:::

詳目顯示

回上一頁
題名:台灣溫室氣體減量政策評估-國際排放交易、清潔發展機制與先期減量行動分析
作者:曾瓊瑤
作者(外文):CHIUNG-YAO TSENG
校院名稱:國立臺北大學
系所名稱:經濟學系
指導教授:黃宗煌
李堅明
李叢禎
學位類別:博士
出版日期:2007
主題關鍵詞:溫室氣體減量知識累積效果減量模式
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:53
本篇論文討論台灣因應溫室氣體減量策略之議題,分別以彈性機制中的國際排放交易與清潔發展機制作為分析重點,同時分析先期行動是否具成本有效性。首先,以靜態多國GTAP-E模型評估減量模式與國際排放交易參與國不同,對臺灣總體經濟與遵循成本、能源結構與碳密集度的影響;其次,將台灣區分為投資國與地主國兩種情境,考量知識累積與學習效果下,分析對台灣溫室氣體減量策略(特別是碳稅)之影響;最後,考量知識累積與做中學效果,探討在不同減量目標下,先期行動是否較具成本有效性。
本文第二章採用靜態多國GTAP-E模型,針對1998年全國能源會議結論之總量減量模式與美國提出之密集度減量模式進行模擬,由研究結果得知,台灣參與國際排放交易可以有效降低我國的減量成本及經濟衝擊,使國內產業朝向使用低碳之潔淨能源,同時能源效率亦會提升,若臺灣無法參與國際排放交易,則建議應採行減量成本較低的密集度模式,具有兼顧環境保護與經濟發展的雙贏策略(win-win strategy)。
本文第三章以Goulder and Mathai(2000)為基礎進行擴充,同時考量誘發技術變動與做中學兩種效果存在之影響,在模型中增加CDM投資國與地主國之刻劃。研究結果得知,就CDM投資國而言,碳稅稅率應較沒有參與CDM為低,而其大小與CERs價格呈正相關;CDM計畫可以帶給地主國溫室氣體減量與CERs價值效益及知識累積效益,且較投資國為高,因此,在相同防制水準下,地主國宜採取較低碳稅稅率策略。未來台灣若能與中國大陸合作,將較國內單獨進行減量來得有利,並可大幅降低國內的溫室氣體減量成本,從而獲得參與CDM之好處。
本文第四章以Kennedy(2002)為基礎進行擴充,考量討論非附件一國家(如台灣),在不同減量目標下國家最適減量策略規劃之影響分析,減量期程區分為三期討論,模型中納入知識累積與做中學效果,並以技術防制來達到總量管制目標。研究結果得知:(1)各期的研發與購買減量設備支出多寡,由環境附屬效益、總量管制目標影子價格、總量管制目標風險、知識累積與做中學淨效果決定,除了總量管制風險為負相關外,其餘影響因素皆為正相關;(2)與先期行動比較,當延緩減量的總量管制目標較嚴格時,總量管制風險將越小,若環境附屬效益、知識累積與做中學淨效果較高時,則會增加延緩減量的防制支出,反之,環境附屬效益、知識累積與做中學淨效果較小時,則先期行動的防制支出將高於延緩減量(3)影響一國是否採行先期行動之因素包括技術防制支出所產生的環境效益、技術進步、折現因子與管制目標,這些因素影響越小,將會採取延緩減量。
我國雖非聯合國會員國,應積極爭取以「非會員國」身份參與跨國合作減量機制之機會(如IET與CDM),由政府部門組成跨部會小組,並且可利用現有的國際組織平台(如WTO),提倡共同減量合作機制,有利於溫室氣體減量政策之研擬與對外談判協商。
The main purpose of this research is to explore greenhouse gas abatement strategy for Taiwan. The study focus on Kyoto mechanisms, such as International emission trading(IET) and clean development mechanism (CDM), to discuss the most cost effectiveness strategies of GHG abatement in Taiwan. In addition to, the issues of GHG abatement timing is concerned of this study as well.
In Chapter 2, based on the conclusion of the GHG emission cap drawn from ‘National Energy Conference’ (1998), and the carbon intensity target proposed by the Bush Administration, nine scenarios are simulated to examine the policy implications of participation in international emission trading in Taiwan. We find that (1) Taiwan joint IET, the GDP loss and the average compliance cost of the emissions cap are, on the contrary, lower than those of carbon intensity target. In particular, the involvement of the non Annex-I countries adds to the potential for lower cost abatement, reflecting the cost effectiveness of global cooperation; (2) No matter what kinds of emissions cap are adopted in Taiwan, GHG abatement leads to an improvement in carbon intensity, average emission factor, and energy efficiency; (3) The cost of abating GHG crucially hinges on the abatement targets.
In chapter 3, with the consideration of both R&D based and learning-by-doing based knowledge accumulation, this paper explores the proper design of domestic climate policy for the countries participating CDM. The insights which emerge from this paper are summarized as follows. (1) In the presence of R&D based knowledge accumulation, it is better to implement low carbon tax policy so as to induce the inter-temporal substitution effect of the GHG abatement. (2) Due to the existence of knowledge accumulation, the host countries still have CDM investment demand even if they don’t get any CERs from CDM project. (3) It is thanks to the more learning effect resulting from the CDM project that the host country could implement low carbon tax rate policy.
In chapter 4, based on the model of Kennedy (2002), this paper examines the impact of both R&D based and learning-by-doing on the timing and costs of emission abatement. We find that the reasons for postponing aggressive emission reduction, such as cost saving, the smaller discount factor, the abatement target, the value of co-benefits, R&D and learning-by-doing.
This study deeply discusses GHG abatement strategy in Taiwan, especially focus on the Kyoto mechanism, and provides lots of suggestions on GHG abatement policies and measures, which can support the decision of GHG abatement strategy of the government in the future.
李堅明、曾瓊瑤 (2000),「因應氣候變遷產業參與清潔發展機制(CDM)之潛力研究」,台灣土地金融季刊,37:2,1-27。
李堅明 (2001),「因應全球暖化我國經濟永續發展的最適策略-以推動清潔發展機制為例」,行政院經濟建設委員會專案研究計畫。
李堅明、林幸樺 (2002),「清潔發展機制的最新發展與台灣參與清潔發展機制減量經濟評估」, 2002環境資源經濟、管理暨系統分析學術研討會,台北大學資源管理研究所。
李堅明、林幸樺(2002),清潔發展機制最新發展與抑制溫室效應之研究,第八屆海峽兩岸環境保護研討會論文集,頁445-450,新竹交通大學。
李堅明、黃宗煌 (2005),「溫室氣體排放交易與競爭力分析」,永續能源發展與溫室氣體減量:產業衝擊與評估方法論文集。
李堅明、林幸樺、林師模、黃宗煌、楊晴雯、蘇漢邦 (2005),「溫室氣體減量模式、減量情境、減量成本及其影響評估:TAIGEM-Ⅲ」,台灣經濟論衡,第3卷第2期,1-49。
李堅明、黃宗煌(2005),「國際減量模式發展、比較與評估」,中國工程師學會會刊,第78卷第4期,45-56。
李堅明 (2005),「儲存機制與廠商遵行策略之經濟分析」,農業與資源經濟,第3卷第1期,43-61。
李叢禎、曾瓊瑤、李堅明(2005),「溫室氣體減量成本與策略:台灣參與國際排放交易制度與密集度減量模式之意涵」,經濟研究半年刊,155-189。
吳明芬 (2001),「環境管制對產業國際競爭力及東亞經濟成長之影響-多國動態CGE模型之應用」,碩士論文,中原大學國際貿易學系。
林幸樺 (2002),「京都議定書彈性機制的採行對臺灣總體經濟影響之研究-可計算一般均衡模型之分析」,博士論文,臺灣大學農業經濟學研究所。new window
黃宗煌、林幸樺、蘇漢邦、林師模、李堅明 (2005),「溫室氣體減量模式、減量目標及其影響」,永續能源發展與溫室氣體減量:產業衝擊與評估方法論文集。
黃宗煌、李堅明、莊富欽 (2006),「廠商在排放交易制度下之污防性投資與創新行」,經濟論文叢刊。new window
游昌益 (2001),「寡佔產品市場下污染排放之分析」,碩士論文,國立中山大學經濟學研究所。
魏國棟、陳杰琛 (2003),「清潔發展機制、技術擴散效果與經濟成長」,農業與資源經濟,台灣農業與資源經濟協會,1:1,72-97。
魏國棟 (2003),「氣候變遷與因應經濟政策工具:文獻回顧」,經濟研究,39(1):27-69。new window
魏國棟、何昇融 (2004),「不同市場結構下排放權交易機制分析」,農業經濟半年刊,75,61-81。new window
魏國棟、楊曙聰 (2005),「排放權交易與跨國聯合減量政策共同執行成效分析:獨占市場機制模擬」,農業與經濟,35,27-43。
Aghion, P. and P. Howitt (1998), Endogenous Growth Theory, Cambridge: The MIT Press.
Barro, R. J. and X. Sal-I-Martin (1997) “Technological Diffusion Convergence, and Growth ,” Journal of Economic Growth, 2, 1–26.
Baron, R. and A. Lanza (2000), “Kyoto Commitments: Macro and Micro Insights on Trading and the Clean Development Mechanism,” Integrated Assessment, 1, 137-144.
Burniaux, J-M. and T. P. Troung (2002), “GTAP-E: An Energy-Environmental Version of the GTAP Model,” GTAP Technical Paper No. 16, Center for Global Trade Analysis, Purdue University.
Bernard, A., M. Vielle, and L. Viguier (2004), “Modeling the European Directive Establishing a Scheme for Greenhouse Gas Allowance Trading and Assessing the Market Power of Firms,” Working paper.

Goulder, L. H. and S. Schneider (1999), “Induced Technological Change, Crowding Out, and the Attractiveness of CO2 Emission Abatement,” Resource of Energy Economic, 21, 211-253.
Goulder, L. and K. Mathai (2000), “Optimal CO2 Abatement in the Presence of Induced Technological Change,” Journal of Environmental Economics and Management, 39, 1-38.
Chen, Hsiao-Chi (2005), “Comparison Between Tradeable Permit and Emission Tax Systems,” Working paper.
Ciorba, U., A. Lanza, and F. Pauli (2001), “Kyoto Protocol and Emission Trading: Does the U.S. Make a Difference?” FEEM Working Paper No. 90, Electronic access: .
Chen, W. (2003), “Carbon Quota Price and CDM Potentials after Marrakesh,” Energy Policy, 31, 709–719.
David, V. (2001), “International Agreements and the Struggle to Tame Carbon,” Global Climate Change, 204-229.
Evans, M. (2003), “Emissions Trading in Transition Economies: the Link between International and Domestic Policy,” Energy Policy, 31, 879–886.
Fisher, B.S. et al. (1996),“An Economic Assessment of Policy Instruments for Combatting Climate Change.” In Climate Change 1995: Economic and Social Dimensions of Climate Change, edited by J. Bruce et al. Cambridge, UK: Cambridge University Press.
Forner, C., and F. Jotzo (2002), “Future Restrictions for Sinks in the CDM: How about a Cap on Supply?” Climate Policy, 2, 353-365.
Fischer, C., I. W. H. Parry, and W. A. Pixer (2003), “Instrument Choice for Environment Protection When Technological Innovation is Endogenous,” Journal of Environmental Economics and Management, 45, 523-545.
Grossman, G. M. and E. Helpman (1991), “Endogenous Product Cycles,” Economic Journal, 101, 1214-1229.
Grübler, A. (1998), Technology and Global Change, Cambridge: Cambridge University Press.
Goulder, L. H. and S. Schneider (1999), “Induced Technological Change, Crowding Out, and the Attractiveness of CO2 Emission Abatement,” Resource of Energy Economic, 21, 211-253.
Goulder, L. and K. Mathai (2000), “Optimal CO2 Abatement in the Presence of Induced Technological Change,” Journal of Environmental Economics and Management, 39, 1-38.
Ha-Duong, M., M. Grubb, and J-C. Hourcade (1996), “Optimal Emission Paths Towards CO2 Stabilization and the Cost of Deferring Abatement: The Influence of Inertia and Uncertainty,” Working Paper, CIRED, Montrouge, France.
Hertel, T. W. (1997), Global Trade Analysis: Modeling and Applications, New York: Cambridge University Press.
Holtsmark, B., and O. Mæstad (2002), “Emission trading under the Kyoto Protocol-effects on fossil fuel markets under alternative regimes,” Energy Policy 30, 207-218.
Helm, C. (2003), “International Emissions Trading with Endogenous Allowance Choices,” Journal of Public Economics, 87, 2737-2746.
IPCC/UNEP/OECD/IEA (1997), Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Paris: Intergovernmental Panel on Climate Change, United Nations Environmental Programme, Organization for Economic Co-Operation and Development, International Energy Agency.
IEA (2001), World Energy Outlook.
Jotzo, F. and A. Michaelowa (2002), “Estimating the CDM Market under the Marrakech Accords,” Climate Policy, 2, 179-196.
Jepma, C. J. (2003), “The EU Emissions Trading Scheme (ETS): How Linked to JI / CDM?” Climate Policy, 3, 89-94.
Kling, C. and J. Rubin(1997), “Bankable permits for the control of environmental pollution?” Journal of Public Economics, 64, 101-114.
Kainuma, M., Y. Matsuoka, and T. Mortia (1999), “Analysis of Post-Kyoto Scenarios: The Asian-Pacific Integrated Model,” The Cost of the Kyoto Protocol: A Multi-Model Evaluation, Energy Journal, Special Issue, 207-221.
Kemfert, C. (2002), “Global Economic Implications of Alternative Climate Policy Strategies,” Environmental Science and Policy, 5, 367-384.
Lucas, R. E. (1998), “On the Mechanics of Economic Development,” Journal of Monetary Economics, 22, 3-42.
Lee, T. C., C. M. Lee, and C. Y. Tseng (2005), “International Emissions Trading Approach to Meet the Kyoto Protocol: The Implications of Trading Hot Air,” selected paper presented at 28th Annual IAEE International Conference, June 3-6, 2005, The Grand Hotel, Taipei, Taiwan.
Montgomery, W.D. (1972), “ Markets in Licenses and Efficient Pollution Control Programs?” Journal of Economic Theory, 5(3), 395-481.
Mckibbin, W., M. Ross, R. Shackleton, and P. Wilcoxen (1999), “Emissions Trading, Capital Flows and the Kyoto Protocol,” The Cost of the Kyoto Protocol: A Multi-Model Evaluation, Energy Journal, Special Issue, 287-333.
Matushashi, R. , W. C., and H. Ishitani (1999) “A study on systems for a Clean Development Mechanism to reduce CO2 emissions,” Environmental economics and policy studies, 2, 289-303.
Mosnaim, A. (2001), “Estimating CO2 Abatement and Sequestration Potentials for Chile,” Energy Policy 29, 631-640.
Montero, J. P. (2002), “Permits, Standards, and Technology Innovation,” Journal of Environmental Economics and Management, 23, 23-44.
Michaelowa, A., M. Stronzik, F. Eckermann, and A. Hunt (2003), “Transaction Costs of the Kyoto Mechanisms,” Climate Policy, 3, 261-278.
Manne, A. and R. Richels (2004), “The Impact of Learning-By-Doing on the Timing and Costs of CO2 Abatement,” Energy Economics, 26, 603-619.
Miketa, A., L. schrattenholzer (2004), “Experiments with methodology to model the role of R&D expenditures in energy technology learning processes;first result,” Energy policy, 32, 1679-1692.
Nordhaus, W. D. and Z. Yang (1996), “A Regional Dynamic General Equilibrium Model of Alternative Climate Change Strategies,” American Economic Review, 86, 741-765.
OECD (1999), Action Against Climate Change: The Kyoto Protocol and Beyond, Paris: Organization for Economic Co-Operation and Development.
Pizer, W. (1999), “Choosing Price or Quantity Controls for Greenhouse Gases,” Climate Issues Brief NO.17.
Romer, P. M. (1986), “Increasing Returns and Long-Run Growth,” Journal of Political Economy, 9, 384-404.
Rebelo, S. (1991), “Long-Run Policy Analysis and Long-Run Growth,” Journal of Political Economy, 99, 500-521.
Rose, A. and B. Stevens (1993), “The Efficiency and Equity of Marketable Permits for CO2 Emissions,” Resource and Energy Economics, 15(1), 117-146.
Rubin, J. D. (1996), “A Model of Intertemporal Emission Trading, Banking, and Borrowing.” Journal of Environmental Economics and Management, 31, 269-286.
Romer, D. (1996), Advanced Macroeconomics, New York: The McGraw-Hills Companies.
Solow, R. M. (1957), “Technical Change and the Aggregate Production Function,” The Review of Economics and Statistics, 3, 312-320.
Stevens, B., and A. Rose (2002), “A Dynamic Analysis of the Marketable Permits Approach to Global Warming Policy: A Comparison of Spatial and Temporal Flexibility,” Journal of Environmental Economics and Management, 44, 45-69.
Subak, S. (2002), “Forest Certification Eligibility as a Screen for CDM Sinks Projects,” Climate Policy, 2, 335-351.
Truong, T. P. (2001), “Emission trading and the marginal costs of CO2 gas emission reductions in major Annex 1 economies.” Working paper.
Tangen, K., G. Heggelund (2003), “Will the Clean Development Mechanism be Effectively Implemented in China,” Climate policy, 3, 303-307.
Tian, L., Y. Wang, and J. Guo (2003), “A Comparative Economic Analysis of the Contribution of Nuclear Seawater Desalination to Environmental Protection Using the Clean Development Mechanism (CDM),” Desalination, 157, 289-296.
Viguier, L., M. Vielle, A. Haurie, A. Bernard (2006), “A Two-Level Computable Equilibrium Model to Assess the Strategic Allocation of Emission Allowances within the European Union,” Computers & Operations Research, 33, 369–385.
Wigley, T. M. L., R. Richels, and J. A. Edmonds (1996), “Economic and Environmental Choices in the Stabilization of Atmospheric CO2 Concentrations,” Nature, 379, 240-243.
Weyant, J. P. and T. Olavson (1999), “Issues in Modeling Induced Technological Change in Energy, Environmental, and Climate Policy,” Environmental Modeling and Assessment, 4, 67-85.
Zhang, Z. X. (2002), “The Economic Effect of an Alternative EU Emissions Policy,” Journal of Policy Modeling, 24, 667-677.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE