:::

詳目顯示

回上一頁
題名:中文語意處理之神經有效性連結
作者:范利霙 引用關係
作者(外文):Li-Ying Fan
校院名稱:國立臺灣大學
系所名稱:心理學研究所
指導教授:周泰立
學位類別:博士
出版日期:2014
主題關鍵詞:有效性連結語意動態因果推論模型(DCM)擴散頻譜磁振造影(DSI)effective connectivitystructural connectivitysemanticsdynamic causal modelling (DCM)Diffusion spectrum imaging (DSI)
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:25
目的:本研究利用功能性磁振造影(fMRI)、動態因果推論模型(DCM) 、階層式模型比較及擴散頻譜磁振造影(DSI),探討中文語意處理的神經機制,所有受試者需要判斷視覺呈現的中文字對是否在意義上相關。方法: 在實驗一和實驗二,將利用DCM計算不同腦區之間的動態連結,並找出最適當的模型來解釋不同腦區間的連結。受試者皆為正常大人,並採用兩種刺激字對,分別為語意相關組與語意無關組。實驗三則利用Bayesian Model Selection (BMS) and Bayesian Model Averaging (BMA)找出最適當的模型,並探討發展上不同腦區間神經動態連結之差異。受試者分別為17位的正常大人及17位的孩童,而刺激字對將依照語意關聯強度區分成三組字對(高語意、低語意、無關語意)。實驗四結合DCM及DSI,進一步探討不同腦區之間的神經動態連結及白質纖維結構上之發展差異。結果:在功能性磁振造影的結果顯示,實驗一和實驗二皆發現共同的活化腦區於左腦腹側下額葉(IFG, BA 45, 47)及左腦中顳葉 (MTG, BA 21)。而實驗三和實驗四在大人及孩童組皆發現在左腦腹側下額葉,左腦中顳葉及左腦梭狀回(FG, BA 37),會產生顯著的神經活化。而在實驗四中的擴散頻譜磁振造影結果顯示,成人在inferior frontal-occipital fasciculus (IFOF)的非等向性指標(generalized fractional anisotropy, GFA)較孩童高。在動態因果推論模型推論出的有效性連結,實驗一發現從左腦腹側下額葉到左腦中顳葉的顯著調節效果(modulatory effects)、從左腦中顳葉到左腦腹側下額葉的顯著調節效果及從左腦梭狀回到左腦中顳葉的顯著調節效果。在實驗二最適當的模型中,發現兩條顯著調節效果,分別從左腦腹側下額葉到左腦中顳葉和從左腦梭狀回到左腦中顳葉。實驗三亦發現兩組都有從左腦梭狀回到左腦中顳葉有顯著的調節效果。同時,也發現成人組比孩童組,在左腦梭狀回到左腦腹側下額葉的調節效果呈現更顯著的影響。實驗四主要發現成人相較於比孩童的發展變化,是從左腦梭狀回到左腦腹側下額葉的調節效果。結論:首先,左腦腹側下額葉到左腦中顳葉的顯著調節效果,推論為左腦腹側下額葉負責從上到下提取語意表徵的歷程。同時,從左腦中顳葉到左腦腹側下額葉的顯著調節效果,推論左腦中顳葉負責提供語意記憶中相關的表徵聯結,協助左腦腹側下額葉進行提取。再者,從左腦梭狀回到左腦中顳葉的顯著調節效果,推論左梭狀回將字形訊息藉由從下到上的歷程,傳送至左腦中顳葉處理語意表徵訊息。最後,在成人組發現從左腦梭狀回到左腦腹側下額葉調節效果及弱相關語意組有較強的調節效果。總結,在中文語意處理的發展歷程中,相較於孩童,成人有較顯著的左腦腹側下額葉及中顳葉的腦區活化,較成熟的腹側白質纖維束(IFOF),及較強的左腦梭狀回到左腦腹側下額葉的調節效果。表示隨著年齡增長,腹側腦區及連結的成熟,使成人有較好的字形至語意的對應歷程,亦能更有效的進行中文語意的處理。
Purpose: functional magnetic resonance imaging (fMRI), dynamic causal modelling (DCM) hierarchical model comparisons, and diffusion spectrum imaging (DSI) were used to investigate the effective connectivity and structural connectivity during semantic judgments to visual Chinese characters. All participants were asked to indicate if character pairs were related in meaning. Methods: In Experiments 1 and 2, the use of DCM was to examine the directional influences among brain regions, and to seek for the optimal model in the semantic network by hierarchical model comparisons. In adult participants, the experimental stimuli were character pairs that included semantically-related and semantically-unrelated pairs. In Experiment 3, Bayesian Model Selection (BMS) and Bayesian Model Averaging (BMA) were used to seek for the optimal model. In 17 children (10- to 13-year-olds) and 17 adults, the experimental stimuli included high association, low association, and unrelated pairs. In Experiment 4, fMRI, DSI and DCM were used to study the developmental changes of neural correlates, structural connectivity, and effective connectivity during semantic judgment. Results: In conventional fMRI analysis, common activation was found in left ventral inferior frontal gyrus (IFG, BA 45, 47), left posterior middle temporal gyrus (MTG, BA 21) in Experiments 1 and 2. In Experiment 3, both groups showed greater activation in left ventral IFG, left MTG, and left fusiform gyrus (FG, BA37). In Experiment 4, compared to children, adults showed greater activation in the left ventral IFG and MTG, and adults had significantly greater structural connectivity in the left ventral pathway (inferior frontal occipital fasciculus, IFOF) than children. As for effective connectivity from DCM analyses, significant modulatory effects were found from left ventral IFG to left MTG, from left MTG to left ventral IFG, and from left FG to left MTG in Experiment 1. In Experiment 2, the results of the optimal model showed significant modulatory effects from ventral IFG to MTG and from FG to MTG. In Experiment 3, a significant bottom-up effect was found from FG to MTG. Moreover, a bottom-up effect from FG to ventral IFG was stronger than a top-down effect from ventral IFG to FG in adults, and that the bottom-up effect from FG to ventral IFG was stronger in adults compared to children. In Experiment 4, adults showed significantly stronger bottom-up connection from FG to ventral IFG than children in the related condition. Conclusion: First, the modulatory effects from left ventral IFG to left MTG suggested top-down influences of the frontal cortex on retrieval of semantic representations. Second, the modulatory effects from left MTG to left ventral IFG suggested the role of MTG on providing relevant associations in verbal semantic memory for ventral IFG to perform retrieval. Third, the modulatory effect from left FG to left MTG suggested bottom-up orthographic influences on semantic representations. The most important finding was the bottom-up effect from FG to ventral IFG in adults, implying developmental changes in semantic processing. In conclusion, our findings suggest that age-related maturation in brain activation (ventral IFG and MTG) and structural connectivity (IFOF) might be associated with the bottom-up influence of orthographic representations on retrieving semantic representations for processing Chinese characters.
Addis, D. R., &; McAndrews, M. P. (2006). Prefrontal and hippocampal contributions to the generation and binding of semantic associations during successful encoding. NeuroImage, 33, 1194-1206.
Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., &; Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47, 907-918.
Badre, D., &; Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45, 2883-2901.
Binder, J. R., Desai, R. H., Graves, W. W., &; Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767-2796.
Bitan, T., Booth, J. R., Choy, J., Burman, D. D., Gitelman, D. R., &; Mesulam, M.-M. (2005). Shifts of effective connectivity within a language network during rhyming and spelling. The Journal of Neuroscience, 25, 5397-5403.
Bitan, T., Burman, D. D., Lu, D., Cone, N. E., Gitelman, D. R., Mesulam, M.-M., &; Booth, J. R. (2006). Weaker top-down modulation from the left inferior frontal gyrus in children. NeuroImage, 33, 991-998.
Bitan, T., Cheon, J., Lu, D., Burman, D. D., Gitelman, D. R., Mesulam, M.-M., &; Booth, J. R. (2007). Developmental changes in activation and effective connectivity in phonological processing. NeuroImage, 38, 564-575.
Bitan, T., Lifshitz, A., Breznitz, Z., &; Booth, J. R. (2010). Bidirectional connectivity between hemispheres occurs at multiple levels in language processing but depends on sex. The Journal of Neuroscience, 30, 11576-11585.
Bokde, A. L. W., Tagamets, M.-A., Friedman, R. B., &; Horwitz, B. (2001). Functional interactions of the inferior frontal cortex during the processing of words and word-like stimuli. Neuron, 30, 609-617.
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., &; Mesulam, M. M. (2002a). Modality independence of word comprehension. Human Brain Mapping, 16, 251-261.
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., &; Mesulam, M.-M. (2002b). Functional anatomy of intra- and cross-modal lexical tasks. NeuroImage, 16, 7-22.
Booth, J. R., Lu, D., Burman, D. D., Chou, T. L., Jin, Z., Peng, D. L., . . . Liu, L. (2006). Specialization of phonological and semantic processing in Chinese word reading. Brain research, 1071, 197-207.
Brauer, J., Anwander, A., &; Friederici, A. D. (2011). Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21, 459-466.
Brauer, J., Anwander, A., Perani, D., &; Friederici, A. D. (2013). Dorsal and ventral pathways in language development. Brain and Language. doi: 10.1016/j.bandl.2013.03.001
Burock, M. A., Buckner, R. L., Woldorff, M. G., Rosen, B. R., &; Dale, A. M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport, 9, 3735-3739.
Cao, F., Bitan, T., &; Booth, J. R. (2008). Effective brain connectivity in children with reading difficulties during phonological processing. Brain and Language, 107, 91-101.
Chaminade, T., &; Fonlupt, P. (2003). Changes of effective connectivity between the lateral and medial parts of the prefrontal cortex during a visual task. European Journal of Neuroscience, 18, 675-679.
Chee, M. W. L., Weekes, B., Lee, K. M., Soon, C. S., Schreiber, A., Hoon, J. J., &; Chee, M. (2000). Overlap and dissociation of semantic processing of Chinese characters, English words, and pictures: evidence from fMRI. NeuroImage, 12, 392-403.
Chou, T. L., Booth, J. R., Bitan, T., Burman, D. D., Bigio, J. D., Cone, N. E., . . . Cao, F. (2006a). Developmental and skill effects on the neural correlates of semantic processing to visually presented words. Human Brain Mapping, 27, 915-924.
Chou, T. L., Booth, J. R., Burman, D. D., Bitan, T., Bigio, J. D., Lu, D., &; Cone, N. E. (2006b). Developmental changes in the neural correlates of semantic processing. NeuroImage, 29, 1141-1149.
Chou, T. L., Chen, C. W., Wu, M. Y., &; Booth, J. R. (2009a). The role of inferior frontal gyrus and inferior parietal lobule in semantic processing of Chinese characters. Experimental Brain Research, 198, 465-475.
Chou, T. L., Chen, C. W., Fan, L. Y., Chen, S. Y., &; Booth, J. R. (2009b). Testing for a cultural infl uence on reading for meaning in the developing brain: the neural basis of semantic processing in Chinese children. Frontiers in Human Neuroscience, 3, 1-9.
Cohen, L., Jobert, A., Bihan, D. L., &; Dehaene, S. (2004). Distinct unimodal and multimodal regions for word processing in the left temporal cortex. NeuroImage, 23, 1256-1270.
Coltheart, M., Rastle, K., Perry, C., Langdon, R., &; Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204-256.
Cone, N. E., Burman, D. D., Bitan, T., Bolger, D. J., &; Booth, J. R. (2008). Developmental changes in brain regions involved in phonological and orthographic processing during spoken language processing. NeuroImage, 41, 623-635.
Daunizeau, J., David, O., &; Stephan, K. E. (2011). Dynamic causal modelling: A critical review of the biophysical and statistical foundations. NeuroImage, 58, 312-322.
Deng, Y., Booth, J. R., Chou, T. L., Ding, G. S., &; Peng, D. L. (2008). Item-specific and generalization effects on brain activation when learning Chinese characters. Neuropsychologia, 46, 1864-1876.
Ding, G., Perry, C., Peng, D., Ma, L., Li, D., Xu, S., . . . Yang, J. (2003). Neural mechanisms underlying semantic and orthographic processing in Chinese-English bilinguals. Neuroreport, 14, 1557-1562.
Dong, Y., Nakamura, K., Okada, T., Hanakawa, T., Fukuyama, H., Mazziotta, J. C., &; Shibasaki, H. (2005). Neural mechanisms underlying the processing of Chinese words: An fMRI study. Neuroscience Research, 52, 139-145.
Duffau, H., Gatignol, P., Mandonnet, E., Peruzzi, P., Tzourio-Mazoyer, N., &; Capelle, L. (2005). New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain, 128, 797-810.
Ehrenfeucht, A. B. A., Haussler, D., &; Warmuth, M. K. (1987). Occam’s razor. Information Processing Letters, 24, 377-380.
Fan, L. Y., Lee, S. H., &; Chou, T. L. (2010). Interaction between brain regions during semantic processing in Chinese adults. Language and Linguistics, 11, 159-182.
Fan, L. Y., &; Chou, T. L. (2012). Hierarchical model comparisons on effective connectivity in semantic judgments of Chinese characters. Chinese Journal of Psychology, 54, 1-16.
Fiez, J. A. (1997). Phonology, semantics, and the role of the left inferior prefrontal cortex. Human Brain Mapping, 5, 79-83.
Fletcher, P. C., Shallice, T., &; Dolan, R. J. (2000). “Sculpting the response space”—An account of left prefrontal activation at encoding. NeuroImage, 12, 404-417.
Friston, K. J., Harrison, L., &; Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 1273-1302.
Fritzsche, K. H., Laun, F. B., Meinzer, H.-P., &; Stieltjes, B. (2010). Opportunities and pitfalls in the quantification of fiber integrity: What can we gain from Q-ball imaging? NeuroImage, 51, 242-251.
Fu, S., Chen, Y., Smith, S., Iversen, S., &; Matthews, P. M. (2002). Effects of word form on brain processing of written Chinese. NeuroImage, 17, 1538-1548.
Gaillard, W. D., Sachs, B. C., Whitnah, J. R., Ahmad, Z., Balsamo, L. M., Petrella, J. R., . . . Grandin, C. B. (2003). Developmental aspects of language processing: fMRI of verbal fluency in children and adults. Human Brain Mapping, 18, 176-185.
Gitelman, D. R., Nobre, A. C., Sonty, S., Parrish, T. B., &; Mesulam, M.-M. (2005). Language network specializations: An analysis with parallel task designs and functional magnetic resonance imaging. NeuroImage, 26, 975-985.
Glasser, M. F., &; Rilling, J. K. (2008). DTI tractography of the human brain''s language pathways. Cerebral Cortex, 18, 2471-2482.
Gold, B. T., Balota, D. A., Jones, S. J., Powell, D. K., Smith, C. D., &; Andersen, A. H. (2006). Dissociation of automatic and strategic lexical-semantics: Functional magnetic resonance imaging evidence for differing roles of multiple frontotemporal regions. The Journal of Neuroscience, 26, 6523-6532.
Gorczewski, K., Mang, S., &; Klose, U. (2009). Reproducibility and consistency of evaluation techniques for HARDI data. Magnetic Resonance Materials in Physics, Biology and Medicine, 22, 63-70.
Grossman, M., Koenig, P., Glosser, G., DeVita, C., Moore, P., Rhee, J., . . . Gee, J. (2003). Neural basis for semantic memory difficulty in Alzheimer''s disease: an fMRI study. Brain, 126(Pt 2), 292-311.
Hagoort, P., Brown, C. M., &; Osterhout, L. (1999). The neurocognition of syntactic processing. In C. M. Brown, &; P. Haggort (Eds.). Neurocognition of Language, pp. 273-316.
Hart, J., &; Gordon, B. (1990). Delineation of single-word semantic comprehension deficits in aphasia, with anatomical correlation. Annals of Neurology, 27, 226-231.
Herbster, A. N., Mintun, M. A., Nebes, R. D., &; Becker, J. T. (1997). Regional cerebral blood flow during word and nonword reading. Human Brain Mapping, 5, 84-92.
Hickok, G., &; Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393-402.
Hoeft, F., Meyler, A., Hernandez, A., Juel, C., Taylor-Hill, H., Martindale, J. L., . . . Gabrieli, J. D. E. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. PNAS, 104, 4234-4239.
Homae, F., Yahata, N., &; Sakai, K. L. (2003). Selective enhancement of functional connectivity in the left prefrontal cortex during sentence processing. NeuroImage, 20, 578-586.
Hsu, Y. C., Hsu, C. H., &; Tseng, W. Y. I. (2012). A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets. NeuroImage, 63, 818-834.
Hue, C. W., Kao, C. H., &; Lo, M. (2005). Association norms for 600 Chinese characters. Monographs of Chinese Journal of Psychology, (Serial No. 0501).
Josephs, O., &; Henson, R. N. A. (1999). Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philosophical Transactions of the Royal Society Biological Science, 354, 1215-1228.
Lau, E. F., Phillips, C., &; Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. [Research Support, N.I.H., Extramural Research Support, U.S. Gov''t, Non-P.H.S.]. Nat Rev Neurosci, 9(12), 920-933. doi: 10.1038/nrn2532
Lebel, C., Walker, L., Leemans, A., Phillips, L., &; Beaulieua, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40, 1044-1055.
Lee, S. H., Chen, S. Y., &; Chou, T. L. (2009). Effects of vocabulary sizes on semantic processing to Chinese characters between fifth graders and adults. Formosa Journal of Mental Health, 22, 345-382.
Lin, C. Y., Xiao, Z. W., Shen, L., Zhang, J. X., &; Weng, X. C. (2007). Similar brain activation patterns for writing logographic and phonetic symbols in Chinese. Neuroreport, 18, 1621-1625.
Liu, C. L., Hue, C. W., Chen, C. C., Chuang, K. H., Liang, K. C., Wang, Y. H., . . . Chen, J. H. (2006). Dissociated roles of the middle frontal gyri in the processing of Chinese characters. Neuroreport, 17, 1397-1401.
Liu, L., Deng, X., Peng, D., Cao, F., Ding, G., Jin, Z., . . . Booth, J. R. (2009). Modality- and task-specific brain regions involved in Chinese lexical processing. Journal of Cognitive Neuroscience, 21, 1473-1487.
Liu, L., Vira, A., Friedman, E., Minas, J., Bolger, D., Bitan, T., &; Booth, J. (2010). Children with reading disability show brain differences in effective connectivity for visual, but not auditory word comprehension. PloS One, 5, e13492.
Lo, Y. C., Chen, Y. J., Hsu, Y. C., &; Tseng, W. Y. I. (2013). A white matter tract atlas based on a diffusion spectrum imaging (DSI) template. Paper presented at the The International Society for Magnetic Resonance in Medicine, Salt lake city, Utah, USA.
Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 25-45.
Mashal, N., Faust, M., Hendler, T., &; Jung-Beeman, M. (2008). Hemispheric differences in processing the literal interpretation of idioms: Converging evidence from behavioral and fMRI studies. Cortex, 44, 848-860.
McCandliss, B. D., Cohen, L., &; Dehaene, S. (2003). The visual word form area: expertise for reading in the fusiform gyrus. TRENDS in Cognitive Sciences, 7, 293-299.
McNorgan, C., Alvarez, A., Bhullar, A., Gayda, J., &; Booth, J. R. (2011). Prediction of reading skill several years later depends on age and brain region: Implications for developmental models of reading. Journal of Cognitive Neuroscience, 31, 9641-9648.
Mechelli, A., Price, C. J., Noppeney, U., &; Friston, K. J. (2003). A dynamic causal modeling study on category effects: Bottom–up or Top–down mediation? Journal of Cognitive Neuroscience, 15, 925-934.
Mechelli, A., Crinion, J. T., Long, S., Friston, K. J., Ralph, M. A. L., Patterson, K., . . . Price, C. J. (2005a). Dissociating reading processes on the basis of neuronal interactions. Journal of Cognitive Neuroscience, 17, 1753-1765.
Mechelli, A., Price, C. J., Friston, K. J., &; Ashburner, J. (2005b). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging Reviews, 1, 105-113.
Mesulam, M.-M. (1998). From sensation to cognition. Brain, 121, 1013-1052.
Montaldi, D., Mayes, A. R., Barnes, A., Pirie, H., Hadley, D. M., Patterson, J., &; Wyper, D. J. (1998). Associative encoding of pictures activates the medial temporal lobes. Human Brain Mapping, 6, 85-104.
Mummery, C. J., Patterson, K., Hodges, J. R., &; Price, C. J. (1998). Functional neuroanatomy of the semantic system: Divisible by what? Journal of Cognitive Neuroscience, 10, 766-777.
Nakamura, K., Honda, M., Okada, T., Hanakawa, T., Toma, K., Fukuyama, H., . . . Shibasaki, H. (2000). Participation of the left posterior inferior temporal cortex in writing and mental recall of kanji orthography: A functional MRI study. Brain, 123, 954-967.
Noppeney, U., &; Price, C. J. (2002). Retrieval of visual, auditory, and abstract semantics. NeuroImage, 15, 917-926.
Paus, T., Keshavan, M., &; Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947-957.
Penny, W. D., Stephan, K. E., Mechelli, A., &; Friston, K. J. (2004). Comparing dynamic causal models. NeuroImage, 22, 1157-1172.
Penny, W. D., Stephan, K. E., Daunizeau, J., Rosa, M. J., Friston, K. J., M., T., . . . Leff, A. P. (2010). Comparing families of dynamic causal models. PLoS computational biology, 6, e1000709.
Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., . . . Friedericih, A. D. (2011). Neural language networks at birth. PNAS, 108, 16056-16061.
Plaut, D. C., McClelland, J. L., Seidenberg, M. S., &; Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56-115.
Plaut, D. C., &; Booth, J. (2000). Individual and developmental differences in semantic priming: Empirical and computational support for a single-mechanism account of lexical processing. Psychological Review, 107, 786-823.
Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., &; Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage, 10, 15-35.
Pugh, K. R., Mencl, W. E., Shaywitz, B. A., Shaywitz, S. E., Fulbright, R. K., Constable, R. T., . . . Gore, J. C. (2000). The angular gyrus in developmental dyslexia: task-specific differences in functional connectivity within posterior cortex. Psychological Science, 11, 51-56.
Rauschecker, J. P., &; Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 716-724.
Reese, T. G., Heid, O., Weisskoff, R. M., &; Wedeen, V. J. (2003). Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magnetic Resonance in Medicine, 49, 177-182.
Richlan, F., Kronbichler, M., &; Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30, 3299-3308.
Rossell, S. L., Bullmore, E. T., Williams, S. C. R., &; David, A. S. (2001). Brain activation during automatic and controlled processing of semantic relations: A priming experiment using lexical decision. Neuropsychologia, 39, 1167-1176.
Saura, D., Kreher, B. r. W., Schnell, S., mmerer, D. K., Kellmeyer, P., Vry, M.-S., . . . Weiller, C. (2008). Ventral and dorsal pathways for language. PNAS, 18, 18035-18040.
Schlaggar, B. L., Brown, T. T., Lugar, H. M., Visscher, K. M., Miezin, F. M., &; Petersen, S. E. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 1476-1479.
Schmithorst, V. J., &; Yuan, W. (2010). White matter development during adolescence as shown by diffusion MRI. Brain cognition, 72, 16-25.
Sinica, C. (1998). Academia Sinica balanced corpus (version 3) Taipei, Taiwan.
Smith, E. E. (1995). Concepts and categorization. In S. M. O. Kosslyn, D. (Ed.), An invitation to cognitive science (2 ed., Vol. 2, pp. 1-25). Cambridge (MA): MIT Press.
Sonty, S. P., Mesulam, M.-M., Weintraub, S., Johnson, N. A., Parrish, T. B., &; Gitelman, D. R. (2007). Altered effective connectivity within the language network in primary progressive aphasia. The Journal of Neuroscience, 27, 1334-1345.
Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., &; Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24, 8223-8231.
Stamatakis, E. A., Marslen-Wilson, W. D., Tyler, L. K., &; Fletcher, P. C. (2005). Cingulate control of fronto-temporal integration reflects linguistic demands: a three-way interaction in functional connectivity. NeuroImage, 28, 115-121.
Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., &; Friston, K. J. (2009). Bayesian model selection for group studies. NeuroImage, 46, 1004-1017.
Stephan, K. E., Penny, W. D., Moran, R. J., Ouden, H. E. M. d., Daunizeau, J., &; Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. NeuroImage, 49, 3099-3109.
Tan, L. H., Spinks, J. A., Gao, J. H., Liu, H. L., Perfetti, C. A., Xiong, J., . . . Fox, P. T. (2000). Brain activation in the processing of Chinese characters and words: a functional MRI study. NeuroImage, 10, 16-27.
Tan, L. H., Liu, H. L., Perfetti, C. A., Spinks, J. A., Fox, P. T., &; Gao, J. H. (2001). The neural system underlying Chinese logograph reading. NeuroImage, 13, 836-846.
Thompson-Schill, S. L., D’Esposito, M., &; Kan, I. P. (1999). Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron, 23, 513-522.
Thompson, C. K., Bonakdarpour, B., Fix, S. C., Blumenfeld, H. K., Parrish, T. B., Gitelman, D. R., &; Mesulam, M.-M. (2007). Neural correlates of verb argument structure processing. Journal of cognitive neuroscience, 19, 1753-1767.
Wagner, A. D., Pare-Blagoev, E. J., Clark, J., &; Poldrack, R. A. (2001). Recovering meaning: Left prefrontal cortex guides controlled semantic retrieval. Neuron, 31, 329-338.
Wedeen, V. J., Hagmann, P., Tseng, W.-Y. I., Reese, T. G., &; Weisskoff, R. M. (2005). Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine, 54, 1377-1386.
Wheatley, T., Weisberg, J., Beauchamp, M. S., &; Martin, A. (2005). Automatic priming of semantically related words reduces activity in the fusiform gyrus. Journal of Cognitive Neuroscience, 17, 1871-1885.
Wu, J. T., &; Liu, I. M. (1987). Exploring the phonetic and semantic features of Chinese words Taiwan National Science Council: Technical Report NSC75-0301-H002-024.
Wu, J. T., &; Chen, H. C. (2000). Evaluating semantic priming and homophonic priming in recognition and naming of Chinese characters. Chinese Journal of Psychology, 42, 65-86.
Zhang, J. X., Zhuang, J., Ma, L., Yu, W., Peng, D., Ding, G., . . . Weng, X. (2004). Semantic processing of Chinese in left inferior prefrontal cortex studied with reversible words. NeuroImage, 23, 975-982.
Zhang, Q., Guo, C. Y., Ding, J. H., &; Wang, Z. Y. (2006). Concreteness effects in the processing of Chinese words. Brain and Language, 96, 59-68.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top