:::

詳目顯示

回上一頁
題名:應用先進製程技術切割軟性基板之研究
作者:吳坤育
作者(外文):Kun-Yu Wu
校院名稱:中華大學
系所名稱:科技管理博士學位學程
指導教授:賀力行
學位類別:博士
出版日期:2019
主題關鍵詞:心智圖法寫作教學寫作態度寫作表現RIZ, Laser Cutting Taguchi’s MethodsNeural NetworkGenetic AlgorithmFinite Element Method
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
隨著軟性AMOLED(Active-matrix organic light-emitting diode)顯示器應用在多樣消費性電子產品上,其帶動製程的持續創新,改善企業的營運績效,並挹注企業在市場上的競爭力。由於軟性基板顯示器之疊層架構上為多層複合膜之材料,在傳統刀具沖切加工上面臨重大挑戰。因此,研究合適的替代方案來突破製程的局限性,是產品品質的關鍵。
在本研究中,為了改進軟性基板以傳統模具沖切製程的品質問題與限制,首先使用發明問題的解決理論(TRIZ - Theory of Inventive Problem Solving),依據機械系統與參數轉換原理獲得CO2雷射切割的解決方法,並運用田口實驗設計法(Taguchi’s Methods)取得關鍵製程控制參數的最適化條件與組合(雷射功率、切割次數和切割速度),再透過類神經網路與基因演算法將參數條件最佳化。最後,經過重覆性驗證的結果顯示,雷射切割在切割品質上明顯優於傳統沖切加工方式。所以CO2雷射製程可以做為軟性異型基板切割的解決方案之一。
運用有限元素分析法(Finite element method,FEM)模擬CO2雷射的切割品質,將理論模擬比較實際的實驗數據後,修正模型的模擬關鍵參數以符合實際系統的操作。以此模型可因應不同產品與材料的應用,並減少實驗和驗證次數。此外,為了提升加工品質與不同品質需求,未來可再進一步探討不同雷射激光源之加工技術。
With the application of the flexible AMOLED (Active-matrix organic light-emitting diode) display on a variety of consumer electronic products, it drives the continuous innovation of the process, improves the operational performance of the enterprise, and pays attention to the competitiveness of the enterprise in the market. Since the laminated structure of the flexible substrate display is a multi-layer composite film material, it faces a major challenge in the conventional blade cutting and punching processing. Therefore, studying a suitable alternative solution to break through the limitations of the process is the key to product quality.
In this study, in order to improve quality defects and the limitations of the traditional punching processes, firstly use the TRIZ(Theory of Inventive Problem Solving)to select a CO2 laser cutting solution based on the mechanical interaction substitution and parameters change principles. And, apply the Taguchi's Methods to dig out the key control factors (laser power, laser cutting-path pass and cutting speed) for optimum conditions and recipe. This study optimizes the parameter conditions by the neural networks and genetic algorithm. Finally, the repeated verification perform that the capability of laser cutting was obviously superior to the traditional punching processes on product quality. As a result of this study, the CO2 laser process was one of the available solutions for cutting the flexible substrates.
The finite element analysis method (FEM) is used to simulate the cutting quality of CO2 laser. Draw a comparison between theoretical simulation data and experimental results, the simulation model are corrected to meet the real operation system by key parameters adjustment. This model can be applied to different products and materials, and reduce the number of experiments and verification. Furthermore, the different laser processing technologies would be explored for improving the quality and vary quality requirements in the future.
Keywords: TRIZ, Laser Cutting Taguchi’s Methods, Neural Network, Genetic Algorithm, Finite Element Method
蘇朝墩(2015)。品質工程:線外方法與應用。台北市:前程文化
資策會產業情報研究所(2015年12月2日)。2016全球智慧穿戴出貨逾1.3億。線上檢索日期:2017年12月10日。取自網址:http://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=409。
日東電工公司(2018年4月27日)。具有雙折射補償的偏光片NIBCOM。線上檢索日期:2017年5月8日。取自網址:https://www.nitto.com/tw/zht/products/group/optical/structure/002/。
集邦科技公司(2017年7月3日)。TrendForce:中韓搶擴產AMOLED面板,智慧型手機市場滲透率2020年達50%。線上檢索日期:2018年6月6日。取自網址:https://press.trendforce.com.tw/press/20170703-3600.html#KuEpZ5txBCD3qwX0.99。
TRIZ創新的科技(蕭詠今譯)(2011)。台北市:建速公司
Altshuller, G. (1997). 40 PRINCIPLES: TRIZ Keys to Technical Innovation. Translated by Lev Shulyak and Steven Rodman. Worchester, Massachusetts: Technical Innovation Center
C. H. Li, M. J. Tsai, C. D. Yang, "Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method", Optics Laser Technol., 39(4) , pp. 759-786, Jun. 2007.
Chang, T. L., Chen, Z. C., Lee, Y. W., Li, Y. H., & Wang, C. P. (2016). Ultrafast laser ablation of soda-lime glass for fabricating microfluidic pillar array channels. Microelectronic Engineering, 158(1), 95-101.
Chen, X., Li, T., & Shen, J. (2016). CO2 laser ablation of microchannel on PMMA substrate for effective fabrication of microfluidic chips. International Polymer Processing, 31(2), 233-238.
Chichkov, B.N., Momma, C., Nolte, S., von Alvensleben, F. and Tünnermann, A. (1996), “Femtosecond, picosecond and nanosecond laser ablation of solids”, Applied Physical A Material Science Process, 63(2), pp. 109-115.
Darif, M. and Semmar, N. (2008), “Numerical Simulation of Si Nanosecond laser annealing by COMSOL multiphysics”, Excerpt from Proceedings of 2008 COMSOL Conference. Hann, available at: 2http://static1.comsol.fr/papers/5586/ download/Darif.pdf
Fowlkes, W. Y., Creveling, C. M., & Derimiggio, J. (1995). Engineering methods for robust product design: using Taguchi methods in technology and product development (pp. 121-123). Reading, MA: Addison-Wesley..
Lee, J., Yoo, J. and Lee, K. (2014), “Numerical simulation of the nano-second pulsed laser ablation process based on the finite element thermal analysis”, Journal of Mechanical Science Technology, 28(1), pp. 1797-1802.
León, R. V., Shoemaker, A. C., & Kacker, R. N. (1987). Performance measures independent of adjustment: an explanation and extension of Taguchi's signal-to-noise ratios. Technometrics, 29(3), 253-265.
Li, T., Zhou, C., Liu, Z. and Wang, W. (2011), “Computational and experimental study of nanosecond laser ablation of crystalline Silicon”, International Communication in Heat and Mass Transfer, 38(8), pp. 1041-1043.
Lim, H.S. and Yoo, J. (2011), “FEM based simulation of the pulsed laser ablation process in nanosecond fields”, Journal of Mechanical Science Technology, 25(1), pp. 1811-1816.
Oh, B., Kim, D., Kim, J. and Lee, J.H. (2007), “Femtosecond laser ablation of metals and crater formation by phase explosion in the high-fluence regime”, Journal of Physical Conference Series, 59(1), pp. 567-570.
Oliveira, V. and Vilar, R. (2007), “Finite element simulation of pulsed laser ablation of titanium carbide”, Applied Surface Science, 253(19), pp. 7810-7814.
S. C. Tam, L. E. N. Lim, K. Y. Quek, "Application of Taguchi methods in the optimization of the laser-cutting process", J. Mater. Process. Technol., 29(13), pp. 63-74, Jan. 1992.
Savransky, S. D. (2000). Engineering of creativity: Introduction to TRIZ methodology of inventive problem solving. CRC Press.
Schuler GmbH., & Schuler GmbH. (1998). Metal forming handbook. Springer Science & Business Media.
Sharma, S., Pachaury, Y., Akhtar, S. N. and Ramkumar, J. (2015), “A study on hydrodynamics of melt expulsion in pulsed Nd: YAG laser drilling of titanium”, Proceedings of 2015 COMSOL Conference.
Stein, P., García, O., Morales, M., Huber, H. P. and Molpeceres, C. (2012), “Numerical simulation of laser ablation for photovoltaic materials”, Applied Surface Science, 258(23), pp. 9288-9291.
Su, C. T., Hsiao, Y. H., & Chang, C. C. (2012). Parameter optimization design for touch panel laser cutting process. IEEE Transactions on Automation Science and Engineering, 9(2), 320-329.
Wlodarczyk, K. L., Brunton, A., Rumsby, P., & Hand, D. P. (2016). Picosecond laser cutting and drilling of thin flex glass. Optics and Lasers in Engineering, 78(1), 64-74.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top