:::

詳目顯示

回上一頁
題名:幾何問題解決的認知負荷與圖形理解: 以眼動追蹤及手寫板記錄歷程
作者:林志鴻
作者(外文):Lin, Jr-Hung
校院名稱:國立交通大學
系所名稱:教育研究所
指導教授:林珊如
學位類別:博士
出版日期:2014
主題關鍵詞:幾何問題解決眼動圖形理解手寫認知負荷geometry problem-solvingeye movementsdiagram comprehensionhandwritingcognitive load
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:25
對許多學生來說,就算幾何題目中的圖形並不複雜,但是要解決仍然是個困難的任務。為了要探討這個現象,本論文的研究目的在探討問題解決者在問題解決的歷程中,難度的來源為何。為了完成此研究目的,本論文進行了四個子研究,整合了認知負荷自陳量表、眼動測量、手寫技術、認知負荷來源量表,並利用上述研究工具來探測幾何問題解決的認知歷程。此外,作者開發用於分析眼動資料的統計程式,以及同時觀察眼動與手寫軌跡的程式。
在研究一中,作者嘗試從認知負荷理論的角度出發,找出幾何問題解決時,發生困難的原因為何。首先,作者設計了一系列關於相似三角形的幾何題目,並且檢驗題目是否適用於後續的研究。最後選出了五個適用於後續研究的題目。
在研究二中,研究目的是評估問題解決者解決不同難度的幾何題目時,眼動儀是否能觀察到成功與不成功解題者的差異,如:答題正確度、認知負荷程度。研究結果顯示眼動技術適合用來觀察問題解決的認知歷程,正確解題者與不正確解題者的眼動軌跡有明顯不同。
基於研究一與研究二的結果,研究三更廣泛的調查眼動儀用於完全問題解決歷程的可用性與有效性。完全問題解決歷程指的是具有完整的閱讀資訊(輸入)以及寫出答案(輸出)的問題解決歷程。為了完成此研究目的,作者紀錄並且分析解題者在讀圖時的眼動歷程以及手寫結果,並試圖檢驗眼動測量是否與解題者感受到的難度有顯著相關,嘗試找出對於幾何問題的難度敏感的眼動測量。結果顯示:(1)眼動測量與主觀感受難度有顯著相關。(2)不成功解題者比成功解題者花費更多時間在理解圖形。(3)在特定興趣區的一些眼動測量,包含凝視總時間、凝視次數、與回視次數有顯著的不同。這三個眼動測量可偵測出作答較難的題目時,問題解決者感受到的難度。
基於上述三個研究,作者認為圖形理解可能是幾何問題解決歷程中主要的難度來源。因此在研究四中,作者嘗試找出在問題解決歷程中,幾何圖形理解是如何阻礙問題解決者,使其無法成功解題的原因。並以難度最高的題目(第5題)為例進行實驗。作者認為造成第5題困難的原因是由於圖形相連,造成視覺上看到的圖形與解題需要的圖形不同,因此產生困難。另一個可能原因是相鄰三角形會使研究者看不到變數訊息。因此將三角形分開將有助於解題。結果顯示雖然將圖形分開並無顯著的增加答題正確率的效果,然而有明顯證據顯示圖形分開可降低讀圖時的認知負荷,並且有助於整合圖形中的資訊。此結果部分支持分開呈現相似三角形有助於圖形理解(例如: 圖形旋轉)。論文最後探討此研究對於數學教育中教材設計的建議。
Solving geometry problems which accompany with diagrams is considered a difficult task for most of students; even though the diagram is not complex. In this dissertation, the author aims to identify the sources of difficulties which solvers encountered in a geometry problem-solving scenario. To achieve the goal, four studies, which integrate self-report measures, eye movement, hand writing techniques, and statistical programs for analyzing eye movement data, were conducted to probe the cognitive processes during geometry problem-solving. In addition, the author developed programs that could help simultaneously trace eye movement as well as handwriting sequences.
In study one, the author attempted to identify the locus of difficulties in solving geometry problems based on the cognitive load theory. A series of problems of similar triangles were designed, and examined the validity for subsequent experiments. Five problems were selected and used to investigate source of difficulties in a geometry problem solving scenario.
The primary goal of study two was to evaluate whether the differences between the successful and unsuccessful solvers while solving the tasks with various difficulties could be observed with the help of an eye tracker. The eye tracking technique was used to observe the on-line processes of diagram comprehension for the successful versus unsuccessful problem solvers. The results indicated that eye movement is beneficial for observing the cognitive process in problem solving.
Anchoring on the findings derived from study one and study two, study three extensively investigated the usability and validity of applying eye tracker to explore the cognitive processes during the complete geometry problem solving (CPS) that involved simultaneously viewing (i.e., input) and writing (i.e., output) processes and the switching in between. The author examined whether the perceived difficulties and eye movements was correlated. In addition, the author searched for eye movement measures that are sensitive to the perceived difficulty of geometry problems. The results indicated that: (1) The perceived difficulties and eye movements were significantly correlated. (2) Unsuccessful solvers paid more attention on diagram comprehension than that in successful solvers, which was consistent to the finding of previous studies. (3) Three eye movement measures, including dwell time, fixation count, and run count significantly differed within specific areas of interest. The three eye movement measures were sensitive to the perceived difficulty when the problems were difficult.
The evidence from previous studies showed that diagram comprehension was one of the major sources of difficulties in solving geometry problems; therefore, study 4 sought to monitor and analyze the processes of diagram comprehension. The author examined potential explanations of problem solving difficulties by focusing on how the spatial relations of geometry diagram hindered the solvers from successfully solving the geometry problems. The most difficult problem (problem #5) was used as an example to conduct experiment. The author hypothesized that problem #5 was difficult because the two triangles were adjacent, which led to increase difficulties in recognizing diagrams that were required to correctly solve the problem. Another possible source of difficulties might be that the adjacent triangles could hinder solvers from identifying the length of specific sides. Therefore, separately presenting the adjacent triangles might help to solve the problem. This result suggested that separately presenting two triangles was helpful to reduce difficulties in integrating information in the diagram, though it might not be enough to successfully solving problems. The results partially supported the hypothesis that separately presented the pair of triangles was beneficial to diagram comprehension. Implications and suggestions for instructional design in mathematics education were discussed.
Allison, P. D. (1999). Logistic regression using the sas system: Theory and application: SAS Publishing.
Barrett, K. C., Morgan, J., & George, A. (2005). Spss for intermediate statistics: Use and interpretation: Psychology Press.
Bennett, K. B., & Flach, J. M. (2011). Display and interface design: Subtle science, exact art: CRC Press.
Berends, I. E., & van Lieshout, E. C. D. M. (2009). The effect of illustrations in arithmetic problem-solving: Effects of increased cognitive load. Learning and Instruction, 19(4), 345-353. doi: 10.1016/j.learninstruc.2008.06.012
Bobis, J., Sweller, J., & Cooper, M. (1994). Demands imposed on primary - school students by geometric - models. Contemporary Educational Psychology, 19(1), 108-117.
Boucheix, J. M., & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20(2), 123-135. doi: 10.1016/j.learninstruc.2009.02.015
Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20(2), 155-166. doi: 10.1016/j.learninstruc.2009.02.014
Carpenter, P. A., & Just, M. A. (1978). Eye fixations during mental rotation. In J. W. Senders, D. F. Fisher & R. A. Monty (Eds.), Eye movements and the higher psychological functions (pp. 115-133). Hillsdale, NJ: Erlbaum.
Carpenter, P. A., & Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology-Applied, 4(2), 75-100. doi: 10.1037/1076-898x.4.2.75
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293-332.
de Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2010). Attention guidance in learning from a complex animation: Seeing is understanding? Learning and Instruction, 20(2), 111-122. doi: 10.1016/j.learninstruc.2009.02.010
Douville, P., & Pugalee, D. K. (2003). Investigating the relationship between mental imaging and mathematical problem solving. Paper presented at the the Mathematics Education into the 21st Century Project, Czech Republic.
Edens, K., & Potter, E. (2007). The relationship of drawing and mathematical problem solving:" Draw for math" tasks. Studies in Art Education, 282-298.
Epelboim, J., & Suppes, P. (1997). Eye movements during geometrical problem solving. Paper presented at the the 19th annual conference of the cognitive science society.
Epelboim, J., & Suppes, P. (2001). A model of eye movements and visual working memory during problem solving in geometry. Vision Research, 41(12), 1561-1574. doi: 10.1016/S0042-6989(00)00256-X
Gal, H., & Linchevski, L. (2010). To see or not to see: Analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74, 163-183.
Gillan, D. J. (1995). Visual arithmetic, computational graphics, and the spatial metaphor. Human Factors, 37(4), 766-780. doi: 10.1518/001872095778995571
Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving: Guiding attention guides thought. Psychological Science, 14(5), 462-466. doi: 10.1111/1467-9280.02454
Greeno, J. G., & Estes, W. K. (1978). Natures of problem-solving abilities. Handbook of learning & cognitive processes: V. Human information, 5, 239-270.
Guthrie, J. T., Weber, S., & Kimmerly, N. (1993). Searching documents - cognitive-processes and deficits in understanding graphs, tables, and illustrations. Contemporary Educational Psychology, 18(2), 186-221. doi: 10.1006/ceps.1993.1017
Hart, S. G., & Staveland, L. E. (1988). Development of nasa-tlx (task load index): Results of empirical and theoretical research. Human Mental Workload, 1, 139-183.
Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32(6), 717-742. doi: 10.1006/jmla.1993.1036
Hegarty, M., Mayer, R. E., & Green, C. E. (1992). Comprehension of arithmetic word problems: Evidence from students' eye fixation. Journal of Educational Psychology, 84(1), 76-84. doi: 10.1037/0022-0663.84.1.76
Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87(1), 18-32. doi: 10.1037/0022-0663.87.1.18
Holm, A., Lukander, K., Korpela, J., Sallinen, M., & Muller, K. M. (2009). Estimating brain load from the eeg. The Scientific World Journal, 9, 639-651.
Hyona, J. (2010). The use of eye movements in the study of multimedia learning. Learning and Instruction, 20(2), 172-176. doi: 10.1016/j.learninstruc.2009.02.013
Jarodzka, H., Scheiter, K., Gerjets, P., & van Gog, T. (2010). In the eyes of the beholder: How experts and novices interpret dynamic stimuli. Learning and Instruction, 20(2), 146-154. doi: 10.1016/j.learninstruc.2009.02.019
Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixation to comprehension. Psychological Review, 87(4), 329-354. doi: 10.1037/0033-295X.87.4.329
Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137. doi: 10.1037/0033-295X.92.2.137
Köhler, W. (1967). Gestalt psychology (Vol. 31): Springer.
Kalyuga, S., & Sweller, J. (2004). Measuring knowledge to optimize cognitive load factors during instruction. Journal of Educational Psychology, 96(3), 558-568. doi: 10.1037/0022-0663.96.3.558
Khattree, R., & Naik, D. N. (1999). Applied multivariate statistics with sas software, second edition (pp. 152-170). Cary, NC: SAS Institute Inc.
Knoblich, G., Ohlsson, S., Haider, H., & Rhenius, D. (1999). Constraint relaxation and chunk decomposition in insight problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(6), 1534-1555. doi: 10.1037/0278-7393.25.6.1534
Knoblich, G., Ohlsson, S., & Raney, G. E. (2001). An eye movement study of insight problem solving. Memory & Cognition, 29(7), 1000-1009. doi: 10.3758/BF03195762
Kosslyn, S. M. (1989). Understanding charts and graphs. Applied Cognitive Psychology, 3(3), 185-225.
Laborde, C. (2005). The hidden role of diagrams in students: Construction of meaning in geometry. Meaning in Mathematics Education, 159-179.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65-100. doi: 10.1016/S0364-0213(87)80026-5
Lin, J. H., & Lin, S. J. (2013). Cognitive load for configuration comprehension in computer-supported geometry problem solving: An eye movement perspective. International Journal of Science and Mathematics Education, 1-23. doi: 10.1007/s10763-013-9479-8
Lin, J. H., & Lin, S. J. (2014). Tracking eye movements when solving geometry problems with handwriting devices. Journal of Eye Movement Research, 7(1), 1-15.
Littel, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). Sas for mixed models. SAS Institute Inc., Cary, NC.
Madsen, A. M., Larson, A. M., Loschky, L. C., & Rebello, N. S. (2012). Differences in visual attention between those who correctly and incorrectly answer physics problems. Physical Review Special Topics - Physics Education Research, 8(1), 010122. doi: 10.1103/PhysRevSTPER.8.010122
Mayer, R. E. (1985). Mathematical ability. In R. J. Sternberg (Ed.), Human abilities: An information processing approach (pp. 127-150). New York: Freeman, W. H.
Mayer, R. E. (2005). Introduction to multimedia learning. New York: Cambridge University Press.
Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20(2), 167-171. doi: 10.1016/j.learninstruc.2009.02.012
Mayer, R. E., Larkin, J. H., & Kadane, J. B. (1984). A cognitive analysis of mathematical problem-solving ability. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 2, pp. 231-273). Hillsdale, NJ: Erlbaum.
Meyer, K., Rasch, T., & Schnotz, W. (2010). Effects of animation's speed of presentation on perceptual processing and learning. Learning and Instruction, 20(2), 136-145. doi: 10.1016/j.learninstruc.2009.02.016
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81-97. doi: 10.1037/h0043158
Milliken, G. A., & Johnson, D. E. (1989). Analysis of messy data (Vol. 2). New York: Chapman & Hall.
Mwangi, W., & Sweller, J. (1998). Learning to solve compare word problems: The effect of example format and generating self-explanations. Cognition and Instruction, 16(2), 173-199. doi: 10.1207/s1532690xci1602_2
O'Leary, Z. (2004). The essential guide to doing research. Los Angeles, LA: Sage.
Ozcelik, E., Arslan-Ari, I., & Cagiltay, K. (2010). Why does signaling enhance multimedia learning? Evidence from eye movements. Computers in Human Behavior, 26(1), 110-117. doi: 10.1016/j.chb.2009.09.001
Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429-434. doi: 10.1037/0022-0663.84.4.429
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4.
Paas, F., Tuovinen, J. E., Tabbers, H., & van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63-71.
Paas, F., & van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86(1), 122-133. doi: 10.1037/0022-0663.86.1.122
Paas, F., & van Merriënboer, J. J. G. (2006). Optimising worked example instruction: Different ways to increase germane cognitive load. Learning and Instruction, 16(2), 87-91.
Park, B., Moreno, R., Seufert, T., & Brunken, R. (2011). Does cognitive load moderate the seductive details effect? A multimedia study. Computers in Human Behavior, 27(1), 5-10. doi: 10.1016/j.chb.2010.05.006
Peebles, D., & Cheng, P. C. H. (2003). Modeling the effect of task and graphical representation on response latency in a graph reading task. Human Factors, 45(1), 28-46. doi: 10.1518/hfes.45.1.28.27225
Pinker, S. (1990). A theory of graph comprehension. Artificial intelligence and the future of testing, 73-126.
Plass, J. L., Moreno, R., & Brünken, R. (2010). Cognitive load theory. New York, NY: Cambridge University Press.
Ratwani, R. M., Trafton, J. G., & Boehm-Davis, D. A. (2008). Thinking graphically: Connecting vision and cognition during graph comprehension. Journal of Experimental Psychology-Applied, 14(1), 36-49. doi: 10.1037/1076-898X.14.1.36
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422. doi: 10.1037/0033-2909.124.3.372
Saariluoma, P. (1992). Do visual images have gestalt properties? The Quarterly Journal of Experimental Psychology Section A, 45(3), 399-420.
Scheiter, K., Gerjets, P., & Schuh, J. (2010). The acquisition of problem-solving skills in mathematics: How animations can aid understanding of structural problem features and solution procedures. Instructional Science, 38(5), 487-502. doi: 10.1007/s11251-009-9114-9
Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). A closer look at split visual attention in system- and self-paced instruction in multimedia learning. Learning and Instruction, 20(2), 100-110. doi: 10.1016/j.learninstruc.2009.02.011
Schmidt-Weigand, F., & Scheiter, K. (2011). The role of spatial descriptions in learning from multimedia. Computers in Human Behavior, 27(1), 22-28. doi: 10.1016/j.chb.2010.05.007
Schwonke, R., Renkl, A., Salden, R., & Aleven, V. (2011). Effects of different ratios of worked solution steps and problem solving opportunities on cognitive load and learning outcomes. Computers in Human Behavior, 27(1), 58-62. doi: 10.1016/j.chb.2010.03.037
Shah, P., & Carpenter, P. A. (1995). Conceptual limitations in comprehending line graphs. Journal of Experimental Psychology-General, 124(1), 43-61. doi: 10.1037//0096-3445.124.1.43
Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge construction: Signaling techniques for guiding the process of graph comprehension. Journal of Educational Psychology, 91(4), 690-702. doi: 10.1037//0022-0663.91.4.690
Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in 1970. American Psychologist, 26(2), 145-159. doi: 10.1037/h0030806
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. doi: 10.1016/0364-0213(88)90023-7
Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York, NY: Springer.
Sweller, J., & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8(4), 351-362.
Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12(3), 185-233.
Sweller, J., Mawer, R. F., & Ward, M. R. (1983). Development of expertise in mathematical problem solving. Journal of Experimental Psychology-General, 112(4), 639-661. doi: 10.1037/0096-3445.112.4.639
Tarmizi, R. A., & Sweller, J. (1988). Guidance during mathematical problem-solving. Journal of Educational Psychology, 80(4), 424-436. doi: 10.1037//0022-0663.80.4.424
van Gog, T., Paas, F., van Merrienboer, J. J. G., & Witte, P. (2005). Uncovering the problem-solving process: Cued retrospective reporting versus concurrent and retrospective reporting. Journal of Experimental Psychology: Applied, 11(4), 237-244. doi: 10.1037/1076-898X.11.4.237
van Mierlo, C. M., Jarodzka, H., Kirschner, F., & Kirschner, P. A. (2012). Cognitive load theory in e-learning. In Z. Yan (Ed.), Encyclopedia of cyberbehavior (pp. 1178-1211). Hershey, PA: IGI Global.
Xu, H. (2006). Design and analysis of experiments, volume 2: Advanced experimental design. Technometrics, 48(4), 571-571. doi: 10.1198/tech.2006.s433
Yoon, D., & Narayanan, N. H. (2004). Mental imagery in problem solving: An eye tracking study. Paper presented at the Proceedings of the 2004 symposium on Eye tracking research & applications.
翁立衛. (2008). 圖在幾何解題中所扮演的角色. 科學教育(308), 7-15.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top