:::

詳目顯示

回上一頁
題名:表徵特性對工作記憶為基注意力攫取的影響
作者:郭郡羽 引用關係
作者(外文):Chun-Yu Kuo
校院名稱:國立臺灣大學
系所名稱:心理學研究所
指導教授:葉怡玉
趙軒甫
學位類別:博士
出版日期:2014
主題關鍵詞:工作記憶選擇注意力認知控制注意力標籤既有表徵共伴性working memoryselective attentioncognitive controlattentional tagpre-existing representationcontingency
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:8
本論文透過「工作記憶為基的注意力攫取」現象探討工作記憶與注意力兩大心理學建構的互動。工作記憶為基的注意力攫取顯示:與工作記憶內容相符的訊息再次出現時,會獲得競爭優勢並被優先選擇。此現象在過去研究中已被反覆驗證,並作為工作記憶與注意力緊密互動的支持證據。然而,工作記憶中表徵特性所扮演的角色卻尚未被探討。本論文遵循傳統的雙作業派典要求參與者序列進行儲存、注意力作業及記憶相關作業,檢驗當記憶訊息再次出現在注意力作業中時,對注意力的影響。參與者在每個嘗試的最初需記憶一個訊息,並在嘗試的最末進行與該記憶表徵相關的作業。記憶訊息到記憶相關作業間,參與者需進行一個與記憶作業無關的運動方向偵測作業,以檢驗當記憶訊息再次出現時對注意力分派的影響。在運動方向偵測作業中,其中一個刺激會向上或向下移動,而其他刺激靜止,參與者需要判斷移動刺激的運動方向。其中,儲存於工作記憶裡的表徵可能與注意力作業中的移動目標物相符(有效情境)、與靜止的干擾物相符(無效情境)、或不出現於注意力作業的畫面中(中性情境)。當有效情境的反應時間顯著快於中性情境的反應時間或當無效情境的反應時間顯著慢於中性情境的反應時間時,此結果代表儲存於工作記憶的表徵攫取注意力。本論文的三個系列研究中分別關心注意力標籤表徵、既有表徵及表徵共伴性所帶來的表徵特性差異對工作記憶為基注意力攫取效果的影響。研究一操控儲存於工作記憶中的顏色表徵為之後記憶相關作業裡的目標物或干擾物而改變表徵的注意力標籤。結果發現若工作記憶中的內容為後續作業的目標物,被賦予目標物標籤,將優先攫取注意力;若工作記憶中的內容為後續作業的干擾物,被賦予干擾物標籤,則無法攫取注意力。研究二探討與工作記憶關係密切的長期記憶如何調節工作記憶為基的注意力攫取。參與者需記憶由字母組成的真字、假字或非字,並進行運動方向偵測作業。結果發現:儲存於工作記憶裡的字母共享既有表徵時(真字或可發音假字),單一字母再現時可透過分散激發攫取注意力;若儲存字母間彼此獨立,無共享的既有表徵時(非字),單獨字母將彼此削弱,此時,需完整視覺表徵再現方能攫取注意力。研究三進一步透過表徵共伴性的操弄,檢驗情境脈絡所誘發的表徵差異如何影響工作記憶為基的注意力攫取。研究三以唸名作業取代記憶再認作業,避免因使用特殊策略而傾向在注意力作業中利用工作記憶中的內容來強化記憶表徵。參與者唸出應記憶項目的名稱後,進行運動方向判斷作業。並跨實驗操弄工作記憶中的訊息對注意力作業目標物的預期性來檢驗情境脈絡的影響。結果發現工作記憶為基的注意力攫取為原始設定模式,當無特殊控制歷程介入時,與工作記憶內容相符的訊息將會攫取注意力;若透過共伴性建立了認知設定,則可透過策略化控制歷程避免注意力受到工作記憶內容的攫取。本論文在三個系列研究中透過觀察工作記憶為基的注意力攫取及其限制情境,與工作記憶內容相符的訊息再現非必然攫取注意力,尚受到不同表徵特性的影響,更精緻化的展現了注意力與工作記憶在不同情境裡的互動。
The relationship between working memory and selective attention has been demonstrated by numerous studies which showed that the content of working memory biases attention. This effect, working memory-driven attentional capture, has been well demonstrated in the literature. However, few studies have investigated how the characteristics of the representation maintained in working memory may influence the capturing effect. This doctoral dissertation aims to address this issue across three studies using a dual-task paradigm that combines a memory related task and an attentional selection task. The participants in all studies were required to maintain an item in working memory for a later memory-related test while performing a motion judgment task. In the motion judgment task, the participants were required to judge the direction of a moving target. The memorized item was identical to the moving target in the valid condition; the memorized item was identical to the static distractor in the invalid condition; and the memorized item was not presented in the display of the motion judgment task in the neutral condition. The capturing effect was reflected by faster performance in the valid condition than in the neutral condition, or slower performance in the invalid condition than in the neutral condition. Study 1 focused on the effect of attentional tag associated with the information maintained in working memory. The memory related task showed two colored notched circles after the selection task. Attentional tag was manipulated by assigning the memorized color to be the to-be-judged and the to-be-ignored color in the target and distractor block, respectively. The results showed that the attentional tag modulated working memory-driven attentional capture. The color tagged as a target captured attention and reduced the reaction time for the motion judgment task, and the color tagged as a distractor did not capture attention. The goal of Study 2 was to examine how pre-existing representation in long-term memory modulated the capture effect driven by the individual component of the stimulus stored in working memory. The participants were required to remember letters which formed a word, pronounceable pseudoword, or nonword and then performed a motion judgment task. The results showed that the individual letters of a word or pronounceable pseudoword captured attention whereas letters of a nonword did not. In the nonword condition, reappearance of the complete visual representation is necessary for inducing the capturing effect. In Study 3, a naming task was used to replace the memory recognition task for eliminating potential strategic perceptual resampling, which may have played a role in several previous studies. The probability that the verbalized item is identical to the selection targets, the prime validity, was manipulated across experiments. The results showed a large capturing effect when the validity was higher than the chance level, but the capturing effect was not observed when the prime validity was lower than the chance level. The results suggested that contingency associated with the representation also modulated working memory-driven attentional capture. The content of working memory appears to capture attention as a default mode when there is no reason to avoid the in&;#64258;uence of primes, and it is subject to strategic control based on the cognitive set. Taken together, the content of working memory does not automatically capture attention. The characteristics of the representation (the attentional tag, accessibility to pre-existing representation, and contingency related to attentional target) can modulate the working memory-driven attentional capture effect. Working memory and attention interact in a flexible manner.
Ahmed, L. &; de Fockert, J. W. (2012). Working memory load can both improve and impair selective attention: evidence from the Navon paradigm. Attention, Perception, &; Psychophysics, 74, 1397-1405.
Anderson, B. A., Laurent, P. A., &; Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108, 10367-10371.
Anllo-Vento, L., Luck, S. J., &; Hillyard, S. A. (1998). Spatiotemporal dynamics of attention to color: Evidence from human electrophysiology. Human Brain Mapping, 6, 216-238.
Ansorge, U., Kiss, M., Worschech, F., &; Eimer, M. (2011). The initial stage of visual selection is controlled by top-down task set: new ERP evidence. Attention, Perception, &; Psychophysics, 73, 113-122.
Arita, J. T., Carlisle, N., &; Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 38, 580-584.
Atkinson, R. C., &; Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. The Psychology of Learning and Motivation, 2, 89-195.
Awh, E., Belopolsky, A. V., &; Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437-443.
Awh, E., &; Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119-126.
Awh, E., Jonides, J., &; Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 24, 780-790.
Awh, E., Sgarlata, A. M., &; Kliestik, J. (2005). Resolving visual interference during covert spatial orienting: Online attentional control through static records of prior visual experience. Journal of Experimental Psychology: General, 134, 192–206.
Awh, E., Vogel, E. K., &; Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience, 139, 201-208.
Baddeley, A. D. (1992). Is working memory working? The fifteenth Bartlett lecture. The Quarterly Journal of Experimental Psychology, 44A, 1-31.
Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4, 417-423
Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4, 829-839.
Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1-29.
Baddeley, A., &; Hitch, G. J. (1974). Working memory. In G. Bower (Ed.). Recent advances in learning and motivation (Vol. 8). New York: Academic Press.
Bahrami Balani, A., Soto, D., &; Humphreys, G. W. (2010). Working memory and target-related distractor effects on visual search. Memory &; Cognition, 38, 1058-1076.
Barrouillet, P., Bernardin, S., &; Camos, V. (2004). Time constraints and resource sharing in adults'' working memory spans. Journal of Experimental Psychology: General, 133, 83-100.
Bays, P. M, &; Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321, 851-854.
Beauchamp, M. S., Petit, L., Ellmore, T. M., Ingeholm, J., &; Haxby, J. V. (2001). A parametric fMRI study of overt and covert shifts of visuospatial attention. NeuroImage, 14, 310-321.
Belopolsky, A. V., Kramer, A. F., &; Godijn, R. (2008). Transfer of information into working memory during attentional capture. Visual Cognition, 16, 409-418.
Blaser, E., Pylyshyn, Z. W., &; Holcombe, A. O. (2000). Tracking an object through feature space. Nature, 408, 196-199.
Bleckley, M. K., Durso, F. T., Crutchfield, J. M., Engle, R. W., &; Khanna, M. M. (2003). Individual differences in working memory capacity predict visual attention allocation. Psychonomic Bulletin &; Review, 10, 884-889.
Bonhage, C. E., Fiebach, C. J., Bahlmann, J., &; Mueller, J. L. (2014). Brain Signature of Working Memory for Sentence Structure: Enriched Encoding and Facilitated Maintenance. Journal of Cognitive Neuroscience.
Bor, D., Cumming, N., Scott, C. E., &; Owen, A. M. (2004). Prefrontal cortical involvement in verbal encoding strategies. European Journal of Neuroscience, 19, 3365-3370.
Bor, D., Duncan, J., Wiseman, R. J., &; Owen, A. M. (2003). Encoding strategies dissociate prefrontal activity from working memory demand. Neuron, 37, 361-367.
Brener, R. (1940). An experimental investigation of memory span. Journal of Experimental Psychology, 26, 467-482.
Broadbent, D. E, &; Broadbent, M. H. P. (1987). From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception &; Psychophysics, 42, 105-113.
Broadbent, D. E., Broadbent, M. H. P. (1981). Recency effects in visual memory. The Quarterly Journal of Experimental Psychology, 33, 1-15.
Burkell, J. A. &; Pylyshyn, Z. W. (1997). Searching through subsets: A test of the visual indexing hypothesis. Spatial Vision, 11, 225-258.new window
Cabeza, R. &; Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1-47
Calleja, M. O., &; Rich, A. N. (2013). Guidance of attention by information held in working memory. Attention, Perception, &; Psychophysics, 75, 687-699.
Carlisle, N., &; Woodman, G. (2011). Automatic and strategic effects in the guidance of attention by working memory representations. Acta Psychologica, 137, 217-225.
Case, R., Kurland, M., &; Goldberg, J. (1982). Operational efficiency and the growth of short-term memory. Journal of Experimental Child Psychology, 33, 386-404.
Cattell, J. M. (1886). The time it takes to see and name objects. Mind, 41, 63-65.
Chao, H.-F. (2010). Top-down attentional control for distractor locations: The benefit of precuing distractor locations on target localization and discrimination. Journal of Experimental Psychology: Human Perception and Performance, 36, 303-316.
Chao, H.-F. (2011). Active inhibition of a distractor word: The distractor precue benefit in the Stroop color-naming task. Journal of Experimental Psychology: Human Perception and Performance, 37, 799-812.
Chao, H.-F., &; Yeh, Y.-Y. (2008). Controlled processing in single-prime negative priming. Experimental Psychology, 55, 402-408.
Chelazzi, L., Duncan, J., Miller, E. K., &; Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2918-2940.
Chelazzi, L., Miller, E. K., Duncan, J., &; Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363, 345-347.
Chun, M. M., Golomb, J. D., &; Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73-101.
Chun, M. M., &; Jiang, Y. H. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive psychology, 36, 28-71.
Conway, A. R. A., Cowan, N., &; Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity. Psychonomic Bulletin &; Review, 8, 331-335.
Corbetta, M., Kincade, J. M., &; Shulman, G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory. Journal of Cognitive Neuroscience, 14, 508-523.
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., &; Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3, 292-297.
Corbetta, M., &; Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201-215.
Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104, 163-191.
Cowan, N. (1995). Attention and memory: An integrated framework. New York: Oxford University Press.
Cowan, N. (1999). An embedded-process model of working memory. In A. Miyake &; P. Shah (Eds.), Models of working memory. Mechanisms of active maintenance and executive control (pp. 62-101). Cambridge, England: Cambridge University Press.
Cowan, N. (2000). Processing limits of selective attention and working memory: Potential implications for interpreting. Interpreting, 5, 117-146.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and brain sciences, 24, 87-114.
Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: Making sense of competing claims. Neuropsychologia, 49, 1401-1406.
Crump, M. J., Vaquero, J. M. M., &; Milliken, B. (2008). Context-specific learning and control: The roles of awareness, task relevance, and relative salience. Consciousness &; Cognition, 17, 22–36.
de Fockert, J. W. &; Bremner, A. J. (2011). Release of inattentional blindness by high working memory load: Elucidating the relationship between working memory and selective attention. Cognition, 121, 400-408.
Dehaene, S., Naccache, L., Cohen, L., Bihan, D. L., Mangin, J. F., Poline, J. B., &; Rivie`re, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4, 752-758.
Desimone, R., &; Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222.
Dombrowe, I., Olivers, C. N. L., &; Donk, M. (2010). The time course of working memory effects on visual attention. Visual Cognition, 18, 1089-1112.
Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11, 467-473.
Downing, P. E., &; Dodds, C. M. (2004). Competition in visual working memory for control of search. Visual Cognition, 11, 689-703.
Duncan, J. (1996). Cooperating brain systems in selective perception and action. In T. Inui &; J. L. McClelland (Eds.), Attention and performance XVI (pp. 549-578). Cambridge, MA: MIT Press.
Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501-517.
Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli. Psychological Review, 87, 272-300.
Duncan, J., Humphreys, G. W., &; Ward, R. (1997). Competitive brain activity in visual attention. Current Opinion in Neurobiology, 7, 255-261.
Egly, R., Driver, J., &; Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123, 161-177.
Engle, R. W., Conway, A. R. A., Tuholski, S. W., &; Shisler, R. J. (1995). A resource account of inhibition. Psychological Science, 6, 122-125.
Ericsson, K. A., &; Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211-245.
Esterman, M., Chiu, Y. C., Tamber-Rosenau, B. J., &; Yantis, S. (2009). Decoding cognitive control in human parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106, 17974-17979.
Folk, C. L., &; Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847-858.
Folk, C. L., Remington, R. W., &; Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030-1044.
Frensch, P. A., &; Runger, D. (2003). Implicit learning. Current Directions in Psychological Science, 12, 13-18.
Gayet, S., Paffen, C. L. E., &; Van der Stigchel, S. (in press). Information matching the content of visual working memory is prioritized for conscious access. Psychological Science.
Gazzaley, A. (2011). Influence of early attentional modulation on working memory. Neuropsychologia, 49, 1410-1424.
Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., Kim, Y., Meyer, J. R. et al. (1999). A large-scale distributed network for covert spatial Attention: Further anatomical delineation based on stringent behavioural and cognitive controls. Brain, 122, 1093-1106.
Grecucci, A., Soto, D., Rumiati, R. I., Humphreys, G. W., &; Rotshtein, P. (2010). The interrelations between verbal working memory and visual selection of emotional faces. Journal of Cognitive Neuroscience, 22, 1189-1200.
Griffin, I. C., &; Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15, 1176-1194.
Hagoort, P., Baggio, G., &; Willems, R. M. (2009). Semantic unification. In M. Gazzaniga (Ed.), The cognitive neurosciences. Cambridge, MA: MIT Press.
Han, S. H., &; Kim, M. S. (2004). Visual search does not remain efficient when executive working memory is working. Psychological Science, 15, 623-628.
Han, S. W., &; Kim, M. S. (2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception and Performance, 35, 1292-1302.
Hanna, A., Loftus, G. (1993). A model for conceptual processing of naturalistic scenes. The Canadian Journal of Experimental Psychology, 47, 548-569.
Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning (Vol. 2): Springer.
Harter, M. R., Aine, C., &; Schroeder, C. (1982). Hemispheric differences in the neural processing of stimulus location and type: Effects of selective attention on visual evoked potentials. Neuropsychologia, 20, 421-438.
Hartley, A. A., &; Speer, N. K. (2000). Locating and fractionating working memory using functional neuroimaging: Storage, maintenance, and executive functions. Microscopy Research and Technique, 51, 45-53.
Hay, D. C., Smyth, M. M., Hitch, G. J., Horton, N. J. (2007). Serial position effects in short-term visual memory: a SIMPLE explanation? Memory &; Cognition, 35, 176-190.
Heitz, R. P., &; Engle, R. W. (2007). Focusing the spotlight: Individual differences in visual attention control. Journal of Experimental Psychology: General, 136, 217-240.
Hop&;#64257;nger, J. B., Buonocore, M. H., &; Mangun, G. R. (2000). The neural mechanisms of top down attentional control. Nature Neuroscience, 3, 284-291.
Houtkamp, R., &; Roelfsema, P. R. (2006). The effect of items in working memory on the deployment of attention and the eyes during visual search. Journal of Experimental Psychology: Human Perception and Performance, 32, 426-442.
Hu, Y., Xu, Z., &; Hitch, G. J. (2011). Strategic and automatic effects of visual working memory on attention in visual search. Visual Cognition, 19, 799-816.
Huang, L., &; Pashler, H. (2007). Working memory and the guidance of visual attention: Consonance-driven orienting. Psychonomic Bulletin &; Review, 14, 148-153.
Hulme, C., Maughan, S., &; Brown, G. D. A. (1991). Memory for familiar and unfamiliar words: evidence for a long-term memory contribution to short-term memory span. Journal of Memory and Language, 30, 685-701.
Ikkai, A., &; Curtis, C. E. (2011). Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia, 49, 1428-1434.
Jefferies, E., Lambon Ralph, M. A., &; Baddeley, A. D. (2004). Automatic and controlled processing in sentence recall: The role of long-term and working memory. Journal of Memory and Language, 51, 623-643.
Jonides, J., Lewis, R.L., Nee, D.E., Lustig, C.A., Berman, M.G., Moore, K.S. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193-224.
Julesz, B. (1991). Early vision and focal attention. Reviews of Modern Physics, 63, 735-772.
Kane, M. J., Bleckley, M. K., Conway, A. R. A., &; Engle, R. W. (2001). A controlled-attention view of working memory capacity. Journal of Experimental Psychology: General, 130, 169-183.
Kane, M. J., &; Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47-70.
Kelley, T. A., &; Yantis, S. (2009). Learning to attend: Effects of practice on information selection. Journal of Vision, 9, 1-18.
Kenemans, J. L., Kok, A., &; Smulders, F. T. (1993). Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements. Electroencephalography and Clinical Neurophysiology, 88, 51-63.
Kerr, J. R., Avons, S. E., Ward, G. (1999). The effect of retention interval on serial position curves for item recognition of visual patterns and faces. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 1475-1494.
Kim, Y. H., Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., &; Mesulam, M. M. (1999). The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage, 9, 269-277.
Kincade, M., Abrams, R. A., Asta&;#64257;ev, S. V., Shulman, G. L., &; Corbetta, M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. The Journal of Neuroscience, 25, 4593-4604.
Kiyonaga, A., Egner, T., &; Soto, D. (2012). Cognitive control over working memory biases of selection. Psychonomic Bulletin &; Review, 19, 639-646.
Klein, R. M., Castel, A. D., &; Pratt, J. (2006). The effects of memory load on the time course of inhibition of return. Psychonomic Bulletin &; Review, 13, 294-299.
Kok, A. (2001). On the utility of P3b amplitude as a measure of processing capacity. Psychophysiology, 38, 557-577.
Kristjansson, A., Wang, D., &; Nakayama, K. (2002). The role of priming in conjunctive visual search. Cognition, 85, 37-52.
Kuo, C.-Y., Chao, H.-F., &; Yeh, Y.-Y. (2013). Strategic control modulates working memory-driven attentional capture. Experimental Psychology, 60, 3-11.
LaBar, K. S., Gitelman, D. R., Parrish, T. B., &; Mesulam, M. M. (1999). Neuroanatomic overlap of working memoryand spatial attention networks: A functional MRI comparison within subjects. NeuroImage, 10, 695-704.
Lange, N. D., Thomas, R. P., Buttaccio, D. R. &; Davelaar, E. J. (2012). Catching a glimpse of working memory: Top-down capture as a tool for measuring the content of the mind. Attention, Perception, &; Psychophysics, 74, 1562-1567.
Lavie, N. &; Cox, S. (1997). On the ef&;#64257;ciency of visual selective attention: ef&;#64257;cient visual search leads to inef&;#64257;cient distractor rejection. Psychological Sciences, 8, 395-398.
Lavie, N, &; De Fockert, J. W. (2005). The role of working memory in attentional capture. Psychonomic Bulletin &; Review, 12, 669-674.
Lavie, N., Hirst, A., de Fockert, J. W., &; Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.
Leber, A. B., &; Egeth, H. E. (2006a). It’s under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin &; Review, 13, 132-138.
Leber, A. B., &; Egeth, H. E. (2006b). Attention on autopilot: Past experience and attentional set. Visual Cognition, 14, 565-583.
Leber, A. B., Kawahara, J.-i., &; Gabari, Y. (2009). Long-term abstract learning of attentional set. Journal of Experimental Psychology: Human Perception and Performance, 35, 1385-1397.
Lee, Y.-C., &; Chao, H.-F. (2012). The role of active inhibitory control in psychological well-being and mindfulness. Personality and Individual Differences, 53, 618-621.
Lepsien, J., Thornton, I., &; Nobre, A. C. (2011). Modulation of working-memory maintenance by directed attention. Neuropsychologia, 49, 1569-1577.
Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K, &; Postle, B. R. (2012). Neural evidence for a distinction between short-term memory and the focus of attention. Journal of Cognitive Neuroscience, 24, 61-79.
Logan, G. D. (1978). Attention in character classi&;#64257;cation tasks: Evidence for the automaticity of component stages. Journal of Experimental Psychology: General, 107, 32-63.
Logie, R. H. (1995). Visuo-spatial working memory. Hove, England: Erlbaum.
Luck, S. J., &; Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.
MacLeod, C., Mathews, A., &; Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95, 15-20.
Maljkovic, V., &; Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory &; Cognition, 226, 657-672.
McElree, B. (2006). Accessing recent events. In: Ross, B. (Ed.), The Psychology of Learning and Motivation. Academic Press, San Diego, CA, pp. 155-200.
McElree, B., Dosher, B.A. (1989). Serial position and set size in short-term memory: the time course of recognition. Journal of Experimental Psychology: General, 118, 346-373.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81-97.
Mogg, K., Bradley, B. P., &; Williams, R. (1995). Attentional bias in anxiety and depression: The role of awareness. British Journal of Clinical Psychology, 34, 17-36.
Monsell, S. (1978). Recency, immediate recognition memory, and reaction time. Cognitive Psychology, 10, 465-501.
Moores, E., Laiti, L., &; Chelazzi, L. (2003). Associative knowledge controls deployment of visual selective attention. Nature Neuroscience, 6, 182-189.
Muller, H. J., Heller, D., &; Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception &; Psychophysics, 57, 1-17.
Naghavi, H. R., &; Nyberg, L. (2005). Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition, 14, 390-425.
Nee, D. E, &; Jonides, J. (2008). Neural correlates of access to short-term memory. Proceedings of the National Academy of Sciences, 105, 14228-14233.
Nee, D. E., &; Jonides, J. (2011). Dissociable contributions of prefrontal cortex and the hippocampus to short-term memory: Evidence for a 3-state model of memory. Neuroimage, 54, 1540-1548.
Nee, D. E., &; Jonides, J. (2013). Neural evidence for a 3-state model of visual short-term memory. Neuroimage, 74, 1-11.
Nieuwenstein, M., Johnson, A., Kanai, R., &; Martens, S. (2007). Cross-task repetition amnesia: Impaired recall of RSVP targets held in memory for a secondary task. Acta Psychologica, 125, 319-333.
Oberauer, K. (2001). Removing irrelevant information from working memory. A cognitive aging study with the modified Sternberg task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 948-957.
Oberauer, K. (2002). Access to information in working memory: exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411-421.
Oberauer, K. (2005). Binding and inhibition in working memory: individual and age differences in short-term recognition. Journal of Experimental Psychology: General, 134, 368-387.
Oberauer, K. (2009). Design for a working memory. In B. H. Ross (Ed.), Psychology of learning and motivation: Advances in research and theory (Vol. 51, pp. 45-100). San Diego, CA: Academic Press.
Oberauer, K. &; Hein, L. (2012). Attention to information in working memory. Current Directions in Psychological Science, 21, 164-169.
O’Craven, K., Downing, P. E., &; Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584-587.
Oh, S. H., &; Kim, M. S. (2004). The role of spatial working memory in visual search efficiency. Psychonomic Bulletin &; Review, 11, 275-281.
Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35, 1275-1291.
Olivers, C. N. L. (2011). Long-term visual associations affect attentional guidance. Acta Psychologica, 137, 243-247.
Olivers, C. N. L., &; Eimer, M. (2011). On the difference between working memory and attentional set. Neuropsychologia, 49, 1553-1558.
Olivers, C. N. L., Meijer, F., &; Theeuwes, J. (2006). Feature-based working memory driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32, 1243-1265.
Oppenheimer, D. M. (2008). The secret life of fluency. Trends in Cognitive Sciences, 12, 237-241.
Ottawa. ON, C. C., Inc. (1994). CorelDRAW!.
Oztekin, I., McElree, B., Staresina, B.P., Davachi, L. (2009). Working memory retrieval: contributions of the left prefrontal cortex, the left posterior parietal cortex, and the hippocampus. Journal of Cognitive Neuroscience, 21, 581-593.
Oztekin, I., Davachi, L., McElree, B. (2010). Are representations in working memory distinct from representations in long-term memory? Neural evidence in support of a single store. Psychological Science, 21, 1123-1133.
Pashler, H. (1988). Familiarity and visual change detection. Perception &; Psychophysics, 44, 369-378.
Pashler, H., &; Shiu, L. P. (1999). Do images involuntarily trigger search? A test of Pillsbury''s hypothesis. Psychonomic Bulletin &; Review, 6, 445-448.new window
Perham, N., Marsh, J. E., &; Jones, D. M. (2009). Syntax and serial recall: How language supports short-term memory for order. Quarterly Journal of Experimental Psychology, 62, 1285-1293.
Peters, J. C., Goebel, R., &; Roelfsema, P. R. (2009). Remembered but unused: The accessory items in working memory that do not guide attention. Journal of Cognitive Neuroscience, 21, 1081-1091.
Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception &; Psychophysics, 16, 283-290.
Phillips, W. A., Christie, D. F. M. (1977). Components of visual memory. The Quarterly Journal of Experimental Psychology, 29, 117-133.
Posner, M. I., Snyder, C. R., &; Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160-174.
Previc, F. H., &; Harter, M. R. (1982). Electrophysiological and behavioral indicants of selective attention to multifeature gratings. Perception &; Psychophysics, 32, 465-472.
Pylyshyn, Z. W., &; Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179-197.
Raymond, J. E., Shapiro, K. L., &; Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849-860.
Reber, R., Schwarz, N., &; Winkielman, P. (2004). Processing fluency and aesthetic pleasure: is beauty in the perceiver''s processing experience? Personality and social psychology review, 8, 364-382.
Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of stimulus material. Journal of Experimental Psychology, 81, 275-280.
Rodriguez, V., Valdes-Sosa, M., &; Freiwald, W. (2002). Dividing attention between form and motion during transparent surface perception. Cognitive Brain Research, 13, 187-193.
Rohrer, D., &; Pashler, H. (2003). Concurrent task effects on memory retrieval. Psychonomic Bulletin &; Review, 10, 96-103.
Rosen, A. C., Rao, S. M., Caffarra, P., Scaglioni, A., Bobholz, J. A., Woodley, S. J. et al. (1999). Neural basis of endogenous and exogenous spatial orienting: A functional MRI study. Journal of Cognitive Neuroscience, 11, 135-152.
Sakai, K. (2008). Task set and prefrontal cortex. Annual Review of Neuroscience, 31, 219-245.
Schendan, H. E., &; Kutas, M. (2003). Time course of processes and representations supporting visual object identification and memory. Journal of Cognitive Neuroscience, 15, 111-135.
Schoenfeld, M. A., Tempelmann, C., Martinez, A., Hopf, J.-M., Sattler, C., Heinze, H. J., et al. (2003). Dynamics of feature binding during object-selective attention. Proceedings of the National Academy of Science, 100, 11806-11811.
Seger, C. A. (1994). Implicit learning. Psychological Bulletin, 115, 163-196.
Shin, E., Fabiani, M., &; Gratton, G. (2006). Multiple levels of stimulus representation in visual working memory. Journal of Cognitive Neuroscience, 18, 844-858.
Shomstein, S., &; Yantis, S. (2002). Object-based attention: Sensory modulation or priority setting? Perception &; Psychophysics, 64, 41-51.
Simons, D. J. (2000). Attentional capture and inattentional blindness. Trends in Cognitive Sciences, 4, 147-155.
Smith, E. E., &; Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657-1661.
Soto, D., Heinke, D., Humphreys, G. W., &; Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31, 248-261.
Soto, D., Hodsoll, J., Rotshtein, P., &; Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12, 342-348.
Soto, D., &; Humphreys, G. W. (2007). Automatic guidance of visual attention from verbal working memory. Journal of Experimental Psychology: Human Perception and Performance, 33, 730-737.
Soto, D., &; Humphreys, G. W. (2009). Automatic selection of irrelevant object features through working memory: Evidence for top-down attentional capture. Experiment Psychology, 56, 165-172.
Soto, D., Humphreys, G. W., &; Heinke, D. (2006a). Dividing the mind: The necessary role of the frontal lobes in separating memory from search. Neuropsychologia, 44, 1282-1289.
Soto, D., Humphreys, G. W., &; Heinke, D. (2006b). Working memory can guide pop-out search. Vision Research, 46, 1010-1018.
Soto, D., Humphreys, G. W., &; Rotshtein, P. (2007). Dissociating the neural mechanisms of memory-based guidance of visual selection. Proceedings of the National Academy of Sciences, 104, 17186-17191.
Soto, D., Wriglesworth, A., Bahrami-Balani, A., &; Humphreys, G. W. (2010). Working memory enhances visual perception: Evidence from signal detection analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 441-456.
Sperling, G. (1960). The information available in brief visual presentation. Psychological Monographs, 74, 1-29.
Stein, B. S., &; Bransford, J. D. (1979). Constraints on effective elaboration: Effects of precision and subject generation. Journal of Verbal Learning and Verbal Behavior, 18, 769-777.
Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception &; Psychophysics, 50, 184-193.
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception and Psychophysics, 51, 599-606.
Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin &; Review, 11, 65-70.
Theeuwes, J. (2010). Top–down and bottom–up control of visual selection. Acta psychologica, 135, 77-99.
Thompson, C., Underwood, G., &; Crundall, D. (2007). Previous attentional set can induce an attentional blink with task-irrelevant initial targets. The Quarterly Journal of Experimental Psychology, 60, 1603-1609.
Treisman, A. &; Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97-136
Treisman, A. (1964). Selective attention in man. British Medical Bulletin, 20, 12-16.
Treisman, A. (1979). The psychological reality of levels of processing. In L.S. Cermak &; F. I. M. Craik (Eds.), Levels of processing in human memory (pp. 301-330). Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
Trick, L., &; Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limitedcapacity preattentive stage in vision. Psychological Review, 101, 80-102.
Umemoto, A., Scolari, M., Vogel, E. K., &; Awh, E. (2010). Statistical learning induces discrete shifts in the allocation of working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 36, 1419-1429.
Unsworth, N., Schrock, J. C., &; Engle, R. W. (2004). Working memory capacity and the antisaccade task: Individual differences in voluntary saccade control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 1302-1321.
Vandenbroucke, A. R. E., Sligte, I. G., &; Lamme, V. A. F. (2011). Manipulations of attention dissociate fragile visual short-term memory from visual working memory. Neuropsychologia, 49, 1559-1568.
Vuilleumier, P., Henson, R. N., Driver, J., &; Dolan, R. J. (2002). Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nature Neuroscience, 5, 491-499.
Watson, D. G., &; Humphreys, G. W. (1997). Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104, 90-122.
Wheeler, D. D. (1970). Processes in word recognition. Cognitive Psychology, 1, 59-85.
Woltz, D. J. (1996). Perceptual and conceptual priming in a semantic reprocessing task. Memory &; cognition, 24, 429-440.
Woltz, D. J., &; Was, C. A. (2006). Availability of related long-term memory during and after attention focus in working memory. Memory &; Cognition, 34, 668-684.
Woodman, G. F., &; Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin and Review, 11, 269-274.
Woodman, G. F., &; Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33, 363-376.
Woodman, G. F., Vogel, E. K., &; Luck, S. J. (2001). Visual search remains ef&;#64257;cient when visual working memory is full. Psychological Science, 12, 219-224.
Yantis, S. &; Johnson, D. N. (1990). Mechanisms of attentional priority. Journal of Experimental Psychology: Human Perception and Performance, 16, 812-825.
Yantis, S., &; Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601-621.
Yeari, M., &; Goldsmith, M. (2010). Is object-based attention mandatory? Strategic control over mode of attention. Journal of Experimental Psychology: Human Perception and Performance, 36, 565-579.
Zatorre, R. J., Mondor, T. A., &; Evans, A. C. (1999). Auditory attention to space and frequency activates similar cerebral systems. NeuroImage, 10, 544-554.
Zhang, B., Zhang, J. X., Huang, S., Kong, L., &; Wang, S. (2011). Effects of load on the guidance of visual attention from working memory. Vision Research, 51, 2356-2361.
Zurowski, B., Gostomzyk, J., Gro‥n, G., Weller, R., Schirrmeister, H., Neumeier, B., Spitzer, M., Reske, S. N., &; Henrik, Wet al. (2002). Dissociating a common working memory network from different neural substrates of phonological and spatial stimulus processing. NeuroImage, 15, 45-57.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top