:::

詳目顯示

回上一頁
題名:探討科學解釋引導模式對學生學習成效之影響
作者:楊秀停
作者(外文):Hsiu-Ting Yang
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:王國華
學位類別:博士
出版日期:2014
主題關鍵詞:科學解釋科學寫作scientific explanationscientific writing
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(1) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:29
科學讀寫活動及科學解釋漸漸受到科學教育的重視,但國內的國小科學課程並無特別著重於科學解釋的學習活動,缺乏有效的科學解釋教學模式和策略是讓科學教師受挫的原因。因此,這方面的研究乃有其必要性。本研究旨在探討如何發展一個有效的教學模式來提昇國小中年級學生的科學學習成效及科學解釋表現。本研究整合描述性寫作(Descriptive writing)、概念圖(Concept mapping)、及詮釋性寫作(Interpretive writing)形成一個科學解釋引導模式,簡稱為DCI模式,並分別探討學生接受此DCI模式後之學習成效、學生參與DCI之經驗對其科學解釋表現的影響,以及學生對DCI之感受。本研究採取準實驗研究法,非隨機取樣前、後測設計。以國小四年級二班的學生為對象,實驗組學生(25名)實施DCI教學模式,對照組學生(24名)則採一般教學進行, 教學活動挑選「月亮」及「光」二單元進行。資料收集包括量化及質性資料等多元資料來源。量化資料主要以t檢定來分析二組學生在科學概念及科學解釋方面的學習差異,質性資料則經編碼與持續比較以檢測學生科學解釋上的表現及對DCI模式的知覺感受。
  研究結果顯示,首先,實驗組學生在科學概念的理解與科學解釋的表現上都優於對照組學生,其中科學解釋面向的差異達顯著性,而質性資料顯示實驗組學生較能提出合宜的主張、有效的証據及合理的推理。第二,DCI的三個活動,分別扮演不同的角色,並有不同的功能:描述性寫作任務有助釐清並強化學生的基本概念;概念圖能幫助學生連結概念間的關係,以形成完整的概念網絡;而詮釋性寫作則是引導學生用已知的概念網絡來完成科學解釋。第三,學生能感受DCI模式的益處,讓他們學習表現有進步。從以上不同面向的結果,顯DCI有助於學生的科學概念及科學解釋的學習。
  綜合上述,本研究也提出在教學及研究上的建議。
Improving student ability of scientific explanation is one major goal of science education. However, scientific explanation is not emphasized in elementary school science classes in Taiwan. The lack of an effective teaching model for improving younger students’ scientific explanation writing has been a source of frustration to science teachers. Therefore, an investigation on an effective teaching model for scientific explanation is necessary. The purpose of this study was to examine effectiveness of a proposed guided scientific explanation teaching model for elementary science on performances of student’s conceptual understanding and scientific explanation. The proposed model, which integrating descriptive explanation writing activity, concept mapping, and interpretive explanation writing activity, is called DCI model. A quasi-experimental design, including a non-randomized sampling and a pre- and post-test design, was adopted for this study. An experimental group of 25 students accepted the DCI teaching model, while a control group of 24 students received a traditional teaching. Teaching units consisted of topics about moon and light. Data collection included multiple sources with both quantitative data and qualitative data. A rubric and content analysis was used to score levels of students’ scientific explanations on worksheets of student scientific explanations on topics of moon and light. The quantitative data from achievement tests and worksheets of student scientific explanations are analyzed with the independent sample t test to measure differences in conceptual understanding and in scientific explanations between the two groups, before and after instruction. The qualitative data from student worksheets and interviews are coded and sorted with constant comparisons to examine performance of student scientific explanations and student perceptions of the DCI teaching.
The results showed that students in the experimental group performed better than students in the comparison group, both in scientific conceptual understandings and explanations. It also showed that three activities in the DCI model play different roles in students’ learning. The descriptive explanation writing activity can help students identify the basic concepts, the concept mapping can help students connecting the relation of concepts, and the interpretative writing activity can guide students to construct scientific explanations based on their own concept maps. Finally, the students agree with that the DCI teaching can facilitate their science learning and scientific explanations as well.
Suggestions for using the DCI model in elementary school science and for future research are also provided in this study.
參考文獻
中文部分
毛松霖 (1995)。國小五、六年級兒童傳達及解釋資料能力與天文概念架構之關係研究。行政院國家科學委員會專題研究成果報告(編號:NSC-82-0111-S003-069-N),未出版。
王美芬 (1992)。我國五、六年級學生有關月亮錯誤概念的診斷及補救教學策略的應用。台北市立師範學院學報,23,357-380。
何佳靜 (2008)。透過主題探索與網路輔助學習環境培養國小學生科學解釋能力之行動研究。國立花蓮教育大學科學教育研究所碩士論文,未出版,花蓮市。
吳佳蓮 (2006)。科學探究活動中國小五年級學童科學解釋能力及認識論之研究。國立臺灣師範大學科學教育研究所碩士論文,未出版,台北市。
巫少岑 (2008)。以序列性POE探究國小科學教師之科學解釋的研究-以「大氣壓力與表面張力」為例。國立臺中教育大學科學應用與推廣研究所碩士論文,未出版,台中市。
李格 (2009)。資訊科技融入四年級學童「水中的生物」單元對學習成效的影響。國立台北教育大學自然科學教育研究所碩士論文,未出版,台北市。
李曉雯 (2001)。國小四年級學生月相迷思概念之研究。國立台南師範學院國民教育研究所碩士論文,未出版,台南市。
林雅慧 (2008)。融入式科學寫作下學生學習成果及學生推理能力和對教師互動行為感受與其寫作品質之研究。國立彰化師範大學科學教育研究所博士論文,未出版,彰化。new window
康軒自然與生活科技教學指引第三冊 (2008)。台北市:康軒文教事業股分有限公司。
張靜儀與李采褱 (2004)。國小中、高年級學童光迷思概念與相關因素探究。屏東師範學報,20,315-354。
許素芬 (2008)。POE教學策略對五年級學童科學解釋與批判思考能力之影響。臺北市立教育大學科學教育所碩士論文,未出版,台北市。
郭金美 (2003)。提昇學童批判思考能力教學之探討-以啟發式科學寫作融入自然與生活科技學習領域。行政院國家科學委員會科教處計畫。
陳均伊、張惠博與郭重吉 (2004)。光反射與折射的另有概念診斷工具之發展與研究。科學教育學刊,12,311-340。new window
湯偉君 (2008)。以解釋本質探討中學演化論之教科書內容與教學。國立臺灣師範大學科學教育研究所博士論文,未出版,台北市。new window
黃毓琪 (2008)。I T及STS探究式教學對國小學童科學解釋能力之影響。國立屏東教育大學數理教育研究所碩士論文,未出版,屏東。
劉伍貞 (1996)。國小學生月相概念學習之研究。國立屏東師範學院國民教育研究所碩士論文,未出版,屏東。
簡錦鳳 (2008)。文字鷹架對七年級學生科學解釋能力的影響。國立臺灣師範大學科學教育研究所碩士論文,未出版,台北市。


英文部分
Anderson, W., &; Krathwohl, D. R. (Eds.) (2001). A taxonomy for learning, teaching, and assessing: A revision of Blooms’ educational objectives. New York, NY: Longman.
American Association for the Advancement of Science [AAAS] (1993). Benchmarks for science literacy. New York,NY : Oxford University Press.
Applebee, A. N. (1984). Writing and reasoning. Review of Educational Research, 54, 577-596.
Ash, D. (2008). Thematic continuities: Talking and thinking about adaptation in a socially complex classroom. Journal of Research in Science Teaching, 45, 1-30.
Bereiter, C., &; Scardamalia, M. (1987). The psychology of written composition. Hillsdale, NJ: Lawrence Erlbaum Associates.
Berland, L. K., &; Reiser, B. J. (2008). Making sense of argumentation and explanation. Science Education, 93, 1-30.
Best, J. W., &; Kahn, J. V. (1998). Research in Education. Boston, MA: Allyn and Bacon.
Braaten, M., &; Windschitl, M. (2011). Working toward a stronger conceptualisation of scientific explanation for science education. Science Education, 95, 639-669.
Bransford, J. D., Brown, A. L., &; Cocking, R. R. (Eds.) (2000). How people learn: Brain, mild, experience, and school. Wachington, DC.: National Academy Press.
Brown, B. A., &; Ryoo, K. (2008). Teaching science as language: A ”content-first” approach to science teaching. Journal of Research in Science Teaching, 45, 529-553.
Champagne, A. B., Gunstone, R. F., &; Klopfer, L. E. (1983). Instruction for understanding: A case study. The Australian Science Teachers Journal, 27, 27-32.
Chi, M. T. H., Lewis, M. W., Reimann, P., &; Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.
Cohen, J. (1988). Statistical power analysis for the behavioral sceince. Hillsdale, NJ: Lawrence Erlbaum.
DeBoer, G. E. (1991). A history of ideas in science education. New York,NY: Teachers college Press.
Derbentseva, N., Safayeni, F., &; Canas, A. J. (2007). Concept maps: Experiments on dynamic thinking. Journal of Research in Science Teaching, 44, 448-465.
Edmondson, K. M. (2000). Assessing science understanding through concept. In J. J. Mintzes, J. H. Wandersee, &; J. D. Novak (Eds.), Assessing science understand: A human construvtivist view (pp.15-400). San Diego,CA: Academic Press.
Fang, Z. (2006). Scientific literacy: A systemic functional linguistics perspective. Science Education, 89, 335-347.
Flower, L., &; Hayes, J. R. (1981). A cognitive process theory of writing. College Composition and Communication, 32, 365-387.
Ford, D. J. (2006). Representations of science within children’s trade books. Journal of Research in Science Teaching, 43, 214-235.
Ford, D. J., Brickhouse, N. W., Lottero-Perdue, P., &; Kittleson, J. (2006). Elementary girls’science reading at home and school. Science Education, 90, 270-288.
Goodman, Y. M., &; Goodman, K. S. (1990). Vygotsky in a whole-language perspective. In L. C. Moll (Ed.), Vygotsky and Education: Instructional implications and applications of sociohistorical psychology (pp.223-250). New York,NY: Cambridge University Press.
Halliday, M. A. K., &; Martin, J. R. (1993). Writing science: Literacy and discursive power. London, England: The Falmer Press.
Hamza, K. M., &; Wickman, R. (2009). Beyond explanations: What else do students need to understand science? Science Education, 93, 1-24.
Hand, B., &; Prain, V. (2002). Teachers implementing writing-to-learning strategies in junior secondary science: A case study. Science Education, 86, 737-755.
Hand, B., &; Wallace, C. W. (2004). Using a science writing heuristic to enhance learning outcomes from laboratory activities in seventh-grade science: Quantitative and qualitative aspects. International Journal of Science Education, 26, 131-149.
Hand, B. (2007). Cognitive, constructivist mechanisms for learning science through writing. In C. S. Wallace, B. Hand, &; V. Prain (Eds.), Writing and Learning in the Science Classroom (pp. 21-31). Netherlands: Springer.
Hand, B., Gunel, M., &; Ulu, C. (2009). Sequencing embedded multimodal representations in a writing to learn approach to the teaching of electricity. Journal of Research in Science Teaching, 46, 225-247.
Jang, S. J. (2007). A study of students’ construction of science knowledge: Talk and writing in a collaborative group. Educational Research, 49, 65-81.
Keys, C. W., Hand, B., Prain, V., &; Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36, 1065-1084.
Kinchin, I. M., Hay, D. B., &; Adams, A. (2000). How a qualitative approach to concept map analysis can be used to aid learning by illustrating patterns of conceptual development. Educational Research, 42, 43-57.
Klein, P. (1999). Reopening inquiry into cognitive processes in writing-to-learn. Educational Psychology Review, 11, 203-270.
Krathwohl, D. R. (2002). A revision of Blooms’ taxonomy: An overview. Theory into Practice, 41, 212-218.
Lawson, A. E. (2002). Science Teaching and development of thinking. Stamford, CT: Thomson Learning.
Lesh, R., &; Lehere, R. (2000). Iterative refinement cycles for videotape analyses of conceptual change. In A.E. Kelly, &; R.A. Lesh (Eds.), Handbook of Research Design in Mathematics and Science Education (pp. 665-708). London, England: Lawrence.
Linchtman, M. (2006). Qualitative Research in Education: A user’s guild. London, England: Sage Publications.
Liu, X. (2004). Using concept mapping for assessing and promoting relational conceptual change in science. Journal of Research in Science Education, 88, 373-396.
Manalo, E., Uesaka, Y., Perez-Kriz, S., Kato, M., &; Fukaya, T. (2013). Science and engineering students’ use of diagrams during note taking versus explanation. Educational Studies, 39, 118-123.
Marshall, C., &; Rossman, G. B. (1995). Designing qualitative research (2nd ed.). London, England: Sage.
McNeill, K. L. (2009). Teachers’ use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93, 233-268.
McNeill, K. L., &; Krajcik, J. (2008). Scientific explanations: Characterizing and evaluating the effects of teachers’ instructional practices on student learning. Journal of Research in Science Teaching, 45, 53-78.
McNeill, K. L. (2011). Elementary students’ views of explanation, argumentation, and evidence, and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48, 793-823.
Miller, J. D. (1998). The measurement of civic scientific literacy. The Public Understanding of Science, 7, 203-223.
National Research Council [NRC] (1996). National science education standards. Washington, DC.
Nesbit, J. C., &; Adesope, O. O. (2006). Learning with concept and knowledge maps: A meta-analysis. Review of Educational Research, 76, 413-448.
Nieswandt, M., &; Bellomo, K. (2009). Written extended-response questions as classroom assessment tools for meaningful understanding of evolutionary theory. Journal of Research in Science Teaching, 46, 333-356.
Norris, S. P., &; Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224-240.
Norris, S. P., Guilbert, S. M., &; Smith, M. L. (2005). A theoretical framework for narrative explanation in science. Science Education, 89, 535-563.
Novak, J. D., &; Gowin, D. B. (1984). Learning how to learn. Cambridge, MA: Cambridge University Press.
Novak, J. D., Mintzes, J. J., &; Wandersee, J. H. (2000). Learning, teaching, and assessment: A human construvtivist view. In J. J. Mintzes, J. H. Wandersee, &; J. D. Novak (Eds.), Assessing science understand: A human constructivist view (pp. 1-13). San Diego, CA: Academic Press.
Patterson, E. W. (2000). Structuring the composition process in scientific writing. International Journal of Science Education, 23, 1-16.
Piolat, A., Olive, T., &; Kellogg, R. (2005). Cognitive effort during note taking. Applied Cognitive Psychology, 19, 291-312.
Prain, V., &; Hand, B. (1996). Writing for learning in secondary science: Rethinking practice. Teaching and Teacher Education, 12, 609-626.
Prain, V. (2006). Learning from writing in secondary science: Some theoretical and practical implications. International Journal of Science Education, 28, 179-201.
Prain, V. (2007). The role of language in science learning and literacy. In C. S. Wallace, B. Hand &; V. Prain (Eds.), Writing and learning in the science classroom (pp. 33-45). Netherlands: Springer.
Rivard, L.P. (2004). Are language-based activities in science effective for all students, including low achievers. Science Education, 88, 420-442.
Rivard, L.P., &; Straw, S. B. (2000). The effect of talk and writing on learning science: An exploratory study. Science Education, 84, 566-593.
Roald, I., &; Mikalsen, O. (2001). Configuration and dynamics of the earth-sun-moon system: An investigation into conceptions of deaf and hearing pupils. International Journal of Science Education, 23, 423-440.
Roth, W. M. (2005). Doing qualitative research. The Netherlands: Sense Publishers.
Ryu, S., &; Sandoval, W. A. (2012). Improvements to elementary children’s epistemic understanding from sustained argumentation. Science Education, 96, 488-526.
Sampson, V., &; Clark, D. B. (2008). Assessment of the way students generate arguments in science education: Current perspectives and recommendations for future direction. Science Education, 92, 447-472.
She, H. C., &; Liao, Y. W. (2010). Bridging scientific reasoning and conceptual change through adaptive web-based learning. Journal of Research in Science Teaching, 47, 91-119.
Smolkin, L. B., McTigue, E. M., Donovan, C. A., &; Coleman, J. M. (2009). Explanation in science trade books recommended for use with elementary students. Science Education, 93, 587-610.
Songer, N. B., &; Gotwals, A. W. (2012). Guiding explanation construction by children  at the entry points of learning progressions. Journal of Research in Science Teaching, 49, 141-165.
Varelas, M., Pappas, C. C., Kane, J. M., Arsenault, A., Hankes, J., &; Cowan, B. M. (2008). Urban primary-grade children think and talk science: Curricular and instructional practices that nature participation and argumentation. Science Education, 92, 65-95.
Vygotsky, L. S. (1962). Thought and Language. Cambridge, MA: Massachusetts Institute of Technology Press.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological process. (M. Cole, V. John-Steiner, S. Scribner, &; E. Souberman, Ed.) London,England, England: Harvard University Press.
Wallance, C. (2004). Framing new research in science literacy and language use: Authenticity multiple discourses, and the “Third Space”. Science Education, 88, 901-914.
Warwick, P., Stephenson, P., &; Webster, F. (2003). Writing for learning in secondary science: Rethinking practice. International Journal of Science Education, 25, 173-192.
Winstead, L. (2004). Increasing academic motivation and cognition in reading ,writing, and mathematics: Meaning-making strategies. Educational Research Quarterly, 28, 30-49.
Woodward, J. (2002). Explanation. In P. Machamer &; M. Silberstein (Eds.), The blackwell guide to the philosophy of science (pp. 37-54). Oxford, OH: Blackwell.
Yin, Y., &; Shavelson, R. J. (2008). Application of generalizability theory to concept map assessment research. Applied Measurement in Education, 21, 273-291.
Yore, L. D. (2000). Enhancing science literacy for all students with embedded reading instruction and writing-to-learn activities. Journal of Deaf Studies and Deaf Education, 5, 105-122.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top