:::

詳目顯示

回上一頁
題名:應用慣性感測器及無線足壓鞋墊對羽球步伐之探討
作者:劉宗翰
作者(外文):Liu, Tsung-Han
校院名稱:國立臺灣師範大學
系所名稱:體育學系
指導教授:相子元
學位類別:博士
出版日期:2021
主題關鍵詞:慣性感測器足底壓力鞋墊羽球步伐Inertial measurement unitPlantar pressure insoleBadmintonFootwork
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:6
前言:過去量化羽球步伐下肢動力學參數,普遍是在實驗室的情境下利用測力板進行實驗,但最近穿戴裝置蓬勃發展具價格便宜、體積小、減少身體的干擾等優勢,逐漸廣泛應用於運動量測。目前許多研究利用慣性感測器及無線足壓系統來測量運動的負荷、動作的辨識及下肢動力學等應用。目的:應用慣性感測器及無線足壓鞋墊,了解不同羽球步伐動作的下肢動力學參數、加速度參數及動作差異,作為未來發展智慧羽球鞋參考依據。方法:招募15名大專男子羽球選手進行實驗,進行羽球步伐訓練動作,同時量測雙腳的垂直地面作用力(Vertical ground reaction force, VGRF)、壓力中心(Center of pressure, COP)軌跡及加速度峰值等指標。結果:在11個羽球步伐訓練的慣用腳及非慣用腳呈現顯著性差異,證明羽球運動的雙腳是非對稱性;IMU的加速度峰值可以分辨不同的羽球動作在垂直、左右及前後方向的貢獻度皆有不同,IMU可以用來量化羽球步伐特徵;COP軌跡能辨識步伐間的差異,可以做為羽球步伐動作之參考。結論:VGRF、COP軌跡及加速度峰值可以用來評估羽球專項動作特徵,無線足壓系統的VGRF與COP軌跡資料,可以應用於羽球專項訓練,做為了解下肢動力學的參數依據。
Experiments to quantify the kinetic parameters of the lower limb of a badminton footwork were generally carried out in a laboratory setting using force plates. Recently, wearable devices have been developed to be cheaper, smaller and less physically intrusive, and increasingly used for sports measurement. Many current studies use inertial measurement unit (IMU) and wireless plantar pressure insoles for applications such as load measurement, movement recognition and lower limb kinetic parameters. Object: To quantify the lower limb kinetic parameters, acceleration parameters and movement differences in footwork movements using IMU and wireless foot pressure insoles, which will serve as references for the future development of smart badminton shoes. Methods: Fifteen college badminton players were recruited, the vertical ground reaction force (VGRF), center of pressure (COP) trajectory and peak acceleration of the feet were measured. Results: Significant differences were found between the racket-side and non-racket-side feet in footwork training. The acceleration peaks can distinguish between the vertical, medial-lateral, and anterior-posterior contributions of different footwork movements, and the IMU can be used to quantify footwork characteristics. The COP trajectory identifies the difference of footwork and can be used as references for the footwork movement. Conclusion: The VGRF, COP trajectory and acceleration peaks can be used to assess footwork movement characteristics in badminton. The VGRF and COP trajectory data from the wireless plantar pressure system can be applied to badminton footwork training as a parameter for understanding lower limb kinetic parameters.
王春貴、林瑞興(2010)。羽球運動之介紹與生理探討。屏教大體育,(13),21-25。
杜冠樺、黃淑玲、劉宗翰、黃建峯、許維君與相子元(2014)。羽球步伐分析。華人運動生物力學期刊,(10),24-29。
楊珮瑜、唐晏珊與相子元(2020)。以無線式鞋內足壓系統量測垂直地面反作用力之效度分析。臺灣運動生物力學年會暨運動科學研討會發表之論文,國立體育大學,臺灣。
Alcock, A., & Cable, N. T. (2009). A comparison of singles and doubles badminton: heart rate response, player profiles and game characteristics. International Journal of Performance Analysis of Sport, 9, 228-237.
Bańkosz, Z., & Winiarski, S. (2020). Using wearable inertial sensors to estimate kinematic parameters and variability in the table tennis topspin forehand stroke. Applied Bionics and Biomechanics, 2020.
Bessone, V., Petrat, J., & Schwirtz, A. (2019). Ground reaction forces and kinematics of ski jump landing using wearable sensors. Sensors, 19(9), 2011.
Burns, G. T., Zendler, J.D., & Zernicke, R. F. (2019). Validation of a wireless shoe insole for ground reaction force measurement. Journal of Sports Sciences, 37(10), 1129-1138.
Büthe, L., Blanke, U., Capkevics, H., & Tröster, G. (2016). A wearable sensing system for timing analysis in tennis. In 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp. 43-48). IEEE.
Fu, L., Ren, F., & Baker, J. S. (2017). Comparison of joint loading in badminton lunging between professional and amateur badminton players. Applied Bionics and Biomechanics, 2017.
Fu, W. J., Liu, Y., & Wei, Y. (2009). The characteristics of plantar pressure in typical footwork of badminton. Footwear Science, 1(S1), 113-115.
Guo, Y., Storm, F., Zhao, Y., Billings, S. A., Pavic, A., Mazzà, C., & Guo, L. Z. (2017). A new proxy measurement algorithm with application to the estimation of vertical ground reaction forces using wearable sensors. Sensors, 17(10), 2181.
Hindle, B. R., Keogh, J. W., & Lorimer, A. V. (2020). Validation of spatiotemporal and kinematic measures in functional exercises using a minimal modeling inertial sensor methodology. Sensors, 20(16), 4586.
Hong, Y., Wang, S. J., Lam, W.K., & Cheung, J.T-M. (2014). Kinetics of badminton lunges in four directions. Journal of Applied Biomechanics, 30, 113-118.
Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3-12.
Hopkins, W. G. (2000). Measures of reliability in sports medicine and science. Sports Medicine, 30(1), 1-15.
Hu, X., Li, J.X., Hong, Y., & Wang, L. (2015). Characteristics of plantar loads in maximum forward lunge tasks in badminton. PLOS ONE, 10, e0137558.
Huang, M. T., Lee, H. H., Lin, C. F., Tsai, Y. J., & Liao, J. C. (2014). How does knee pain affect trunk and knee motion during badminton forehand lunges? Journal of Sports Sciences, 32(7), 690-700.
Huang, P., Fu, L., Zhang, Y., Fekete, G., Ren, F., Gu, Y. (2019). Biomechanical analysis methods to assess professional badminton players' lunge performance. Journal of Visualized Experiments. (148), e58842, doi:10.3791/58842.
Hung, C. L., Hung, M. H., Chang, C. Y., Wang, H. H., Ho, C. S., & Lin, K. C. (2020). Influences of lateral jump smash actions in different situations on the lower extremity load of badminton players. Journal of Sports Science & Medicine, 19(2), 264–270.
Jacob, A., Zakaria, W. N. W., & Tomari, M. R. B. M. (2016). Implementation of IMU sensor for elbow movement measurement of badminton players. Paper presented at the 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA).
Jiang, X., Napier, C., Hannigan, B., Eng, J. J., & Menon, C. (2020). Estimating vertical ground reaction force during walking using a single inertial sensor. Sensors, 20(15), 4345.
Karatsidis, A., Bellusci, G., Schepers, H. M., De Zee, M., Andersen, M. S., & Veltink, P. H. (2017). Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors, 17(1), 75.
Khoshnoud, F., & De Silva, C. W. (2012). Recent advances in MEMS sensor technology-mechanical applications. Instrumentation and Measurement Magazine, IEEE, 15(2), 14-24. doi:10.1109/MIM.2012.6174574
Kimura, Y., Ishibashi, Y., Tsuda, E., Yamamoto, Y., Tsukada, H. & Toh, S. (2010). Mechanisms for anterior cruciate ligament injuries in badminton. British Journal of Sports Medicine, 44(15), 1124-1127.
Kimura, Y., Ishibashi, Y., Tsuda, E., Yamamoto, Y., Hayashi, Y. & Sato, S. (2012) Increased knee valgus alignment and moment during single-leg landing after overhead stroke as a potential risk factor of anterior cruciate ligament injury in badminton. British Journal of Sports Medicine, 46(3), 207-213.
Kuntze, G., Mansfield, N., & Sellers, W. (2010). A biomechanical analysis of common lunge tasks in badminton. Journal of Sports Sciences, 28, 183-191.
Kwan, M., Cheng, C. L., Tang, W. T., & Rasmussen, J. (2010). Measurement of badminton racket deflection during a stroke. Sports Engineering, 12(3), 143-153.
Lam, W.K., Ding, R., & Qu, Y. (2017). Ground reaction forces and knee kinetics during single and repeated badminton lunges. Journal of Sports Sciences, 35, 587-592.
Lam, W. K., Wong, D. W. C., & Lee, W. C. C. (2020). Biomechanics of lower limb in badminton lunge: a systematic scoping review. PeerJ, 8, e10300.
Lapinski, M., Brum Medeiros, C., Moxley Scarborough, D., Berkson, E., Gill, T. J., Kepple, T., & Paradiso, J. A. (2019). A wide-range, wireless wearable inertial motion sensing system for capturing fast athletic biomechanics in overhead pitching. Sensors, 19(17), 3637.
Lee, Y. S., Ho, C. S., Shih, Y., Chang, S. Y., Robert, F. J., & Shiang, T. Y. (2015). Assessment of walking, running, and jumping movement features by using the inertial measurement unit. Gait and Posture, 41(4), 877-881. doi:10.1016/j.gaitpost.2015.03.007
Lee, J. J. J., & Loh, W. P. (2019). A state-of-the-art review on badminton lunge attributes. Computers in Biology and Medicine, 108, 213-222.
Lin, C. F., Hua, S. H., Huang, M. T., Lee, H. H., & Liao, J. C. (2015). Biomechanical analysis of knee and trunk in badminton players with and without knee pain during backhand diagonal lunges. Journal of Sports Sciences, 33(14), 1429-1439.
Liu, T. H., Chen, W. H., Shih, Y., Lin, Y. C., Yu, C. & Shiang, T.Y. (2021). Better position for the wearable sensor to monitor badminton sport training loads. Sports Biomechanics, DOI: 10.1080/14763141.2021.1875033
Liu, X., Li, N., Xu, G., & Zhang, Y. (2020). A Novel Robust Step Detection Algorithm for Foot-mounted IMU. IEEE Sensors Journal.
Malawski, F., & Kwolek, B. (2016, September). Classification of basic footwork in fencing using accelerometer. In 2016 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) (pp. 51-55). IEEE.
Martini, E., Fiumalbi, T., Dell’Agnello, F., Ivanić, Z., Munih, M., Vitiello, N., & Crea, S. (2020). Pressure-sensitive insoles for real-time gait-related applications. Sensors, 20(5), 1448.
Mei. Q., Gu, Y., Fu, F., Fernandez, J. (2017). A biomechanical investigation of right-forward lunging step among badminton players. Journal of Sports Sciences, 35,457-462.
Nadzalan, A. M., Azmi, S. H., Mohamad, N. I., Lee, J. L. F., Tan, K., & Chinnasee, C. (2018). Kinematics analysis of dominant and non-dominant lower limb during step and jump forward lunge in badminton. Journal of Fundamental and Applied Sciences, 10(3S), 232-242.
Ngoh, K. J. H., Gouwanda, D., Gopalai, A. A., & Chong, Y. Z. (2018). Estimation of vertical ground reaction force during running using neural network model and uniaxial accelerometer. Journal of Biomechanics, 76, 269-273.
Nielsen, M.H., Lund, J. H., Lam, W. K., & Kersting, U. G. (2020). Differences in impact characteristics, joint kinetics and measurement reliability between forehand and backhand forward badminton lunges, Sports Biomechanics, 19(4), 547-560.
Panebianco, G. P., Bisi, M. C., Stagni, R., & Fantozzi, S. (2018). Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait & posture, 66, 76-82.
Peebles, A. T., Maguire, L. A., Renner, K. E., & Queen, R. M. (2018). Validity and repeatability of single-sensor loadsol insoles during landing. Sensors, 18(12), 4082.
Phomsoupha, M., & Laffaye, G. (2015). The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Medicine, 45(4), 473-495.
Phomsoupha, M., & Laffaye, G. (2020). Injuries in badminton: a review. Science & Sports, 35(4), 189-199.
Ramasamy, Y., Usman, J., Sundar, V., Towler, H. & King, M. (2021). Kinetic and kinematic determinants of shuttlecock speed in the forehand jump smash performed by elite male Malaysian badminton players, Sports Biomechanics, DOI: 10.1080/14763141.2021.1877336.
Raper, D. P., Witchalls, J., Philips, E. J., Knight, E., Drew, M. K., & Waddington, G. (2018). Use of a tibial accelerometer to measure ground reaction force in running: A reliability and validity comparison with force plates. Journal of Science and Medicine in Sport, 21(1), 84-88.
Reeves, J., Hume, P. A., Gianotti, S., Wilson, B., & Ikeda, E. (2015). A retrospective review from 2006 to 2011 of lower extremity injuries in badminton in New Zealand. Sports, 3(2), 77-86.
Renner, K. E., Williams, D. S., & Queen, R. M. (2019). The reliability and validity of the Loadsol® under various walking and running conditions. Sensors, 19(2), 265.
Sasaki, S., Nagano, Y., & Ichikawa, H. (2018). Loading differences in single-leg landing in the forehand-and backhand-side courts after an overhead stroke in badminton: A novel tri-axial accelerometer research. Journal of Sports Sciences, 36(24), 2794-2801.
Setuain, I., Martinikorena, J., Gonzalez-Izal, M., Martinez-Ramirez, A., Gómez, M., Alfaro-Adrian, J., & Izquierdo, M. (2016). Vertical jumping biomechanical evaluation through the use of an inertial sensor-based technology. Journal of Sports Sciences, 34(9), 843-851.
Shariff. A., George, J., & Ramlan, A. (2009). Musculoskeletal injuries among Malaysian badminton players. Singapore Medical Journal, 50, 1095-1097.
Shiang, T. Y., Hsieh, T. Y., Lee, Y. S., Wu, C. C., Yu, M. C., Mei, C. H. and Tai, I. H. (2016). Determine the Foot Strike Pattern Using Inertial Sensors. Journal of Sensors.
Shih, Y., Ho, C. S., & Shiang, T. Y. (2014). Measuring kinematic changes of the foot using a gyro sensor during intense running. Journal of Sports Sciences, 32(6), 550-556. doi: 10.1080/02640414.2013.843013
Tan, T., Strout, Z. A., & Shull, P. B. (2020). Accurate impact loading rate estimation during running via a subject-independent convolutional neural network model and optimal IMU placement. IEEE Journal of Biomedical and Health Informatics.
Ward, D. S., Evenson, K. R., Vaughn, A., Rodgers, A. B., & Troiano, R. P. (2005). Accelerometer use in physical activity: best practices and research recommendations. Medicine and Science in Sports and Exercise, 37(11 Suppl), S582-8.
Wong, P. L., Chamari, K., Chaouachi, A., Wisløff, U., & Hong, Y. (2007). Difference in plantar pressure between the preferred and non-preferred feet in four soccer-related movements. British Journal of Sports Medicine, 41(2), 84-92.
Wong, T. K., Ma, A. W., Liu, K. P., Chung, L. M., Bae, Y.-H., Fong, S. S., Ganesan, B. & Wang, H.-K. (2019). Balance control, agility, eye–hand coordination, and sport performance of amateur badminton players: A cross-sectional study. Medicine, 98(2).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top