋表中的百分比之方式處理;在質的方面則對資料進行內容分析。
根據質性的資料分析,發現,組員內、師生間、小組間、及與師長間的「螺旋式互動」昰維繫學生在科學探究能力、科學態度、科學本質觀以及科學知識等四方面學習的主要動力,互動的內涵包括語言與非語言的部分。獨立研究的主題是螺線盤繞的主軸。學生由「問題的緣起」到「界定探究主題」的歷程中,需經歷「感知、回顧經驗、抽離情境、化繁為簡、修正釐清」等五階段。二、學生在科學知識的形成,需要經過「磋商、答辯、達成小組共識」等社會建構的歷程,除此,「化繁為簡」是形成科學知識的重要思維與方法,「修正」與「否證」是關鍵步驟,科學知識的演進有賴於「實驗設計的改進與創新」、「數據的整理與分析」。三、科學態度的養成,背後的關鍵在於家長的支持與否。
在量性的資料分析中,發現學生的:一、科學探究能力在前測/中測、中測/後測、前測/後測均達統計上的顯著差異;二、科學學習態度在前測/後測達統計上的顯著差異;三、科學本質觀在前測/中測、中測/後測、前測/後測之進步情形達統計上的意義;四、針對摩擦力小組而言,學生在科學概念的前測與後測達統計上的顯著差異。五、三十位學生的自我引導學習成效:在前測時,大多落在Treffinger「自我引導模式」中的能力指標的教師引導與自我引導1之間;在中測時,則落在自我引導1與2之間;在後測時,參與科展得20位學生平均落在自我引導2與3之間,但未參加科展比賽的10位學生,則仍然維持在與中測時約相同的層次,自我引導1與2之間。
本研究提出五項結論:一、本模式應用在「獨立研究」的指導可以提升數理學生在科學探究能力、科學態度、科學本質觀,與科學知識的學習;二、本模式的教學需要實施一段較長的時間才能檢測出學生在科學探究能力、科學態度、科學本質觀,與科學知識等的學習成效;三、本模式的教學可逐漸地提升學生自我引導學習的層次;四、經由教師與學生個別的磋商,昰使獨立研究課程可以個別化的可行方式;五、不同的學生在科學探究活動的進行中,呈現出不同的指導需要與學習歷程;六、學生在科學探究能力的培養、科學態度的養成、科學知識的形成,皆有賴於教師營造良好的互動情境,使學生得以進行緊密纏繞的螺旋式互動,使科學探究活動邁前推進。建議本研究所發展的「漸進式科學探究模式」與「以科學探究為取向的獨立研究課程量表」可以做為指導「數理資優生獨立研究」或「一般學生進行科學探究活動」的參考。
關鍵字:獨立研究、漸進式科學探究、數理資優生、科學探究能力、科學態度、科學本質觀、科學知識、自我引導學習、充實三合模式
Development of Progression Scientific Inquiry Mode and application in independent study for scientific-based high school students
Abstract
Independent study is the most important curriculum of gifted education. Independent research itself possesses the nature of inquiry. Based on the concepts of scientific inquiry from Martin-Hansen, Renzulli’s Enrichment Triad and theory of scientific learning from Renzulli, we developed an individual instructional mode-Progressive Scientific Inquiry Mode for gifted Scientific and Mathematic students. Progressive Scientific Inquiry Mode includes four types including solid-line, dotted-line, broken-line and spiral types. We therefore investigated how this mode affected the scientific inquiry capacity, scientific attitude, concept of scientific nature, learning progress of scientific learning and other related factors of the gifted scientific and mathematic students. Besides, we also explored the learning discrepancy of different learning styles. The study subjects include 30 gifted students from public high schools on central part of Taichung. Data collection period lasts for two years and 8 months. These include in-depth interview, classroom recording and observation, questionnaire, learning diary of students, scientific inquiry capacity, scientific attitude, understanding of scientific nature, scientific concept, outcomes of various stages of students, and courses feedback of independent research. Data collection includes quality and quantity section. In the quantity research, we applied the Student’s t test to analyze the statistical difference among pre-, middle- and post-tests. We also investigated the Pearson related analysis and the percentage of feedback. In the quality research, we analyzed based on classroom observation, video, questionnaire, diary and the content of interview.
The study indicated that students develop significant difference between pre- and mid-test, mid- and post-test and pre- and post tests. Above all, problems findings, experimental design and inductive analysis shows significant difference. The scientific learning attitude demonstrates significant difference between pre- and post-test. Especially, scientific teachers, scientific learning motivation and scientific learning strategy show significant difference. The scientific nature demonstrates pre- and middle-test, middle- and post-test, and pre- and post-test to be significant. And, scientific method nature, scientific knowledge, and scientific career nature are significant. According to the Pearson related analysis, scientific learning ability and learning attitude, concept of scientific nature and capability of scientific inquiry gradually increase as pre-, middle- and post-tests. The post-test γ values are 0.92, 0.40, and 0.40, respectively. According to the quality data analysis, we found the progress of origin of questions to formed clearly inquiry topical subject experienced five stages including perception, analogue, dissociation situation, and amendment. The formation of scientific knowledge need discussions, formed common consensus. In addition, is the most important thinking and method of formulation of scientific knowledge. Amendment and are the key processes to formulate scientific knowledge. Improvement and renovation of experimental design determines the progress of scientific knowledge. Support from the parents determines if students could persist on the activity and research of scientific inquiry.
Based on quality and quantity researches, we proposed the Progressive Scientific Inquiry Mode could enhance the scientific inquiry capability, scientific attitude, scientific nature and learning of scientific knowledge of gifted scientific and mathematic students. Teaching of scientific inquiry mode would detect the capability of scientific inquiry, scientific attitude, scientific nature and scientific knowledge after a longer period of time. If the implement would carry out longer, the capability of scientific inquiry and scientific attitude could closely develop. Students from different capability, backgrounds and parents attitudes would go with individual progressive instructional modes and students could acquire happiness and achievement of learning. Progressive Scientific Inquiry Mode instructs the gifted students how to do the independent research. Cultivate of the capability of scientific inquiry, formulation of scientific attitude, and formation of scientific knowledge dependent how instructors construct the interactive atmosphere for students to learn. We therefore suggest that the self-developed Progressive Scientific Inquiry Mode and the Independent Research curriculum assessment could be applied for the independent research for gifted scientific and mathematic students. Also the suggestions would be conducted to the administrative to support the courses behind the parents to lessen the resistance between teachers and students also enhance sources of inquiry activities.
一、中文部份
王美芬、熊召弟 (1995):國民小學自然科教材教法。北市:心理出版社。
王美芬 (2006):國小國小教師的教學輔導策略。科學教育研究與發展季刊,75-90。
王靜如 (2001):小學教師科學本質概念及教學之研究。科學教育學刊,9(2), 197-217。new window
方得華 (2000 ):原子力顯微鏡奈米加工技術研究。國立成功大學機械工程學系博士論文,未出版,台南市。
朱鈞偉、袁光亞 (1990):廣義庫倫摩擦律下平面接觸問題之邊界單元-數學規劃法新解。國立清華大學動力機械研究所碩士論文,未出版,新竹市。
李暉 (1993):國中理化教師試行建構教學之個案研究。國立彰化師範大學科學教育
研究所碩士論文,未出版,彰化市。
李秀蘭(2001):自我引導學習模式下的科學方法教學方案對國小資優生獨立研究
學習成效之研究。國立花蓮師範學院國民教育研究所碩士論文,未出版,花蓮
市。
李偉俊(1996):未來資優教育的新指標─獨立研究方案。國教之聲,30(1),18-28。
李偉俊(1997):國小能力優異學生獨立研究方案之設計與實驗研究。國立高雄師
範大學特殊教育研究所碩士論文,未出版,高雄市。
林世娟、何小曼 (2002):國小學童「科學態度」及「對科學的態度」之研究-以植
物的生長教學活動為例。國立臺北師範學院學報,15,9,157-196
邱美虹、林秀蓁 (2004):以CHILDES 分析一對一科學教學活動中師生互動共建科
學知識的行為表現。科學教育學刊,12(2), 133-158
范瓊盛 (1998):國中理化教師教學改進決策行為之個案研究。國立彰化師範大學科new window
學教育研究所博士論文,未出版,彰化市。
洪振方 (1997):教師對以邏輯實證與後邏輯實證主義科學哲學觀建構之電化電池發new window
展史教材的認識與抉擇。科學教育學刊,5(3),347-390。
洪振方 (2003):探究式教學的歷史回顧與創造性探究模式之探討。高雄師大學報,new window
15,641-662。
洪明鈞、翁政義 ( 2001 ):以分子動力學研究奈米摩擦。國立成功大學機械工程學
系碩士論文,未出版,台南市。
南一版高二物理上冊:3-7靜摩擦力,南一出版社。
南一版高二物質科學下冊:12-3分子平均動能與溫度,南一出版社。
周東寬(2003):二維斜坡顆粒流之輸送帶實驗與分析。國立中央大學土木所碩士論文,中壢市,未出版。
周乘雨,剪力流中液體含量對混合機制的影響,2005年國立中央大學機工所碩士論文。
侯香伶(2002):科探究活動中的科學本質面貌對國一生科學本質觀之影響。國立
彰化師範大學科學教育研究所碩士論文,彰化市,未出版。
柯麗卿 (2004):國中資優生獨立研究與學習風格的關係及獨立研究學習成效相關因
素之研究。國立高雄師範大學特殊教育學系碩士論文,未出版,高雄市。
莊嘉坤(1992)。從態度的概念談科學態度的研究。國教天地,94,31-43。
莊嘉坤(2004)。九年一貫「自然與生活科技」領域能力指標詮釋研究:國小學生
科學態度的探究。國科會專題研究計畫成果報告,(NSC92-2522-S-127-003)。
徐嘉彬 、蘇侃 ( 2000 ):表面粗度及外視接觸面積對極低負載不銹鋼接觸面摩擦係
數之影響。國立臺灣大學機械工程學研究所碩士論文,台北市,未出版。
教育部 (2003):國民中小學九年一貫課程綱要,自然與生活科技學習領域。台北市:new window
教育部。
郭重吉 (1987a):美各國晚近對學生學習風格之研究。資優教育季刊,22,2-8。
郭重吉 (1987b):評介學習風格之有關研究。資優教育季刊,23,7-16。
郭重吉(1988)。從認知狀態和學習風格探討國中學生學習物質分子模型的困難。行
政院國家科學委員會專題研究計劃成果報告(NSC76-0111-S018-319)。
郭重吉(1992):從建構主義的觀點探討中小學數理教學的改進,科學發展月刊,new window
25(5),548-570。
郭重吉、許玫理(1992):從科學哲學觀點的演變探討科學教育的過去與未來。彰
化師大學報,3,531-561。
郭重吉、江武雄 (1993):從協助學生建構意義的觀點探討國中理化教學的改進(2)。
國科會專題研究計畫NSC-82-0111-S-018-01。
郭重吉(2002)。建構論的哲學基礎。載於詹志禹(主編),建構論:理論基礎與教
育應用(頁2-48)。台北市:正中書局。
郭靜姿 (1980):學習動機、策略應用與後設認知能力之相關探討及其所建構而成之
後設理解模式在資優教學上的應用(上),資優教育季刊,37,1-8。
郭靜姿 (1993):如何指導資優生進行獨立研究。資優教育季刊,48,5-15。
郭靜姿(1997):如何指導資優生進行獨立研究。資優教育的革新與展望。台北:
心理。
許玫理(1992):我國國民中學自然科學教師科學哲學觀點之調查研究。國立彰化
師範大學科學教育研究所碩士論文,未出版,彰化市。
許良榮、柯玉婷 (2000)。師院學生對科學本質之教學態度之研究。臺中師院學報,new window
14,411-434。
許良榮、柯玉婷 (2001):台中地區國小職前與在職教師對科學本質的理解與教學new window
態度之研究。台中師院學報,15,335-361。
許素甘 (2002):培養國小高年級學童科學探究能力:製作科學展覽的經驗與反省。
教育資料與研究,48,4-30。
許智淵 (2004):粉粒體內摩擦係數對剪力顆粒流輸送性質之影響。國立中央大學機工所碩士論文,中壢市,未出版。
許榮富、楊文金和洪振方(1990):學習環的理論基礎及其內涵分析-物理概念教學
理念的新構思。物理會刊,12(5),198-375。
陳英豪、葉懋坤、李坤崇、李明淑、邱美華 (1991):國小學生科學態度問卷編製報
告。測驗年刊,38, 125-136。
陳麗美(2004)。提昇不同學習風格學生於科學探究活動中學習成效之行動研究。
彰化師範大科學教育研究所在職進修專班碩士論文(未出版),彰化市。
陳樹群 (2004):土石流防災知多少。科學發展月刊,374,24-33。
張春興 (1998):教育心理學。台北:東華書局。
彭子軒 (2002):慢顆粒流之輸送帶實驗與影像分析。國立中央大學土木所碩士論文,中壢市,未出版。
黃鴻博 (1998):以STS教育理念改進國小自然科教學之研究。科學教育研究與發
展,12,3~17。
黃鴻博和郭重吉 (1999):STS 教育理論的接納與實踐-一個國小教師的個案研究。
科學教育學刊,7(1),1-15。
黃鴻博(2000):兒童科學探究活動遭遇問題的探討。台中師院學報,14,389-409。黃玉枝 (1993):國中資優學生與普通學生學習風格及學校適應之比較研究。特殊教new window
育研究學刊,9,249-276。
黃淑卿 (2003):利用探究教學提昇國一學生科學探究能力之行動研究。彰化師範大
學科學教育研究所碩士論文,未出版,彰化市。
黃啟淵 (1994):從探究技能、專題研習到獨立研究。資優教育季刊,52,16-23。
陳均伊 (2006):以合作專業成長模式協助二位科學教師實施探究教學之個案研new window
究。國立彰化師範大學科學教育研究所博士論文,未出版,彰化市。
陳育君 (2002):應用PZB服務品質模式在國小資優班獨立研究教學品質評鑑之研
究。臺東師範學院教育研究所碩士論文,未出版,臺東市。
陳姿妙 (2005):利用探究式教學提昇七年級學生科學學習成效之行動研究。國立
彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
馮松林 (2006):探究高中學生對化學實驗中測量之理解。國立彰化師範大學科學教new window
育研究所博士論文,未出版,彰化市。
楊曉白 (1988):如何指導資優生從事獨立研究。資優教育季刊,28,41-43。
楊文龍 (2005):顆粒剪力流體之傳輸現象探討。國立中央大學機工所博士論文,中壢市,未出版。
詹錢登 ( 2004 ):豪雨造成的土石流,科學發展月刊,374,14-23。
賈魯強 黎璧賢 ( 2001 ):漫談顆粒體物理,物理雙月刊,23(4),503-510。
蔡佩穎、張文華(1999 ):國一學生參與生物實驗活動之過程分析與成效探討。科
學教育,9,108-126。
劉宏文 ( 1996 ):建構主義的認識論觀點及其在科學教育上的意義。科學教育月刊,new window
193,6-22。
劉宏文和張惠博 (2001):高中學生進行開放式探究活動之個案研究-問題的形成
與解決。科學教育學刊,9,169-196。
劉德明 (1999):學自然的科學態度之研究。花蓮師範學院學報,9,85-118。new window
蔡典謨(1996)。充實模式之設計與實驗研究(一)(國科會專題研究計畫成果報
告編號:NSC85-2511-S017-010)。台北:中華民國行政院國家科學委員會。
蔡典謨(1997)。充實模式之設計與實驗研究(二)(國科會專題研究計畫成果報
告編號:NSC86-2511-S017-007)。台北:中華民國行政院國家科學委員會。
蔡春美(1986)。國小資賦優異兒童獨立研究能力的指導。臺灣省國民教育輔導叢
書第十四輯。
蔡崇建(1988):獨立研究之後--如何指導資優學生展現研究成果。資優教育季刊,
29,25-30。
蔡長泰 ( 2005 ) :洪水與土石流。科學發展月刊,374,4-5。
劉秋燕(1993):資優生獨立研究的理念與做法。資優教育季刊,47,10-12。
潘裕豐(2000):網路遠距輔助學習模式對資優生獨立研究方案學習成效之研究。new window
國立彰化師範大學特殊教育研究所博士論文,未出版,彰化市。
蔡執仲和段曉林 (2005):探究式實驗教學對國二學生理化學習動機之影響。科學教
育學刊,13(3),,289-315。
蔡執仲、段曉林和靳知勤 (2007):巢狀探究教學模式對國二學生理化學習動機影響new window
之探討。科學教育學刊,15,119-144。
謝甫佩和洪振方(2004):國小學生科學探究活動的課程設計及實施成果之個案研
究。師大學報,49(2),61-86。
顏瓊芬,黃世傑 (2003):學生在開放式科學探究過程中互動模式之研究。new window
科學教育學刊,11(2),141-169。
翰林版高一基礎物理:2-4摩擦力與生活,翰林出版社。

二、英文部分
Agar, M. H. (1980). The Professional stranger: An informal instruction to
ethnography. New York: Academic Press.
A., Niaz, M., Treagust, D., & Tuan, H. (2004). Inquiry in science education: International
perspectives. Science Education, 88, 397-419.
American Association for the Advancement of Science (AAAS) (1989). Science for all
Americans: A project 2061 report on literacy goals in science, mathematics and technology. Washington, DC: AAAS.
American Association for the Advancement of Science. (1993). Benchmarks for science
literacy.New York: Oxford University Press.
Anderson,O.R.(1992).Some interrelationships between constructivist models of learning
and current neurobiological theory , with implications for science education.Journal
of Research in Science Teaching,29(10), 1037-1058.
Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry.
Journal of Science Teacher Education, 13(1), 1-12.
Barrow, L. H. (2006). A Brief History of Inquiry: From Dewey to Standards.Journal of Science Teacher Education, 17(3), 265-278
Blosser, P. E. (1980).A Critical Review of the Role of the Laboratory in Science Teaching. (ED206445).
Bogdan, R. C. & Biklen, S.K. (1992). Qualitative Research for Education-An Introduction to Theory and Methods. Needham: Heights Allyn and Bacon.
Bybee, R. W., & Landes, N. M. (1988). The biological sciences curriculum study (BSCS). Science and Children, 25(8), 36-37.
Bybee, R. W. & Goodrum, Denis (1999). Teaching science as inquiry. ED454062
Minstrell, & E. van Zee (Eds.), Inquiring into inquiry learning and teaching in science ,
20-46. Washington, DC: American Association for the Advancement of Science.
Bybee, R. W. (2000). Evolution: Don't Debate, Educate. Science Teacher, 67 (7), 30-35.
Bybee, R. W. (2007). Reinventing the Science Curriculum. Educational Leadership,
64(4), 43-47.
Canfield, A.A. (1988). Canfield Learning Style Inventory Manual. Los Angeles: Western
Psychological Services
Cetera, M.M. (1983). Laboratory Adaptations for Visually Impaired Students: Thirty
Years in Review. Journal of College Science Teaching, 12(6), 384-393.
Costenson K. & Lawson A. (1996). Why is’t inquiry used in more classrooms? The
American Biology Teacher. 48(3), 150-158.
Cox-Peterson A.M. (2001). Empowering science teachers as researchers and inquirers.
Journal of Research in Science Teaching, 12(2), 107–122.
Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science
teachers. Journal of Research in Science Teaching, 37, 916–937
Dewey, J. (1963). Experience and education. New York: Collier Books.
Domin, D. S. (1999). A Review of Laboratory Instruction Styles. Journal of Chemical
Education, 76(4), 543-547.
Dunkhase, J. A. (2003). The coupled-inquiry cycle: a teacher concerns-based
model for effective student inquiry. Science Educator, 12(1), 10-15.
Dunn,.R., & Dunn K.(1994). Teaching Young Children through Their Individual Learning
Styles. Boston: Allyn & Bacon.
Driver, R., & Bell, B. (1986). Students’ thinking and the learning of science: a
constructivist view. School Science Review, 69, 255-267.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific
argument in the classroom. Science Education, 84, 287-312.
Driver, R., & Oldham, V. (1986). A constructive approach to curriculum development in
science. Studies in Science Education, 13, 105-122.
Duschl, R. A. (1990). Restructuring science education: Learning as a restructuring
process. New York: Teachers College, Columbia University.
Duschl, R. A. (2000). Making the nature of science explicit. In R. Millar, J.
Furtak, E. M. (2006). The problem with answers: An exploration of guided scientific
inquiry teaching. Science Education, 90, 453-467.
Gardner,P. L.(1975).Attitudes to science : A review. Studies in Science Education,2,1-41
Gibson,H. L.(1998). Case studies of an inquiry-based science programs’impact on
students’attitudes towards science and interest science careers. (ERIC Document
Reproduction Service No. ED 417 980).
Gibson, H. L.,& Chase, C.(2002).Longitudinal impact of an inquiry-based science
program on middle school students’ attitudes toward science. Science Education,86,
693- 705.
Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry-based science
program
Goodnough K. & Cashion, M. (2003). Fostering inquiry through problem-based learning.
The Science Teacher, 70(9), 21-25.
Guo C.J. & Chang H.P. (2004). Action research aiming at improving high school science
teachers’ teaching proficiencies through the development of instructional modules.
International Journal of Science and Mathematics Education.2, 435–453.
Gunstone, R. F.& Champagne, A. B.(1990) In The Student Laboratory and the Science
Curriculum; Hegarty-Hazel, E. Ed.; Routledge: London, 159–182.
Hammer,D. (1997). Inquiry learning and discovery teaching. Cognition and
Instruction,15(4), 485-529.
Harrison, J. A., White, C.T., Colton, R. J.,& Brenner, D. W. (1992). Molecular-dynamics
simulations of atomic-scale friction of diamond surface. Physical Review B, 46(15), 9700-9708.
Hart,C.,Mulhall,P.,Berry,A.,Loughran,J.,& Gunstone, R.(2000). What is the purpose of
this experiment? Or can students learn something from doing experiment? Journal of Research in Science Teaching,37(7), 665-675.
Harwood, W. S. (2004) An activity model for scientific inquiry.The Science
Teacher,33(7), 44-46.
Hidemitsu O., Takashi T., Jun S., Libo Z., Hiroshi E. (2007). Experimental and
Simulation Research on Influence of Temperature on Nano-Scratching Process of Silicon Wafer. Key Engineering Materials, 329, 379-384.
Hofstein, A., & Lunetta, V. N. (1982). The Role of the Laboratory in Science Teaching:
Neglected Aspects of Research. Review of Educational Research, 52(2), 201-217.
Hofstein, A., & Lunetta, V. N. (2003). The laboratory in science education:
Foundations for the twenty-first century. Science Education, 88(1), 28-54.
Hurd, P. deHart. (1970).Inquiry Objectives for the Teaching of Biology in the 1970s.
American Biology Teacher, 32(9) 553-554.
Hurd, P. deHart. (2000). The New Curriculum Movement in Science. Science
Teacher, 67(1), 27.
Irving J. H. and Kirkwood, J. G. (1950). The statistical mechanical theory of transport
properties. IV.the equations of hydrodynamics. Journal of Chemistry
Physics,18, 817-829.
Jun S., Hiroshi E., Masashi Y., Etsuji O. (1998). Molecular dynamics simulation of
friction on the atomic scale. Nanotechnology, 9(2), 118-123.
Kalish, R.B. (1997). Presentations: a sequenced step-by-step independent study.
Gifted Child Today Magazine, 20(6), 32-37,45,47.
Kanari, Z. & Millar.R. (2004). Reasoning from data: how students collect and interpret
data in science investigations. Journal of Research in Science Teaching,41(7), 748–769.
Keefe, J, W. (1987). Learning Style Theory and Practices, Virginea: National Association
of Secondary School Principals.
Keys,C.W.,& Bryan,L.A(2001).Co-constructing inquiry-based science with teachers:
Essential research for lasting reform. Journal of Research in Science Teaching,38(6), 631-645.
Kim, H., & Song, J. (2004). The exploration of open scientific inquiry model
emphasizing students’ argumentation. Journal of the Korean Association for
Research in Science Education, 24(6), 1216-1234.
Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96,
674-689.
Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62(2), 155-178.
Kuhn, D. (1993). Science as argument: Implications for teaching and learning
scientific thinking. Science Education, 77(3), 319-337.
Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentative
reasoning. Cognition and Instruction, 15(3), 287-315.
Lawson, A. E. (1995). Science teaching and the development of thinking. Belmont,
California: Wadswoth Publishing Co.
Lazarowitz, R., & Tamir, P. (1994). Research on using laboratory instruction in Science.
In D. L.Gabel (ed.), Handbook of research on science teaching and learning ,94-128.
New York: MacMillan Publishing Company.
Leach & J. Osborne (eds.) Improving science education, Buckingham: Open University
Press, 187-206.
Lederman,N. G..& Lederman J.S. (2002). Scientific Inquiry : How Is It Defined /Used in
Curriculum Reform? http://www.
Martin-Hansen, L. (2002). Defining inquiry: exploring the many types of inquiry in the
science classroom. The Science Teacher, 69(2), 34-37.
Marx, R. W., Blumenfeld, P. C., Krajcik, J. S., Fishman, B., Soloway, E., Geier, R., & Tal,
R. T. (2004). Inquiry-based science in middle grades: Assessment of learning in urban systemic reform. Journal of Research in Science Teaching, 41, 1063-1080.
Metz, K.E.(2004). Children’s understanding of scientific inquiry: their conceptualization
of uncertainty in investigations of their own design.Cognition and Instrucation,
22(2), 219-290.
Millar, R. (2004). The role of practical work in the teaching and learning of science.
Paper prepared for the Committee: High School Science Laboratories: Role and
Vision, National Academy of Sciences, Washington, DC.
Millar, R., Gott, R., Lubben, F., & Duggan, S. (1996). Children’s performance of
investigative tasks in science: A framework for considering progression. In M. Hughes (Eds.), Progression in Learning (pp 82-108). Clevedon, UK:Multilingual Matters.
Millar, R., Le Marechal. J-F., & Tiberghien, A. (1999). ‘Mapping’ the domain: varieties
of practical work. In J. Leach & A. Paulsen (Eds.), Practical Work in Science Education (pp. 33-59). Roskilde: Roskilde University Press
Millar, R., & Lubben, F. (1996). Investigative work in science: The role of prior
expectations and evidence in shaping conclusions. Education, 3, 28-34.
Moje, E. B., Collazo, T., Carrillo, R., & Marx, R. W. (2001). “Maestro, what is
‘quality’?”: Language, literacy, and discourse in project-based science. Journal of Research in Science Teaching, 38, 469-498.
Moore R. W.(1973). The development field test and validation of scales to assess
teachers attitudes toward teaching elementary school science. Science Education, 57
(3), 271-278.
Munby,H. (1983). An Investigation into the Measurement of attitude in Science
Education. Columbus,OH:SMEAC Information Reference Center, Ohio State
University. (ERIC:ED237347)
National Research Council (1996). National science education standards. Washington
DC:National Academy Press.
National Research Council (2000). Inquiry and national science education standards.
Washington DC: National Academy Press
National Research Council (2002). Inquiry and the National Science Education
Standards: A guide for teaching and learning. Washington, DC: National Academy
Press.
Novak,J.D.,Gowin,D.B. & Johanson,G.T.(1983).The use of concept maing and
knowledge Veemaing with junior hight school science students.Science
Education,67(5), 625-645.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge
University Press.
Novak, J. D. (1993). Human unification of psychological and epistemological phenomena
in constructivism: A meaning making. Internation Journal of Personal Construct
Psychology, 6, 167-193.
Nussbaum,J.(1979).Children''''s conceptions of earth as a cosmic body:A cross age
study.Science Education,63(1), 83-93.
Nussbaum,J.(1989).Classroom conceptual change:philosophical perspectives.
International Journal of Science Education,11, 530-540.
Oliver-Hoyo, M., Allen, D., & Anderson, M. (2004). Inquiry-guided instruction: Practical issues of implementation. Journal of College Science Teaching, 33(6), 20-24
Ornstein, A.(2006). The frequency of hands-on experimentation and student attitudes
toward science: a statistically significant relation. Journal of Science Education and Technology,15(3), 285-297.
Osborne,R.J.& M.C.Wittrock(1983).Learning science : a generative process.Science
Education,67(4), 489-508.
Osborne,R.,& Freyberg, P. (1985). Roles of the science teacher. In R. Osborne, & P.
Freyberg (Eds.),Learning in science,91-99.N.H.:Heinemann.
Palincsar,A.S.,Magnusson,S.J.gutter,& Vincent,M.(2002) .supporting guided-inquiry
instruction. Teaching exceptional children, 34(3),88-91.
Pfundt,H., & Duit,R.(1991). Bibliography:students''''alternative Frameworks and Science Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation
of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.
Pines,A.L.& West,L.H.T. (1986).Conceptual understanding and Science Learning :An
interpretation of research within a sources-of-knowledge framework. Science
Education,70(5), 583-604.
Rangachari, P. K. (2006). Promoting self-directed learning using a menu of assessment
options:the investment model. Advances in Physiology Education. 30,181–194.
Raths, L. E.; Wassermann, S.; Jonas, A.; Rothstein, A. (1986). Teaching for Thinking: Theories, Strategies, and Activities for the Classroom; Teachers College, Columbia University: New York.
Renzulli, J. S. & Smith, K. H. (1978). Learning styles inventory. Mansfield Center, CT:
Creative Learning Press.
Renzulli, J. S. & Smith, K. H. (1979).Developing individual educational
programs(IEPs)for the gifted. Mansfield Center, CT: Creative Learning Press.
Renzulli,J.S.,Smith,L.H.White,A.J.,Challahan,C.M.,HartmanR.K.&Westberg,K.L.(2002). Scales For Rating The Behavioral Characteristics Of Superior Students —Revised Edition.Con: Creative learning Press,Inc.
Reiff, R. (2002). If inquiry is so great, why isn’t everyone doing it? ERIC Document
Reproduction Service No. ED 465 642.
Roth, W.M., & Roychoudhury, A. (1993). The nature of scientific epistemologies,
Knowing and learning: The perspectives of four physics students. International
Journal of Science Education, 15, 27-44.
Roth, W.-M., & Bowen, G. M. (1994). Mathematization of experience in a grade 8
open-inquiry environment: An introduction to the representational practices of
science. Journal of Research in Science Teaching, 31(3), 293-318.
Rowell, P. M., & Ebbers, M. (2004). Shaping school science: competing discourses in an
inquiry-based elementary program. International Journal of Science Education,
26(8), 915-934.
Sandoval, W. A. & Morrison, K. (2003). High school students' ideas about theories and
theory change after a biological inquiry unit. Journal of Research in Science
Teaching, 40, 369-392.
Sandoval, W.A. (2005). Understanding students’ practical epistemologies and their
influence on learning through inquiry. Published online DOI 10.1002/sce.20065. www.interscience.wiley.com.
Schwab, J. (1960). What do scientists do? Behavioral Science, 5, 1-27.
Schwartz, R. S., Lederman, N. G., Khishfe, R., Lederman, J. S., Matthews, L., & Liu, S. Y. (2002). Explicit/reflective instructional attention to nature of science and scientific inquiry: Impact on student learning. ERIC Document Reproduction Service No. ED 465 622.
Selby, C.C. (2006). What Makes It Science?A modern look at scientific inquiry. Journal of College Science Teaching.13,July, 8-11.
So, W. W. (2003). Learning science through investigations: an experience with Hong Kong primary school children. International Journal of Science and mathematics Education, 1, 175-200.
Song, J., & Black, P. J. (1992). The effect of concept requirements and task contexts on pupils' performance in control of variables. International Journal of Science Education, 14 (1), 83-93.
Staer, H., Goodrum D. & Hackling. M. (1998). High School Laboratory Work in
Western Australia: Openness to Inquiry. Research in Science Education, 28(2), 219-228.
Straits,W. J.,& Wilke,R. R. (2002). Practical consideration for assessing inquiry-based
instruction: Some guidelines for improving student assessment. Journal of College
Science Teaching,31(7), 432-435.
Strawitz Barbara M. & Malone Mark R. (1986), The influence of field experiences
on stages of concern and attitudes of preservice teachers toward science and science
teaching. Journal of Research in Science Teaching,23(4), 311-320.
Strike, K. A., Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A.
Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and
educational theory and practice (pp. 147-176). Albany: State University of New
York Press.
Takao, A. Y. & Kelly, G. J. (2003). Assessment of evidence in the university students’
scientific writing. Science and Education, 12, 341-363.
Tamir, P., & Lunetta, V. N. (1981). Inquiry related tasks in high school science
laboratory handbooks. Science Education, 65, 447-484.
The State of Queensland. (2002). Adding value through inquiry: Independent study. The
Office of the Queensland School Curriculum Council.
Thomson, N.& Stewart, J. (2003). Genetics Inquiry: Strategies and Knowledge
Geneticists Use in Solving Transmission Genetics Problems. Science Education, 87(2),161-80.
Todd,M., Bannister, P.&Clegg, S. (2004). Independent inquiry and the undergraduate
dissertation: perceptions and experiences of final-year social science students Assessment & Evaluation in Higher Educatio, 29(3), 335-355.
Trowbridge, L. W. & Bybee, R. W. (1990). Becoming a secondary school science teacher
(5th ed.). New York: Merrill.
Treffiger, D. J.(1976). Self-directed learning. In C. J. Maker (ed.), Teaching models in
education of the gifted . An Aspen Publication.
Treffinger, D. J.(1982). Gifted students : Sixty ingredients for a better blend.
Elementary School Journal,82,207-273.
Treffinger,D.J. (1986). Research on creativity. Gifted Child Quarterly, 30(1), 15-19.
Trumbulla, D.J., Scaranob, G.& Bonneyc, R. (2006). Relations among two teachers’
practices and beliefs, conceptualizations of the nature of science, and theirimplementation of student independent inquiry projects. International Journal of Science Education.28(14&17), 1717–1750.
Tytler, R., & Peterson, S. (2004). From “Try It and See” to strategic exploration:
characterizing young children’s scientific reasoning. Journal of Research in Science Teaching, 41, 94-118.
Vellom, R. P., & Anderson, C. W. (1999). Reasoning about data in middle school science.
Journal of Research in Science Teaching, 36(2), 179-199.
Yore, L. D., Hand, B., Goldman, S. R., Hildebrand, G. M., Osborne, J. F., Treagust, D. F.,
& Wallace, C.S. (2004). New directions in language and science education research. Reading Research Quarterly, 39,347-352.
Zachos, P., Hick, T. L., Doane, W. E. J., & Sargent, C. (2000). Setting theoretical and
empirical foundations for assessing scientific inquiry and discovery in educational programs. Journal of Research in Science Teaching, 37, 938-962.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE