:::

詳目顯示

回上一頁
題名:下坡跑誘發肌肉損傷對隔天高脂肪餐後血脂濃度之影響
作者:楊璁人
作者(外文):Yang, Tsung-Jen
校院名稱:國立臺灣師範大學
系所名稱:體育學系
指導教授:張振崗
劉宏文
學位類別:博士
出版日期:2019
主題關鍵詞:心血管疾病有氧運動三酸甘油脂能量消耗cardiovascular diseaseaerobic exercisetriglycerideenergy expenditure
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
研究背景:先前研究認為持續性長時間的有氧運動可以藉由運動中的能量消耗,降低隔天高脂肪餐後的血脂濃度,而阻力訓練所造成的全身性肌肉損傷可能會抵消運動降低餐後血脂濃度的效果,但目前仍不瞭解有氧運動導致的肌肉損傷對餐後血脂濃度的影響。目的:本研究目的為利用下坡跑形式探討有氧運動介入誘發肌肉損傷,探討有氧運動後的肌肉損傷對隔天餐後血脂濃度的影響。研究方法:招募9位健康成年男性採用隨機分配實驗設計,以60% VO2max強度進行30 min下坡跑 (downhill running, DR)、30 min平坡跑 (level running, LR) 及30 min休息 (control, CON) 共三次測試,於運動後攝取一標準晚餐後,禁食12 hr後進行高脂肪餐測試 (fat, 1.2g/kg; CHO, 1.1 g/kg; protein, 0.33 g/kg; kcal, 16.5 kcal/kg),探討餐後後0.5, 1, 2, 3, 4, 5, 6 hr血脂濃度及呼吸交換率 (respiratory exchange ratio, RER) 的變化。結果:三次測試的高脂肪餐後各時間點血清三酸甘油酯濃度及濃度與時間曲線下面積無顯著差異,DR測試餐後血清游離脂肪酸濃度時間曲線下面積顯著高於CON測試 (p = 0.03) ,但甘油濃度在三個測試間無顯著差異;DR測試餐後HDL-C濃度於0, 0.5, 1 hr顯著高於CON測試 (p <.05) ;DR測試餐後6 hr血清肌酸激酶濃度顯著高於LR及CON測試 (p<.05)。結論:本研究發現下坡跑有氧運動產生的肌肉損傷誘發隔天肌肉損傷指標物質肌酸激酶濃度上升,此肌肉損傷對餐後血液三酸甘油酯代謝無顯著影響,但可能降低肌肉對餐後血液游離脂肪酸的代謝。
Background: Muscle damage could alter the effect of endurance exercise on postprandial lipemia. Objective: The purpose of this study was to investigate the effects of downhill running on postprandial lipemia. Methodology: Nine healthy adult males performed three trials: downhill running at 60% VO2max for 30 minutes (DR), level running at 60% VO2max for 30 minutes (LR), and rest for 30 min (CON) in a randomized cross-over design. A standardized dinner was consumed after the running or rest. After a 12-hr fast, a high-fat meal (fat, 1.2g/kg; CHO, 1.1 g/kg; protein, 0.33 g/kg; kcal, 16.5 kcal/kg) was ingested. Blood samples and expired gas were collected at 0, 0.5, 1, 2, 3, 4, 5, 6 hr. Results: Postprandial triglyceride concentrations and the area under the curve were not significantly different among the three trials. Non-esterified fatty acids area under the cruve was significantly higher in DR than CON (p = 0.03). However, serum glycerol concentrations were similar among the three trials. HDL-C concentrations were significantly higher in DR than CON at 0, 0.5, 1 hr after the high fat meal. (p <.05). Creatine kinase concentrations were significantly higher in DR than LR and CON at each time point (p <.05). Conclusion: This study suggested that muscle damage induced by downhill running had no effect on postprandial triglyceride concentration. However, muscle damage could reduce the postprandial metabolism of non-esterified fatty acids.
一、中文文獻
王鶴森、吳泰賢、吳慧君、李佳倫、李意旻、林高正、郭婕、溫小娟、劉介仲、蔡佈曦、蔡琪文、鄭宇容、鄭景峰、謝悅齡、顏惠芷 (2015)。運動生理學。新北市:新文京開發。
行政院衛生福利部 (2018)。106年國人死因統計結果【行政院衛生福利部統計處】。取自http://www.mohw.gov.tw/cp-3795-41794-1.html
林正常 (1995)。運動生理學實驗指引。臺北市:師大書苑。
林貴福、徐台閣、吳慧君 (譯) (2002)。運動生理學:體適能與運動表現的理論與應用。臺北市:麥格羅希爾。(Power, S. K., & Howley, E. T., 2001)
波士頓馬拉松官網 (2018)。關於波士頓馬拉松【波士頓體育協會】。取自https://www.baa.org/about/boston-marathon
跑者廣場 (2018)。全國賽會【跑者廣場】取自http://www.taipeimarathon.org.tw/contest.aspx
楊璁人、邱志暉 (2018)。不同型態的運動對餐後血脂之探討。中華體育季刊,32,85-94。
劉奕陞、謝伸裕 (2007)。單次長時間與多次短時間運動對能量消耗之影響。體育學報,40(1),15-28。

二、英文文獻
Achten, J., Gleeson, M., & Jeukendrup, A. E. (2002). Determination of the exercise intensity that elicits maximal fat oxidation. Medicine and Science in Sports and Exercise, 34(1), 92-97.
Aldred, H. E., Perry, I. C., & Hardman, A. E. (1994). The effect of a single bout of brisk walking on postprandial lipemia in normolipidemic young adults. Metabolism, 43(7), 836-841.
Allen, E., Gray, P., Kollias-Pearson, A., Oag, E., Pratt, K., Henderson, J., & Gray, S. R. (2014). The effect of short-duration sprint interval exercise on plasma postprandial triacylglycerol levels in young men. Journal of Sports Sciences, 32(10), 911-916.
Armstrong, R. B. (1984). Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Medicine and Science in Sports and Exercise, 16(6), 529-538.
Astorino, T. A., Allen, R. P., Roberson, D. W., & Jurancich, M. (2012). Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. The Journal of Strength & Conditioning Research, 26(1), 138-145.
Astorino, T. A., Schubert, M. M., Palumbo, E., Stirling, D., McMillan, D. W., Gallant, R., & Dewoskin, R. (2016). Perceptual Changes in Response to Two Regimens of Interval Training in Sedentary Women. The Journal of Strength & Conditioning Research, 30(4), 1067-1076.
Bansal, S., Buring, J. E., Rifai, N., Mora, S., Sacks, F. M., & Ridker, P. M. (2007). Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. Jama, 298(3), 309-316.
Barnes, J. N., Trombold, J. R., Dhindsa, M., Lin, H. F., & Tanaka, H. (2010). Arterial stiffening following eccentric exercise-induced muscle damage. Journal of Applied Physiology, 109(4), 1102-1108.
Bellou, E., Magkos, F., Kouka, T., Bouchalaki, E., Sklaveniti, D., Maraki, M., . . . Sidossis, L. S. (2013). Effect of high-intensity interval exercise on basal triglyceride metabolism in non-obese men. Applied Physiology, Nutrition, and Metabolism, 38(8), 823-829.
Borsheim, E., Knardahl, S., Hostmark, A. T., & Bahr, R. (1998). Adrenergic control of post-exercise metabolism. Acta Physiologica Scandinavica, 162(3), 313-323.
Burns, S. F. (2008). Reductions in postprandial lipemia with exercise: is timing important? Medicine and Science in Sports and Exercise, 40(7), 1353; author reply 1354.
Burns, S. F., Broom, D. R., Miyashita, M., Ueda, C., & Stensel, D. J. (2006). Increased postprandial triacylglycerol concentrations following resistance exercise. Medicine and Science in Sports and Exercise, 38(3), 527-533.
Burns, S. F., Corrie, H., Holder, E., Nightingale, T., & Stensel, D. J. (2005). A single session of resistance exercise does not reduce postprandial lipaemia. Journal of Sports Sciences, 23(3), 251-260.
Cederholm, T., Cruz-Jentoft, A. J., & Maggi, S. (2013). Sarcopenia and fragility fractures. European Journal of Physical and Rehabilitation Medicine, 49(1), 111-117.
Chan, D. C., Pang, J., Romic, G., & Watts, G. F. (2013). Postprandial hypertriglyceridemia and cardiovascular disease: current and future therapies. Current Atherosclerosis Reports, 15(3), 309.
Chen, T. C., Hsieh, C. C., Tseng, K. W., Ho, C. C., & Nosaka, K. (2017). Effects of Descending Stair Walking on Health and Fitness of Elderly Obese Women. Medicine and Science in Sports and Exercise, 49(8), 1614-1622.
Chiu, C. H., Burns, S. F., Yang, T. J., Chang, Y. H., Chen, Y. L., Chang, C. K., & Wu, C. L. (2014). Energy replacement using glucose does not increase postprandial lipemia after moderate intensity exercise. Lipids in Health and Disease, 13, 177.
Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. American Journal of Physical Medicine & Rehabilitation, 81(11), S52-69.
Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine and Science in Sports and Exercise, 24(5), 512-520.
Currie, K. D., Dubberley, J. B., McKelvie, R. S., & MacDonald, M. J. (2013). Low-volume, high-intensity interval training in patients with CAD. Medicine and Science in Sports and Exercise, 45(8), 1436-1442.
Davitt, P. M., Arent, S. M., Tuazon, M. A., Golem, D. L., & Henderson, G. C. (2013). Postprandial triglyceride and free fatty acid metabolism in obese women after either endurance or resistance exercise. Journal of Applied Physiology, 114(12), 1743-1754.
DeVan, A. E., Anton, M. M., Cook, J. N., Neidre, D. B., Cortez-Cooper, M. Y., & Tanaka, H. (2005). Acute effects of resistance exercise on arterial compliance. Journal of Applied Physiology, 98(6), 2287-2291.
Dolezal, B. A., Potteiger, J. A., Jacobsen, D. J., & Benedict, S. H. (2000). Muscle damage and resting metabolic rate after acute resistance exercise with an eccentric overload. Medicine and Science in Sports and Exercise, 32(7), 1202-1207.
Ferguson, M. A., Alderson, N. L., Trost, S. G., Essig, D. A., Burke, J. R., & Durstine, J. L. (1998). Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. Journal of Applied Physiology, 85(3), 1169-1174.
Ferreira, A. P., Ferreira, C. B., Souza, V. C., Cordova, C. O., Silva, G. C., Nobrega Ode, T., & Franca, N. M. (2011). The influence of intense intermittent versus moderate continuous exercise on postprandial lipemia. Clinics, 66(4), 535-541.
Frayn, K. N. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of Applied Physiology, 55(2), 628-634.
Freese, E. C., Levine, A. S., Chapman, D. P., Hausman, D. B., & Cureton, K. J. (2011). Effects of acute sprint interval cycling and energy replacement on postprandial lipemia. Journal of Applied Physiology, 111(6), 1584-1589.
Gabriel, B., Ratkevicius, A., Gray, P., Frenneaux, M. P., & Gray, S. R. (2012). High-intensity exercise attenuates postprandial lipaemia and markers of oxidative stress. Clinical Sscience, 123(5), 313-321.
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., . . . American College of Sports, M. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334-1359.
Gault, M. L., & Willems, M. E. (2013). Aging, functional capacity and eccentric exercise training. Aging and Ddisease, 4(6), 351-363.
Gill, J. M., & Hardman, A. E. (2003). Exercise and postprandial lipid metabolism: an update on potential mechanisms and interactions with high-carbohydrate diets (review). The Journal of Nnutritional Bbiochemistry, 14(3), 122-132.
Gillen, J. B., & Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied Physiology, Nutrition, and Metabolism, 39(3), 409-412.
Herd, S. L., Kiens, B., Boobis, L. H., & Hardman, A. E. (2001). Moderate exercise, postprandial lipemia, and skeletal muscle lipoprotein lipase activity. Metabolism, 50(7), 756-762.
Hortobagyi, T., & DeVita, P. (2000). Favorable neuromuscular and cardiovascular responses to 7 days of exercise with an eccentric overload in elderly women. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 55(8), B401-410.
Isner-Horobeti, M. E., Dufour, S. P., Vautravers, P., Geny, B., Coudeyre, E., & Richard, R. (2013). Eccentric exercise training: modalities, applications and perspectives. Sports Medicine, 43(6), 483-512.
Kiens, B., & Lithell, H. (1989). Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle. The Journal of Clinical Investigation, 83(2), 558-564.
Kiens, B., Lithell, H., Mikines, K. J., & Richter, E. A. (1989). Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action. The Journal of Clinical Investigation, 84(4), 1124-1129.
Kim, I. Y., Park, S., Trombold, J. R., & Coyle, E. F. (2014). Effects of moderate- and intermittent low-intensity exercise on postprandial lipemia. Medicine and Science in Sports and Exercise, 46(10), 1882-1890.
Kuo, C. H., & Harris, M. B. (2016). Abdominal fat reducing outcome of exercise training: fat burning or hydrocarbon source redistribution? Canadian Journal of Physiology and Pharmacology, 94(7), 695-698.
Lee, C. L., Kuo, Y. H., & Cheng, C. F. (2018). Acute High-Intensity Interval Cycling Improves Postprandial Lipid Metabolism. Medicine and Science in Sports and Exercise, 50(8), 1687-1696.
Lefebvre, P. J., & Scheen, A. J. (1998). The postprandial state and risk of cardiovascular disease. Diabetic Medicine, 15 (4), S63-68.
Lin, H. F., Chou, C. C., Cheng, H. M., & Tanaka, H. (2017). Delayed Onset Vascular Stiffening Induced by Eccentric Resistance Exercise and Downhill Running. Clinical Journal of Sport Medicine, 27(4), 369-374.
Lira, F. S., Yamashita, A. S., Uchida, M. C., Zanchi, N. E., Gualano, B., Martins, E., ... & Seelaender, M. (2010). Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile. Diabetology & Metabolic Syndrome, 2(1), 31.
Maeo, S., Yamamoto, M., Kanehisa, H., & Nosaka, K. (2017). Prevention of downhill walking-induced muscle damage by non-damaging downhill walking. PLoS One, 12(3), e0173909.
McLaughlin, T., Abbasi, F., Lamendola, C., Yeni-Komshian, H., & Reaven, G. (2000). Carbohydrate-induced hypertriglyceridemia: an insight into the link between plasma insulin and triglyceride concentrations. The Journal of Clinical Endocrinology & Metabolism, 85(9), 3085-3088.
Millet, G. Y., & Lepers, R. (2004). Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Mmedicine, 34(2), 105-116.
Miyachi, M., Kawano, H., Sugawara, J., Takahashi, K., Hayashi, K., Yamazaki, K., . . . Tanaka, H. (2004). Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation, 110(18), 2858-2863.
Miyashita, M., Burns, S. F., & Stensel, D. J. (2006). Exercise and postprandial lipemia: effect of continuous compared with intermittent activity patterns. The American Journal of Clinical Nutrition, 83(1), 24-29.
Nordestgaard, B. G., Benn, M., Schnohr, P., & Tybjærg-Hansen, A. (2007). Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. Jama, 298(3), 299-308.
Okamoto, T., Masuhara, M., & Ikuta, K. (2009). Low-intensity resistance exercise with slow lifting and lowering does not increase noradrenalin and cardiovascular responses. Clinical Physiology and Functional Imaging, 29(1), 32-37.
Pafili, Z. K., Bogdanis, G. C., Tsetsonis, N. V., & Maridaki, M. (2009). Postprandial lipemia 16 and 40 hours after low-volume eccentric resistance exercise. Medicine and Science in Sports and Exercise, 41(2), 375-382.
Parks, E. J. (2001). Effect of dietary carbohydrate on triglyceride metabolism in humans. The Journal of Nutrition, 131(10), 2772S-2774S.
Parks, E. J., & Hellerstein, M. K. (2000). Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. The American Jjournal of Clinical Nutrition, 71(2), 412-433.
Paschalis, V., Nikolaidis, M. G., Theodorou, A. A., Panayiotou, G., Fatouros, I. G., Koutedakis, Y., & Jamurtas, A. Z. (2011). A weekly bout of eccentric exercise is sufficient to induce health-promoting effects. Medicine and Science in Sports and Exercise, 43(1), 64-73.
Patsch, J. R., Miesenbock, G., Hopferwieser, T., Muhlberger, V., Knapp, E., Dunn, J. K., . . . Patsch, W. (1992). Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 12(11), 1336-1345.
Penailillo, L., Blazevich, A., & Nosaka, K. (2014). Energy expenditure and substrate oxidation during and after eccentric cycling. European Journal of Applied Physiology, 114(4), 805-814.
Petitt, D. S., Arngrimsson, S. A., & Cureton, K. J. (2003). Effect of resistance exercise on postprandial lipemia. Journal of Applied Physiology, 94(2), 694-700.
Roig, M., O'Brien, K., Kirk, G., Murray, R., McKinnon, P., Shadgan, B., & Reid, W. D. (2009). The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. British Journal of Sports Medicine, 43(8), 556-568.
Seip, R. L., Mair, K., Cole, T. G., & Semenkovich, C. F. (1997). Induction of human skeletal muscle lipoprotein lipase gene expression by short-term exercise is transient. American Journal of Physiology-Endocrinology And Metabolism, 272(2), E255-261.
Sharrett, A. R., Chambless, L. E., Heiss, G., Paton, C. C., & Patsch, W. (1995). Association of postprandial triglyceride and retinyl palmitate responses with asymptomatic carotid artery atherosclerosis in middle-aged men and women. The Atherosclerosis Risk in Communities (ARIC) Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 15(12), 2122-2129.
Singhal, A., Trilk, J. L., Jenkins, N. T., Bigelman, K. A., & Cureton, K. J. (2009). Effect of intensity of resistance exercise on postprandial lipemia. Journal of Applied Physiology, 106(3), 823-829.
Spriet, L. L. (2002). Regulation of skeletal muscle fat oxidation during exercise in humans. Medicine and Science in Sports and Exercise, 34(9), 1477-1484.
Stensvold, I., Tverdal, A., Urdal, P., & Graff-Iversen, S. (1993). Non-fasting serum triglyceride concentration and mortality from coronary heart disease and any cause in middle aged Norwegian women. British Medical Journal, 307(6915), 1318-1322.
Stevenson, E. J., Williams, C., Mash, L. E., Phillips, B., & Nute, M. L. (2006). Influence of high-carbohydrate mixed meals with different glycemic indexes on substrate utilization during subsequent exercise in women. The American Journal of Clinical Nutrition, 84(2), 354-360.
Tan, M., Chan Moy Fat, R., Boutcher, Y. N., & Boutcher, S. H. (2014). Effect of high-intensity intermittent exercise on postprandial plasma triacylglycerol in sedentary young women. International Journal of Sport Nutrition and Exercise Metabolism, 24(1), 110-118.
Trapp, E. G., Chisholm, D. J., Freund, J., & Boutcher, S. H. (2008). The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. International Journal of Obesity, 32(4), 684-691.
Treuth, M. S., Hunter, G. R., & Williams, M. (1996). Effects of exercise intensity on 24-h energy expenditure and substrate oxidation. Medicine and Science in Sports and Exercise, 28(9), 1138-1143.
Tsetsonis, N. V., Hardman, A. E., & Mastana, S. S. (1997). Acute effects of exercise on postprandial lipemia: a comparative study in trained and untrained middle-aged women. The American Journal of Clinical Nutrition, 65(2), 525-533.
Valimaki, I. A., Vuorimaa, T., Ahotupa, M., & Vasankari, T. J. (2016). Strenuous physical exercise accelerates the lipid peroxide clearing transport by HDL. European Journal of Applied Physiology, 116(9), 1683-1691.
Wahrenberg, H., Engfeldt, P., Bolinder, J., & Arner, P. (1987). Acute adaptation in adrenergic control of lipolysis during physical exercise in humans. American Journal of Physiology-Endocrinology and Metabolism, 253(1), E383-390.
Wu, C. L., Nicholas, C., Williams, C., Took, A., & Hardy, L. (2003). The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise. British Journal of Nutrition, 90(6), 1049-1056.
Yang, T. J., Chiu, C. H., Tseng, M. H., Chang, C. K., & Wu, C. L. (2018). The Influence of Pre-Exercise Glucose versus Fructose Ingestion on Subsequent Postprandial Lipemia. Nutrients, 10(2).
Yang, T. J., Wu, C. L., & Chiu, C. H. (2018). High-Intensity Intermittent Exercise Increases Fat Oxidation Rate and Reduces Postprandial Triglyceride Concentrations. Nutrients, 10(4).
Zafeiridis, A., Goloi, E., Petridou, A., Dipla, K., Mougios, V., & Kellis, S. (2007). Effects of low- and high-volume resistance exercise on postprandial lipaemia. British Journal of Nutrition, 97(3), 471-477.
Zhang, J. Q., Ji, L. L., Fretwell, V. S., & Nunez, G. (2006). Effect of exercise on postprandial lipemia in men with hypertriglyceridemia. European Journal of Applied Physiology, 98(6), 575-582.
Zhang, J. Q., Thomas, T. R., & Ball, S. D. (1998). Effect of exercise timing on postprandial lipemia and HDL cholesterol subfractions. Journal of Applied Physiology, 85(4), 1516-1522.
Zotou, E., Magkos, F., Koutsari, C., Fragopoulou, E., Nomikos, T., Sidossis, L. S., & Antonopoulou, S. (2010). Acute resistance exercise attenuates fasting and postprandial triglyceridemia in women by reducing triglyceride concentrations in triglyceride-rich lipoproteins. European Journal of Applied Physiology, 110(4), 869-874.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top