:::

詳目顯示

回上一頁
題名:用於雙頻無線通訊系統之共平面波導饋入天線設計
作者:趙介雷
作者(外文):Jaw,Jieh-La
校院名稱:國立彰化師範大學
系所名稱:工業教育與技術學系
指導教授:陳 繁 興
陳 德 發
學位類別:博士
出版日期:2017
主題關鍵詞:平面印刷天線微帶天線溝槽天線共平面波導Planar Printed AntennaMicrostrip AntennaSlotted AntennaCo-planar Waveguides
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:6
在過去十年中,無線通信發展神速。尤其是在開發個人通訊系統,使其具有攜帶方便並可同時提供圖像,語音和高速數據連接功能方面,已有相當程度之進步。對上述之系統,其對具小型、平面式及可多頻操作功能之天線需求更為迫切。因此,小型且同時具雙頻帶或多頻帶操作功能之天線為目前天線工程師開發設計之重要項目之一。
由於微帶天線和印刷貼片天線具有體積小、重量輕、低剖面、易與微波電路結合的特點,已廣泛應用於雷達、衛星通信、行動通訊、以及其他各種無線通信系統中。但微帶天線本身具有高品質因數、窄頻帶及低效率等缺點,因而限制了它們的應用性。因此,本論文針對以共面波導作為饋入方式之微帶式印刷天線和貼片式溝槽印刷天線進行小型化和增加頻寬的研究設計。
本研究提出了兩種新型的天線設計:第一種天線主體由一鈎狀微帶輻射線及一共平面波導的訊號饋入結構所組成。設計得到之天線外型尺寸約僅為24.5×27.5 mm2,量測得到在操作中心頻率分別為2.21GHz和5.1 GHz時之對應-10 dB阻抗匹配頻寬則為320 MHz和5.28 GHz,展現出良好的雙寬頻工作頻帶。第二種天線主體則是具有雙嵌入倒L形溝槽的共面波導饋入輻射貼片結構。倒L形天線的主要輻射元件組成有兩部分:水平條狀線和垂直條狀線,通過改變水平或垂直條狀線的形狀和尺寸可以改變天線的兩個諧振頻率以及對應的頻寬。此設計最後得到的天線尺寸包括接地僅為18×22.5 mm2,並具有良好的雙寬頻帶,可操作之頻帶足以含蓋2.4 / 5.2/5.8 GHz無線區域網路工作所需之頻段要求。所獲得的頻寬(以10dB回歸損耗為準)在操作中心頻率為2.4GHz和5GHz時,分別為120MHz和3.3GHz。除此,經實驗量測,獲得在兩個可操作頻帶範圍內之平均天線增益約為3.6和4.3dBi。
During the last decade, the wireless communications have evolved at an explosive growth. In particular, there is much progress in developing a personal communication system not only with a portable size but also with functions to simultaneously provide image, speech and high-speed data connectivety. For such a system, it leads to an increasing demand for the used antenna on low cost, low profile, compact, and ability to simultaneously operate in different frequency bands for different communication services. Therefore, for the present antenna engineers much interest is focused on designing a planar compact dual-band or multiband antenna.
Microstrip antennas (MSA’s) have been widely used in many modern applications such as radar, satellite communications, mobile communications and other communication systems due to their intrinsic advantages as con-formability, light weight, simplicity in design and being easily integrated in circuits. However, some shortcomings of MSA such as high quality factor, low gain, narrow bandwidth, etc, make them unfit for many practical applications.
In this dissertation, based on the existing technologies, researches on miniaturization and broadband techniques for MSA and printed slot-antennas have been done and therefore, two novel antenna have been proposed. The first antenna consisting of a hook-shaped strip and a coplanar waveguide (CPW) feed-line is designed for dual wideband operation. The obtained antenna, with size of only 24.5 × 27.5 mm2, leads to good dual wideband operation accompanying with −10-dB impedance bandwidths of 320MHz and 5.28 GHz, and centered at 2.21 and 5.1 GHz, respectively. As for the second antenna design, it is a coplanar waveguide-fed patch with dual embedded inverted -L shaped slots. The obtained antenna, which, including the ground, is only 18×22.5 mm2, leads to good dual bandwidths and covers the 2.4/5 GHz WLAN operation. Also, a stable radiation pattern and high average gains of about 3.6 and 4.3 dBi over the lower and higher operating bands have been achieved, respectively.
參考文獻
[1] The Institute of Electrical and Electronics Engineers, Inc. IEEE Standard Definitions of Terms for Antennas, IEEE Std 145-1983, 1983.
[2] M. A. S. Alkanhal and A. F. Sheta, “A Novel Dual-Band Reconfigurable Square-Ring Microstrip Antenna,” Progress In Electromagnetics Research, PIER 70, pp. 337–349, 2007.
[3] J. A. Ansari et al., “Analysis of a Gap Coupled Stacked Annular Ring Microstrip Antenna,” Progress In Electromagnetics Research B, Vol. 4, pp. 147–158, 2008.
[4] C. J. Wang and S. W. Chang, “Studies on Dual-Band Multi-Slot Antennas,” Progress In Electromagnetics Research, PIER 83, pp. 293–306, 2008.
[5] C. Yoon et al., “Small Microstrip Patch Antennas with Short-Pin Using a Dual-Band Operation,” Microw. Opt. Technol. Lett., Vol. 50, pp. 367–371, 2008.
[6] M. Abbaspour and H. R. Hassani, “Wideband Star-Shaped Microstrip Patch Antenna,” Progress In Electromagnetics Research Lett., Vol. 1, pp. 61–68, 2008.
[7] R. V. Hara Prasad et al., “Microstrip Fractal Patch Antenna for Multiband Communication,” Electron. Lett., Vol. 36, pp. 1179–1180, Jul. 2000.

[8] B. K. Ang and B. K. Chung, “A Wideband E-Shaped Microstrip Patch Antenna for 5–6 GHz Wireless Communications,” Progress In Electromagnetics Research, PIER 75, pp. 397–407, 2007.
[9] J. A. Ansari et al., “H-Shaped Stacked Patch Antenna for Dual Band Operation,” Progress In Electromagnetics Research B, Vol. 5, pp. 291–302, 2008.
[10] H. M. Chen et al., “Feed for Dual-Band Printed Dipole Antenna,” Electron. Lett., Vol. 40, pp. 1320–1322, Oct. 2004.
[11] M. J. Kim et al., “A Dual Band Printed Dipole Antenna with Spiral Structure for WLAN Application,” IEEE Microw. Wireless Compon. Lett., Vol. 15, pp. 910–912, Dec. 2005.
[12] G. Zhao et al., “Compact ring Monopole Antenna with Double Meander Lines for 2.4/5 GHz Dual-Band Operation,” Progress In Electromagnetics Research, PIER 72, pp. 187–194, 2007.
[13] Y. Song et al., “Compact Printed Monopole Antenna for Multiband WLAN Applications,” Microw. Opt. Technol. Lett., Vol. 50, pp. 365–367, 2008.
[14] Y. T. Liu and C. W. Su, “Wideband Omnidirectional Operation Monopole Antenna,” Progress In Electromagnetics Research Lett.,Vol. 1, pp. 255–261, 2008.
[15] J. J. Jiao et al., “A Broadband CPW-Fed T-Shape Slot Antenna,” Progress In Electromagnetics Research, PIER 76, pp. 237–242, 2007.
[16] M. H. Ho and G. L. Chen, “Reconfigured Slot-Ring Antenna for 2.4/5.2 GHz Dual-Band WLAN Operations,” IET Microw. Antennas and Propagat., Vol. 1, pp. 712–717, Jun. 2007.
[17] D. D. Krishna et al., “Compact Dual Band Slot Loaded Circular Microstrip Antenna with a Superstrate,” Progress In Electromagnetics Research, PIER 83, pp. 245–255, 2008.
[18] F. R. Hsiao and K. L. Wong, “Compact Planar Inverted-F Patch Antenna for Triple-Frequency Operation,” Microw. Opt. Technol. Lett., Vol. 33, pp. 459–462, 2002.
[19] S. K. Oh et al., “A PIFA-Type Varactor Tunable Slim Antenna with a PIL Patch Feed for Multiband Applications,” IEEE Antennas Wirel. Propag. Lett., Vol. 6, pp. 103–105, 2007.
[20] W. C. Liu and C. F. Hsu, “Dual-Band CPW-Fed Y-Shaped Monopole Antenna for PCS/WLAN Application,” Electron. Lett., Vol. 41, pp. 390–391, Mar. 2005.
[21] J. H. Yoon, “Fabrication and Measurement of Rectangular Ring with Open-Ended CPW-fed Monopole a Antenna for 2.4/5.2-GHz WLAN Operation,” Microw. Opt. Technol. Lett., Vol. 48, pp. 1480–1483, 2006.
[22] W. C. Liu, “Optimal Design of Dualband CPW-Fed Gshaped Monopole Antenna for WLAN Application,” Progress In Electromagnetics Research, PIER 74, pp. 21–38, 2007.


[23] D. U. Sim and J. I Choi, “A Compact Wideband Modified Planar Inverted F Antenna (PIFA) for 2.4/5-GHz WLAN Applications,” IEEE Antennas Wirel. Propag. Lett., Vol. 5, pp. 391–394, 2006.
[24] C. H. Chang and K. L. Wong, “Printed λ/8-PIFA for Penta-Band WWAN Operation in the Mobile Phone,” IEEE Trans. Antennas Propag., Vol. 57, pp. 1373–1381, May 2009.
[25] Y. F. Lin et al., “A Miniature Dielectric Loaded Monopole Antenna for 2.4/5 GHz WLAN Applications,” IEEE Microw. Wirel. Components Lett., Vol. 16, 591–593, Nov. 2006.
[26] R. Jamalpoor et al., “A Wideband Microstrip-Fed Monopole Antenna for WIBRO, WLAN, DMB and UWB Applications,” Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11–12, pp. 1461–1468, 2008.
[27] C. Mahatthanajatuphat et al., “A Rhombic Patch Monopole Antenna with Modified Minkowski Fractal Geometry for UMTS, WLAN, and Mobile Wimax Application,” Progress In Electromagnetics Research, PIER 89, pp. 57–74, 2009.
[28] I. F. Chen and C. M. Peng, “Printed Broadband Monopole Antenna for WLAN/WiMAX Applications,” IEEE Antennas Wirel. Propag. Lett., Vol. 8, pp. 472–474, 2009.
[29] J. Gemio et al., “Dual-Band Antenna with Fractal-Based Ground Plane for WLAN Applications,” IEEE Antennas Wirel. Propag. Lett., Vol. 8, pp. 748–751, 2009.

[30] T. L. Zhang et al., “A Compact Dual-Band CPW-Fed Planar Monopole Antenna for WLAN Applications,” Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14–15, pp. 2097–2104, 2008.
[31] W. C. Liu et al., “Striploaded CPW-Fed Pentagonal Antenna for GPS/WiMAX/WLAN Applications,” Microw. Opt. Technol. Lett., Vol. 51, pp. 48–52, 2009.
[32] Y. J. Yang et al., “A Novel Design of Dual-Wideband CPW-Fed Antenna for WLAN/WiMAX Applications,” Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8–9, pp. 1191–1200, 2009.
[33] X. Song, “Small CPW-Fed Triple Band Microstrip Monopole Antenna for WLAN Applications,” Microw. Opt. Technol. Lett., Vol. 51, pp. 747–749, 2009.
[34] W. Ren, “Compact Dual-Band Slot Antenna for 2.4/5GHz WLAN Applications,” Progress In Electromagnetics Research B, Vol. 8, pp. 319–327, 2008.
[35] R. E. Munson, “Conformal Microstrip Antennas and Microstrip Phased Arrays,” IEEE Trans. Antennas Propagat.,Vol. 22, No. 1, pp.74–78, Jan. 1974.
[36] J. W. Howell, “Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-23, No. 1,pp. 90–93, Jan. 1975.


[37] A. G. Derneryd, “Linearly Polarized Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-24, No. 6, pp. 846–851, Nov. 1976.
[38] L. C. Shen et al., “Resonant Frequency of a Circular Disc, Printed Circuit Antenna,” IEEE Trans. Antennas Propagat., Vol. AP-25, No.4, pp. 595–596, Jul. 1977.
[39] P. K. Agrawal and M. C. Bailey, “An Analysis Technique for Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol.AP-25, No. 6, pp. 756-759, Nov. 1977.
[40] A. G. Derneryd, “A Theoretical Investigation of the Rectangular Microstrip Antenna Element,” IEEE Trans. Antennas Propagat., Vol. AP-26, No. 4, pp. 532–535, Jul. 1978.
[41] A. G. Derneryd, “Analysis of the Microstrip Disk Antenna Element,” IEEE Trans. Antennas Propagat., Vol.AP-27, No. 5,
pp. 660–664, Sept. 1979.
[42] A. G. Derneryd, “Extended Analysis of Rectangular Microstrip Resonator Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-27, No. 6, pp. 846–849, Nov. 1979.
[43] Y. T. Lo et al., “Theory and Experiment on Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. AP- 27 , No. 2, pp. 137–145, Mar. 1979.
[44] S. A. Long and M. D. Walton, “A Dual-Frequency Stacked Circular-Disc Antenna,” IEEE Trans. Antennas Propagat., Vol. AP-27, No. 2, pp. 270–273, Mar. 1979.
[45] N. K. Uzunoglu et al., “Radiation Properties of Microstrip Dipoles,” IEEE Trans. Antennas Propagat., Vol. AP-27, No. 6, pp.853–858, Nov. 1979.
[46] K. R. Carver and J. W. Mink, “Microstrip Antenna Technology,” IEEE Trans. Antennas Propagat., Vol.AP-29, No. 1, pp. 2–24, Jan. 1981.
[47] R. J. Mailloux et al., “Microstrip Array Technology,” IEEE Trans. Antennas Propagat., Vol. AP-29, No. 1, pp. 25–27, Jan. 1981.
[48] W. F. Richards et al., “An Improved Theory of Microstrip Antennas with Applications,” IEEE Trans. Antennas Propagat., Vol. AP-29, No. 1, pp. 38–46, Jan. 1981.
[49] E. H. Newman and P. Tylyathan, “Analysis of Microstrip Antennas Using Moment Methods,” IEEE Trans. Antennas Propagat., Vol. AP-29, No. 1, pp. 47–53, Jan. 1981.
[50] D. C. Chang, “Analytical Theory of an Unloaded Rectangular Microstrip Patch,” IEEE Trans. Antennas Propagat., Vol. AP-29 , No. 1, pp. 54–62, Jan. 1981.
[51] T. Itoh and W. Menzel, “A Full-Wave Analysis Method for Open Microstrip Structures,” IEEE Trans. Antennas Propagat., Vol. AP-29, No. 1, pp. 63–68, Jan. 1981.
[52] I. E. Rana and N. G. Alexopoulos, “Current Distribution and Input Impedance of Printed Dipoles,” IEEE Trans. Antennas Propagat., Vol. AP-29, No. 1, pp. 99–105, Jan. 1981.
[53] N. G. Alexopoulos and I. E. Rana, “Mutual Impedance Computation Between Printed Dipoles,” IEEE Trans. Antennas Propagat., Vol. AP-29, No. 1, pp. 106–111, Jan. 1981.
[54] J. R. James et al., “Some Recent Developments in Microstrip Antenna Design,” IEEE Trans. Antennas Propagat., Vol. AP-29, No. 1, pp. 124–128,Jan. 1981.
[55] M. D. Deshpande and M. C. Bailey, “Input Impedance Of Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-30, No. 4, pp. 645–650, Jul. 1982.
[56] M. C. Bailey and M. D. Deshpande, “Integral Equation Formulation of Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-30, No. 4, pp. 651–656, Jul. 1982.
[57] D. M. Pozar, “Input Impedance and Mutual Coupling of Rectangular Microstrip Antenna,” IEEE Trans. Antennas Propagat., Vol. AP-30, No. 6, pp. 1191–1196, Nov. 1982.
[58] D. M. Pozar, “Considerations for Millimeter-Wave Printed Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-31, No. 5, pp. 740–747, Sept. 1983.
[59] E. F. Kuester and D. C. Chang, “A Geometrical Theory for the Resonant Frequencies and Q-Factors of Some Triangular Microstrip Patch Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-31, No. 1, pp. 27–34, Jan. 1983.


[60] P. B. Katehi and N. G. Alexopoulos, “On the Modeling of Electromagnetically Coupled Microstrip Antennas The Printed Strip Dipole,” IEEE Trans. Antennas Propagat., Vol. AP-32, No. 11, pp. 1179–1186, Nov. 1984.
[61] D. M. Pozar, “Analysis of Finite Phased Arrays of Printed Dipoles,” IEEE Trans. Antennas Propagat., Vol. AP-33, No. 10, pp. 1045–1053, Oct. 1985.
[62] J. R. James, “What’s New In Antennas,” IEEE Antennas Propagat. Mag., Vol. 32, No. 1, pp. 6–18, Feb. 1990.
[63] D. M. Pozar, “Microstrip Antennas,” Proc. IEEE, Vol. 80, No. 1, pp. 79–81, Jan. 1992.
[64] C. A. Balanis, Antenna Theory Analysis And Design, Hoboken, John Wiley & Sons, New Jersey, 2005.
[65] J. L. Volakis, Antenna Engineering Handbook, Fourth Edition, McGraw-Hill Book, New York, 2007.
[66] D. H. Schaubert et al., “Microstrip Antennas with Frequency Agility and Polarization Diversity,” IEEE Trans. Antennas Propagat., Vol. AP-29,No. 1, pp. 118–123, Jan. 1981.
[67] P. Bhartia and I. J. Bahl, “Frequency Agile Microstrip Antennas,” Microwave Journal, pp. 67–70, Oct. 1982.
[68] W. F. Richards and Y. T. Lo, “Theoretical and Experimental Investigation of a Microstrip Radiator with Multiple Lumped Linear Loads,” Electromagnetics, Vol. 3, No. 3–4, pp. 371–385, July–December 1983.
[69] A. Ali-Khan et al., “Impedance Control of Microstrip Antennas Utilizing Reactive Loading,” IEEE Transactions on Antennas and Propagation, Vol. 37, No. 2, pp. 247–251, Feb. 1989.
[70] W. F. Richards and S. A. Long, “Adaptive Pattern Control of a Reactively Loaded, Dual-Mode Microstrip Antenna,” Proc. Intl. Telemetering Conf., pp. 291–296, Las Vegas, 1986.
[71] M. P. Purchine and J. T. Aberle, “A Tunable L-Band Circular Microstrip Patch Antenna,” Microwave Journal , pp. 80- 88, Oct. 1993.
[72] C. M. Krowne, “Cylindrical-Rectangular Microstrip Antenna,” IEEE Trans. Antennas Propagat., Vol. AP-31, No. 1, pp. 194–199, Jan. 1983.
[73] S. B. De Assis Fonseca and A. J. Giarola, “Microstrip Disk Antennas, Part I: Efficiency of Space Wave Launching,” IEEE Trans. Antennas Propagat., Vol. AP-32, No. 6, pp. 561–567, Jun. 1984.
[74] S. B. De Assis Fonseca and A. J. Giarola, “Microstrip Disk Antennas, Part II: the Problem of Surface Wave Radiation by Dielectric Truncation,” IEEE Trans. Antennas Propagat., Vol. AP-32, No. 6, pp. 568–573, Jun. 1984.
[75] J. Huang, “The Finite Ground Plane Effect on the Microstrip Antenna Radiation Patterns, ”IEEE Trans. Antennas Propagat., Vol. AP-31, No. 7, pp. 649–653, Jul. 1983.

[76] E. Lier and K. R. Jakobsen, “Rectangular Microstrip Patch Antennas with Infinite and Finite Ground-Plane Dimensions,” IEEE Trans. Antennas Propagat., Vol. AP-31, No. 6,pp. 978–984, Nov. 1983.
[77] R. J. Mailloux, “On the Use of Metallized Cavities in Printed Slot Arrays with Dielectric Substrates,” IEEE Trans. Antennas Propagat., Vol. AP-35, No. 5, pp. 477-487, May 1987.
[78] B. A. Munk et al., “Comments on “On the Use of Metallized Cavities in Printed Slot Arrays with Dielectric Substrates” ,” IEEE Trans. Antennas Propagat., Vol. 36, No. 7, pp. 1036–1041, Jul. 1988.
[79] C. H. Tsao et al., “Aperture-Coupled Patch Antennas with Wide-Bandwidth and Dual Polarization Capabilities,” IEEE Antennas Propagat. Symp. Dig., pp.936 –939, 1988.
[80] A. Ittipiboon et al., “Slot-Coupled Stacked Microstrip Antennas,” IEEE Antennas Propa gat. Symp. Dig., pp. 1108–1111, 1990.
[81] S. Sabban, “A New Broadband Stacked Two-Layer Microstrip Antenna,” IEEE Antennas Propagat. Symp. Dig., pp. 63–66, 1983.
[82] C. H. Chen et al., “Broadband Two-Layer Microstrip Antenna, ” IEEE Antennas Propagat. Symp. Dig., pp. 251–254, 1984.
[83] R. W. Lee et al., “Characteristics of a Two-Layer Electromagnetically Coupled Rectangular Patch Antenna,” Electron. Lett., Vol. 23, pp. 1070–1072, Sept. 1987.
[84] D. M. Pozar and D. H. Schaubert, “Scan Blindness in Infinite Phased Arrays of Printed Dipoles,” IEEE Trans. Antennas Propagat., Vol. AP-32, No. 6, pp.602–610, Jun. 1984.
[85] D. M. Pozar, “Finite Phased Arrays of Rectangular Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-34, No. 5, pp. 658–665, May 1986.
[86] F. Zavosh and J. T. Aberle, “Infinite Phased Arrays of Cavity-Backed Patches,” IEEE Trans. Antennas Propagat., Vol. AP-42,No. 3, pp. 390–398, Mar. 1994.
[87] G. A. Deschamps, “Microstrip Microwave Antennas,” Presented at the Third USAF Symposium on Antennas, 1953.
[88] H. Gutton and G. Baissinot, “Flat Aerial for Ultra High Frequencies,” French Patent No.703 113, 1955.
[89] K. R. Carver and J. W. Mink, “Microstrip Antenna Technology,” IEEE Trans. Antennas Propagat., Vol. AP-29, No. 1, pp. 2–24, Jan. 1981.
[90] H. G. Oltman and D. A. Huebner, “Electromagnetically Coupled Microstrip Dipoles,” IEEE Trans. Antennas Propagat., Vol. AP-29, No. 1, pp. 151–157, Jan. 1981.
[91] D. M. Pozar, “A Microstrip Antenna Aperture Coupled to a Microstrip Line,” Electronic Letters, Vol. 21, pp. 49–50, Jan. 1985.


[92] G. Gronau and I. Wolff, “Aperture-Coupling of a Rectangular Microstrip Resonator,” Electronic Letters, Vol. 22, pp. 554–556, May 1986.
[93] H. A. Bethe, “Theory of Diffractions by Small Holes,” Physical Review, Vol. 66, pp. 163–182, 1944.
[94] R. E. Collin, Foundations for Microwave Engineering, Chapter 6, McGraw-Hill Book Co., New York, 1992.
[95] D. M. Pozar and B. Kaufman, “Increasing the Bandwidth of a Microstrip Antenna by Proximity Coupling,” Electronic Letters, Vol. 23, pp. 368–369, Apr. 1987.
[96] J. Howell, “ Microstrip antennas,” 1972 Antennas and Propag. Soc. Intl. Symp., Vol. 10, pp. 177–180, Dec. 1972.
[97] Gh. Z. Rafi and L. Shafai, “Wideband V-Slotted Diamond Shaped Microstrip Patch Antenna,” Electronics Letters, vol. 40, no. 19, pp. 1166-1167, Sept. 2004.
[98] T. Huynh and K. F. Lee, “Single-Layer Single-Patch Wideband Microstrip Antenna,” Electronics Letters, vol. 31, no. 16, pp. 1310-1312, Aug. 1995.
[99] R. J. Chitra et al., “ Design of E Slot Rectangular Microstrip Slot Antenna for Wi-MAX Application,” IEEE Intl. Conf on Comm. and Signal Processing, India, pp. 1048-1052, Apr. 2013.
[100] G. Rafi and L. Shafai, “Broadband Microstrip Patch Antenna with V-Slot,” IEE Proceedings Microwaves Antennas and Propagation, vol. 151, no. 5, pp. 435-440, Oct. 2004.
[101] R. F. Harrington and J. R. Mautz, “Theory of Characteristic Modes for Conducting Bodies,” IEEE Trans. Antennas Propag., vol. 19, no. 5, pp. 622-628, Sep. 1971.
[102] R. F. Harrington and J. R. Mautz, “Computation of Characteristic Modes for Conducting Bodies,” IEEE Trans. Antennas Propag., vol. 19, no. 5, pp. 629-639, Sept. 1971.
[103] C. P. Wen, “Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,” IEEE Trans. Microwave Theory Tech., Vol. 17, No. 12, pp. 1087—1090, Dec.1969.
[104] J. L. B. Walker, “A Survey of European Activity on Coplanar Waveguide,” 1993 IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, pp. 693-696, 1993.
[105] A. K. Sharma and H. Wang, “Experimental Models of Series and Shunt Elements in Coplanar MMICs,” IEEE MTT-S Microwave Symposium Dig., Vol. 3, pp. 1349-1352, 1992.
[106] T. Sporkmann, “The Evolution of Coplanar MMICs over The Past 30 Years,” Microwave Journal, Vol. 41, No. 7, pp. 96-111, 1998.
[107] J. Browne, “Broadband Amps Sport Coplanar Wave guide,” Microwaves RF, Vol. 26, No. 2, pp. 131-134, Feb. 1987.
[108] J. Browne, “ Broadband Amp Drops through Noise Floor,” Microwaves RF, Vol.31, No.2, pp. 141-144, Feb. 1992.

[109] S. M. J. Liu and G. G. Boll, “ A New Probe for W-Band On-Wafer Measurements,” 1993 IEEE MTT-S Int. Microwave Symp., Dig., Vol.3, pp. 1335-1338, 1993.
[110] R. Majidi-Ahy et al., “5—100GHz InP CPW MMIC 7 Section Distributed Amplifier,” 1990 IEEE Microwave Millimeter Wave Monolithic Circuits Symp. Dig., pp. 31-34, 1990.
[111] T. M. Weller et al., “High Performance Micro-Shield Line Components,” IEEE Trans. Microwave Theory Tech., Vol.43, No.3, pp. 534- 543, March 1995.
[112] V. Milanovic et al., “ Micro-Machined Microwave Transmission Lines in CMOS Technology,” IEEE Trans. Microwave Theory Tech., Vol.45, No.5, pp. 630-635, May. 1997.
[113] https://www.mentor.com/pcb/hyperlynx/fast-3d-solver/
[114] Filip Demuynck, “Innovation in Computational Electromagnetics at Agilent Technologies,” Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 3020-3021, 2011.
[115] R. G. Meyers and Qiubo Ye, “ Incorporation of Zeland's IE3D in the Microwave and RF Classroom,”IEEE Antennas and Propagation Society International Symposium, Vol.1, pp. 688-691, 2002.


[116] J. R. Brauer and J. F. DeFord, “3-D Electromagnetic Finite Element Analysis as an Integral Part of the Board Design Process,” Wescon/96, pp. 334-339, 1996.
[117] M. Nisenoff and W. J. Meyers, “MTT Special Issue Guest Editorial,” IEEE Trans. Microwave Theory Tech., Vol. 44, No. 7, pp. 1193-1197, Jul. 1996.
[118] W. Chew et al., “High-Tc Superconductor Coplanar Waveguide Filter,” IEEE Electron. Device Lett., Vol. 12, No. 5, pp. 197-199, May. 1991.
[119] S. Wallage et al., “High Tc Superconducting CPW Bandstop Filters for Radio Astronomy Front Ends,” IEEE Trans. Appl. Superconductivity, Vol. 7, No. 2, pp. 3489-3491, June 1997.
[120] D. C. DeGroot et al., “Microwave Properties of Voltage -Tunable YBa2 Cu3 O7-δ /SrTiO3 Coplanar Waveguide Transmission Lines,” IEEE Trans. Appl. Superconductivity, Vol. 5, No. 2, pp. 2272-2275, Jun. 1995.
[121] A. T. Findikoglu et al., “Superconductor / Nonlinear Dielectric Bi-layers for Tunable and Adaptive Microwave Devices,” IEEE Trans. Appl. Superconductivity, Vol. 7, No. 2, pp. 2925-2928, Jun. 1997.
[122] C. L. Goldsmith et al., “Performance of Low Loss RF MEMS Capacitive Switches,” IEEE Microwave Guided Wave Lett., Vol. 8, No. 8, pp. 269-271, Aug. 1998.

[123] G. S. Dow et al., “Q-Band Coplanar Waveguide Amplifier,” 1989 IEEE MTT-S Int. Microwave Symp. Dig. Vol. 2, pp. 809-812, 1989.
[124] R. Majidi-Ahy et al., “94GHz InP MMIC Five-Section Distributed Amplifier,” Electron. Lett., Vol. 26, No. 2, pp. 91-92, Jan. 1990.
[125] A. Cappello and J. Pierro, “A 22-24-GHz Cryogenically Cooled GaAs FET Amplifier,” IEEE Trans. Microwave Theory Tech., Vol. 32, No. 3, pp. 226-230, Mar. 1984.
[126] R. Majidi-Ahy et al., “100-GHz High-Gain InP MMIC Cascode Amplifier,” IEEE J. Solid-State Circuits, Vol.26, No.10, pp. 1370-1378, Oct. 1991.
[127] K. W. Kobayashi et al., “Trans-Impedance Bandwidth Performance of an HBT Loss-Compensated Coplanar Waveguide Distributed Amplifier,” Electron. Lett., Vol. 32, No. 24, pp. 2287-2288, Nov. 1996.
[128] M. Schefer et al., “Integrated Coplanar MM-Wave Amplifier With Gain Control Using a Dual-Gate InP HEMT,” IEEE Trans. Microwave Theory Tech., Vol. 44, No.12, pp. 2379-2383, Dec. 1996.
[129] K. Minot et al., “A Low Noise, Phase Linear Distributed Coplanar Waveguide Amplifier,” IEEE Trans. on Microwave Theory and Tech., Vol. 41, No. 9, pp. 1650-1653, Sept. 1993.

[130] R. Majidi-Ahy et al., “4-40GHz MMIC Distributed Active Combiner with 3dB Gain,” Electronics Lett., Vol. 28, No. 8, pp. 739-741, Apr. 1992.
[131] M. Riaziat et al., “Monolithic Millimeter Wave CPW Circuits,” IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, pp. 525-528, 1989.
[132] J. Eisenberg et al., “A New Planar Double-Double Balanced MMIC Mixer Structure,” 1991 IEEE Microwave Millimeter-Wave Monolithic Circuits Symp. Dig., pp. 69-72, 1991.
[133] D. Neuf and S. Spohrer, “ Double Balanced, Coplanar, Image Rejection Mixer Uses Monolithic MESFET Quad,” 1991 IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, pp. 843-846, 1991.
[134] G. E. Ponchak and R. N. Simons, “Channelized Coplanar Waveguide Pin-Diode Switches,” 1989 19th European Microwave Conference, pp. 489-494, 1989.
[135] K. W. Kobayashi et al., “ A 50 MHz-30 GHz broad-band coplanar waveguide SPDT PIN diode switch with 45-dB isolation,” IEEE Microwave and Guided Wave Letters, Vol. 5, No. 2, pp. 56-58, Feb. 1995.
[136] J. W. Greiser, “Coplanar Stripline Antenna,” Microwave J., Vol. 19, No. 10, pp. 47-49, Oct. 1976.


[137] R. Q. Lee and R. N. Simons, “Coplanar Waveguide Aperture-Coupled Microstrip Patch Antenna,” IEEE Microwave And Guided Wave Lett., Vol. 2, No. 4, pp. 138-139, April 1992.
[138] K. Li, et al., “Coplanar Patch Antennas: Principle, Simulation and Experiment,” IEEE APS Int. symposium, Boston, 2001, 3, pp. 402-405, 2001.
[139] L. Guo et al., “A Time Domain Study of CPW-Fed Disk Monopole for UWB Applications,” APMC 2005, pp. 1-4, 2005.
[140] J. D. Kraus, “Antennas since Hertz and Marconi,” IEEE Trans. Antennas Propagat., Vol. 33, No. 2, pp. 131–137, Feb. 1985.
[141] T. C. Edwards, Foundations for Microstrip Circuit Design, Toronto, John Wiley & Sons, New York, 1983.
[142] J. R. Mosig and F. E. Gardiol, “General Integral Equation Formulation for Microstrip Antennas and Scatterers,” Proc. Inst. Elect. Eng., Pt. H, Vol. 132, No. 7, pp. 424–432, Dec. 1985.
[143] N. G. Alexopoulos and D. R. Jackson, “Fundamental Superstrate (Cover) Effects on Printed Circuit Antennas,” IEEE Trans. Antennas Propagat., Vol. 32, No. 8, pp. 807–816, Aug. 1984.
[144] C. C. Liu et al., “Performance of Probe-Fed Microstrip-Patch Element Phased Arrays,” IEEE Trans. Antennas Propagat., Vol. 36, No. 11, pp. 1501–1509, Nov. 1988.
[145] J. T. Aberle and D. M. Pozar, “Analysis of Infinite Arrays of One- and Two-Probe-Fed Circular Patches,” IEEE Trans. Antennas Propagat., Vol. 38, No. 4, pp. 421–432, Apr. 1990.
[146] E. H. Van Lil and A. R. Van de Capelle, “Transmission Line Model for Mutual Coupling Between Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. 32, No. 8, pp. 816–821, Aug. 1984.
[147] K. Malkomes, “Mutual Coupling Between Microstrip Patch Antennas,” Electronic Letters, Vol. 18, No. 12, pp. 520–522, Jun. 1982.
[148] E. Penard and J.-P. Daniel, “Mutual Coupling Between Microstrip Antennas,” Electronic Letters, Vol. 18, No. 14, pp. 605–607, Jul. 1982.
[149] D. H. Schaubert et al., “Effect of Microstrip Antenna Substrate Thickness and Permittivity: Comparison of Theories and Experiment,” IEEE Trans. Antennas Propagat., Vol. 37, No. 6, pp. 677–682, Jun. 1989.
[150] C. A. Balanis, Advanced Engineering ElectroMagnetic, John Wiley & Sons, New York, 1989.
[151] E. O. Hammerstad, “Equations for Microstrip Circuit Design,” Proc. Fifth European Microwave Conf., pp. 268–272, 1975.
[152] W. F. Richards et al., Antenna Handbook: Theory, Applications and Design, Van Nostrand Reinhold Co, New York, 1988.
[153] R. C. Johnson et al., “Determination of Far-Field Antenna Patterns from Near-Field Measurements,” Proc. IEEE, Vol. 61, No. 12, pp. 1668–1694, Dec. 1973.
[154] D. T. Paris et al., “Basic Theory of Probe-Com-Pensated Near-Field Measurements,” IEEE Trans. Antennas Propagat., Vol. 26, No. 3, pp. 373 – 379, May 1978.
[155] E. B. Joy et al., “Applications of Probe Com-Pensated Near-Field Measurements,” IEEE Trans. Antennas Propagat., Vol. 26, No.3, pp. 379–389, May 1978.
[156] L. H. Hemming and R. A. Heaton, “Antenna Gain Calibration on a Ground Reflection Range,” IEEE Trans. Antennas Propagat., Vol. 21, No. 4, pp. 532–537, Jul. 1973.
[157] P. W. Arnold, “The ‘Slant’ Antenna Range,” IEEE Trans. Antennas Propagat., Vol. 14,No. 5, pp. 658–659, Sept. 1966.
[158] W. H. Emerson, “ Electromagnetic Wave Absorbers and Anechoic Chambers Through the Years,” IEEE Trans. Antennas Propagat., Vol. 21, No.4, pp. 484–490, Jul. 1973.
[159] W. H. Kummer and E. S. Gillespie, “Antenna Measurements-1978,” Proc. IEEE, Vol. 66, No. 4, pp. 483–507, Apr. 1978.
[160] M. R. Gillette and P. R. Wu, “RF Anechoic Chamber Design Using Ray Tracing,” 1977 Int. IEEE/AP-S Symp. Dig., pp. 246–249, Jun. 1977.

[161] W. H. Emerson and H. B. Sefton, “An Improved Design for Indoor Ranges,” Proc. IEEE, Vol. 53, pp. 1079–1081, Aug. 1965.
[162] The Institute of Electrical and Electronics Engineers, Inc. IEEE Standard Test Procedures for Antennas, IEEE Std 149-1979, 1979.
[163] J. R. Mentzer, “The Use of Dielectric Lenses in Reflection Measurements,” Proc. IRE, Vol. 41, pp. 252–256, Feb. 1953.
[164] A. C. Newell et al., “Accurate Measurement of Antenna Gain and Polarization at Reduced Distances by an Extrapolation Technique,” IEEE Trans. Antennas Propagat., Vol. 21, No. 4, pp. 418–431, Jul. 1973.
[165] L. H. Hemming and R. A. Heaton, “Antenna Gain Calibration on a Ground Reflection Range,” IEEE Trans. Antennas Propagat., Vol. 21, No. 4, pp. 532–538, Jul. 1973.
[166] R. G. FitzGerrell, “ Gain Measurements of Vertically Polarized Antennas over Imperfect Ground,” IEEE Trans. Antennas Propagat., Vol. 15, No. 2, pp. 211–216, Mar. 1967.
[167] R. G. FitzGerrell, “The Gain of a Horizontal Half-Wave Dipole over Ground,” IEEE Trans. Antennas Propagat., Vol. 15, No. 4, pp. 569–571, Jul. 1967.
[168] R. G. FitzGerrell, “Limitations on Vertically Polarized Ground-Based Antennas as Gain Standards,” IEEE Trans. Antennas Propagat., Vol. 23, No. 2, pp. 284–286, Mar. 1975.
[169] E. H. Newman et al., “Two Methods for the Measurement of Antenna Efficiency,” IEEE Trans. Antennas Propagat., Vol. 23, No. 4, pp. 457–461, Jul. 1975.
[170] The Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for Waveguide and Waveguide Component Measurements, IEEE Std 148-1959, 1960.
[171] J. D. Kraus, Antennas, McGraw-Hill, New York, 1988.
[172] G. Barzilai, “Experimental Determination of the Distribution of Current and Charge Along Cylindrical Antennas,” Proc. IRE, pp. 825–829, Jul. 1949.
[173] T. Morita, “Current Distributions on Transmitting and Receiving Antennas,” Proc. IRE, pp. 898–904, Aug. 1950.
[174] A. F. Rashid, “Quasi-Near-Zone Field of a Mono-Pole Antenna and the Current Distribution of an Antenna on a Finite Conductive Earth,” IEEE Trans. Antennas Propagat., Vol. 18,No. 1, pp. 22–28, Jan. 1970.
[175] J. S. Hollis et al., Microwave Antenna Measurements, Scientific-Atlanta, Inc., Atlanta, Georgia, Jul. 1970.
[176] C. M. Su et al., “Dual-Band Slot Antenna For 2.4/5.2GHz WLAN Operation,” Microwave and Optical Technology Letters, Vol. 35, pp. 306-308, 2002.
[177] J. W. Wu, “2.4/5-GHz Dual-Band Triangular Slot Antenna with Compact Operation,” Microwave and Optical Technology Letters, Vol. 45, pp. 81-84, 2005.
[178] C. M. Su et al., “Printed Dual-Band Dipole Antenna With U-Slotted Arms For 2.4/5.2GHz WLAN Operation,” Electronics Letters, Vol. 38, No. 22, pp. 1308-1309, 2002.
[179] W. C. Liu, “Boardband Dual-Frequency Cross-Shaped Slot CPW-Fed Monopole Antenna For WLAN Operation,” Microwave and Optical Technology Letters, Vol. 46, pp. 353-355, 2005.
[180] H. M. Hsiao et al., “Novel Dual-Broadband Rectangular-Slot Antenna For 2.4/5-GHz Wireless Communication,” Microwave and Optical Technology Letters, Vol. 46, pp. 197-20l, 2005.
[181] C. J. Wang and W. T. Tsai, “A Stair-Shaped Slot Antenna For the TripleBand WLAN Applications,” Microwave and Optical Technology Letters, Vol. 39, pp. 370-372, 2003.
[182] K. Hirose and H. Nakano, “Dual-Loop Slot Antenna With Simple Feed,” Electronics Letters, Vol. 25, No. 18, pp. 1218-1219, 1989.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top