:::

詳目顯示

回上一頁
題名:視覺系統對漢字的階層性處理
作者:高千惠
作者(外文):Chien-Hui Kao
校院名稱:臺灣大學
系所名稱:心理學研究所
指導教授:陳建中
學位類別:博士
出版日期:2011
主題關鍵詞:漢字空間編碼倒立效果視覺皮質區心理物理功能性核磁共振造影Chinese characterspatial configurationinversion effectvisual cortexpsychophysicsfMRI
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:498
漢字是一種圖像文字,每個漢字都佔據固定的空間以做適當的安排,字形筆畫的結構是影響中文讀者在閱讀時的重要因素。本研究主要的目的是探討視覺系統對於漢字的處理歷程以及其神經機制。本研究以心理物理學的方式測量漢字的空間加乘功能、並採用功能性核磁共振造影的技術檢驗漢字在視覺區的表徵。在研究一中,我們操弄真字、假字、非字、甲骨文以及破碎字等刺激大小以及它們在視野的偏角。根據中文讀者對於這些漢字在偵測作業與區辨作業上的表現,我們使用空間加乘模型推估漢字在視覺系統中的機制。實驗結果顯示,在偵測作業中,參與者對於文字大小的偵測閾值不受文字類別影響,參與者對目標字的閾值會隨著刺激的變小而提高,且斜率接近-1/2。在區辨作業中,參與者對於目標字的閾值也是隨著刺激的變小而提高,且斜率接近-1,且參與者在區辨真字與假字或是非字的閾值高於區辨真字與甲骨文或是破碎字。再者,隨著視野偏角的增大,參與者對於文字的偵測與區辨力都會變差。這個結果顯示在偵測作業中,視覺系統主要受到漢字之細部特徵的影響;在區辨作業中,視覺系統則則是會受到漢字之熟悉特徵的影響。在研究二中,我們採取網膜拓樸對應派典找出視覺區相對應於漢字處理的特定表徵。我們比較大腦視覺區在"空白背景的旋轉楔形與擴大環狀之漢字"與"破碎字背景的旋轉楔形與擴大環狀之漢字"的激發狀況。實驗結果顯示,"空白背景的旋轉楔形與擴大環狀之漢字"會激發初級視覺皮質區與視覺顳葉區,這兩個區域都顯示了視覺區對漢字網膜拓樸的特性。"破碎字背景的旋轉楔形與擴大環狀之漢字"則只會激發視覺顳葉區,尤其是梭狀回對整字有網膜拓樸的特性;亦即梭狀回對於漢字在視網膜的位置具有特定的對應性。再者,相較於破碎字,梭狀回偏好那些呈現在視野中央的文字。在研究三與四中,我們以心理物理測量方法與功能性核磁共振造影比較參與者對於正立漢字與倒立漢字的表現。在行為結果上,我們發現參與者對於倒立漢字的配對表現顯著地比正立漢字差;而此我們稱之為倒立效果。我們同樣也在漢字部件上觀察到倒立效果,但在非字或是甲骨文上卻沒有這樣的倒立效果。這個結果顯示視覺系統會分析整字與部件的空間編碼訊息。配合神經造影的研究結果顯示,視覺系統是以階層的方式處理漢字,右腦的視覺頂葉區主要分析漢字的細部特徵,如,筆畫;右腦的視覺顳葉區處理漢字部件之間的空間關係;左腦的梭狀回則是處理漢字整體的空間訊息。總結,從視覺頂葉區到腹側視覺區,視覺系統會以階層的方式處理漢字。
The present study is to investigate the processing of Chinese character in the visual system and its neural network. In study 1, we used a dual task paradigm with both detection and discrimination tasks in spatial summation to measure the spatial constraints for visual word form perception. Five types of stimuli (real, pseudo-, non-, Jiagu and scrambled characters) were used in the experiments. The detection thresholds for the same stimulus size and the same eccentricity were the same for all types of stimuli. When the target size was small, the detection threshold of a character decreased with the increase in its size, with a slope of -1/2 on log-log coordinates, up to a critical size at all eccentricities and for all stimulus types. Beyond the critical size, there was little, if any, improvement of visual word form detectability as target size further increased. That is, the detectability is based on local feature analysis regardless of character types. The contrast thresholds for discriminating real and pseudo- or non-characters were higher than for discriminating real characters and Jiagu characters or scrambled characters. The results suggested that the discrimination threshold is mediated by well-learned forms of components in a character. In study 2, we used a 2 (“rotating wedge of characters” vs. “expanding ring of characters”) by 2 (“with a blank background” vs. “with a scrambled background”) design with fMRI to define the visual cortical regions produce unique representations for Chinese characters. The ventral occipital region showed a retinotopic representation for character stimuli as we found the fusiform gyrus is selective for the contralateral visual fields and has a centre-to-periphery map with a preference for characters presented in fovea. This implies that the fusiform gyrus is selectively to the spatial location information of stimuli. In study 3 and 4, we examined the spatial configuration processing in the visual system for a character by comparing the visual performance for upright character with that for their inverted versions with psychophysics and fMRI. We showed a robust inversion effect for real character regardless of eccentricities. Such an inversion effect was absent for non-characters. The inversion effect was also found in radicals or components in a character. These results suggested that a visual analysis of characters and their components involved a spatial configuration processing. Our neuroimaging evidence showed that the left fusiform gyrus analyzes the spatial configuration of components in a character while the right occipitotemporal regions analyze the spatial configuration of strokes in a component. In addition, the right occipitoparietal region analyzes local features of a character. Together, we demonstrated a hierarchical processing of visual word forms in the visual cortex.
Academia Sinica balanced corpus. (Version 3) [CDROM] (1998). from Academia Sinica:
Arcaro, M. J., McMains, S. A., Singer, B. D., & Kastner, S. (2009). Retinotopic organization of human ventral visual cortex. Journal of Neuroscience, 29(34), 10638-10652.
Baker, C. I., Liu, J., Wald, L. L., Kwong, K. K., Benner, T., & Kanwisher, N. (2007). Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9087-9092.
Barlow, H. B. (1958). Temporal and spatial summation in human vision at different background intensities. The Journal of Physiology, 141(2), 337-350.
Battista, J., Kalloniatis, M., & Metha, A. (2005). Visual function: the problem with eccentricity. Clinical and Experimental Optometry, 88(5), 313-321.
Baumgardt, E. (1959). Visual spatial and temporal summation. Nature, 184(Suppl 25), 1951-1952.
Beauregard, M., Chertkow, H., Gold, D., Karama, S., Benhamou, J., Babins, L., et al. (1997). Word priming with brief multiple presentation technique: Preservation in amnesia. Neuropsychologia, 35(5), 611-621.
Binder, J. R., McKiernan, K. A., Parsons, M. E., Westbury, C. F., Possing, E. T., Kaufman, J. N., et al. (2003). Neural correlates of lexical access during visual word recognition. Journal of Cognitive Neuroscience, 15(3), 372-393.
Blakemore, C., & Campbell, F. W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. The Journal of Physiology, 203(1), 237-260.
Bonda, E., Petrides, M., Frey, S., & Evans, A. (1995). Neural correlates of mental transformations of the body-in-space. Proceedings of the National Academy of Sciences of the United States of America, 92(24), 11180-11184.
Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226(5241), 177-178.
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436.
Brewer, A. A., Liu, J., Wade, A. R., & Wandell, B. A. (2005). Visual field maps and stimulus selectivity in human ventral occipital cortex. Nature Neuroscience, 8(8), 1102-1109.
Bryden, M. P., & Allard, F. (1976). Visual hemifield differences depend on typeface. Brain and Language, 3(2), 191-200.
Bullier, J. (2001). Integrated model of visual processing. Brain Research. Brain Research Reviews, 36(2-3), 96-107.
Campbell, F. W., & Robson, J. G. (1964). The attenuation characteristics of the visual system determined by measurements of flicker threshold, brightness and pupillomotor effect of modulated light. Documenta Ophthalmologica, 18, 83-84.
Carey, S., & Diamond, R. (1977). From piecemeal to configurational representation of faces. Science, 195(4275), 312-314.
Cattell, J. (1886). The time taken up by cerebral operations. Mind: A Quarterly Review of Philosophy, 11, 277-282, 524-538.
Chan, S. T., Tang, S. W., Tang, K. W., Lee, W. K., Lo, S. S., & Kwong, K. K. (2009). Hierarchical coding of characters in the ventral and dorsal visual streams of Chinese language processing. Neuroimage, 48(2), 423-435.
Chen, C. C., Kao, K. L., & Tyler, C. W. (2007). Face configuration processing in the human brain: the role of symmetry. Cerebral Cortex, 17(6), 1423-1432.
Chen, Y. P., Allport, D. A., & Marshall, J. C. (1996). What are the functional orthographic units in Chinese word recognition: The stroke or the stroke pattern? Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 49, 1024-1043.
Cheng, C. M., & Yang, M. J. (1989). Lateralization in the visual perception of Chinese characters and words. Brain and Language, 36(4), 669-689.
Chung, S. T. (2002). The effect of letter spacing on reading speed in central and peripheral vision. Investigative Ophthalmology and Visual Science, 43(4), 1270-1276.
Chung, S. T., Levi, D. M., & Legge, G. E. (2001). Spatial-frequency and contrast properties of crowding. Vision Research, 41(14), 1833-1850.
Chung, S. T., Mansfield, J. S., & Legge, G. E. (1998). Psychophysics of reading. XVIII. The effect of print size on reading speed in normal peripheral vision. Vision Research, 38(19), 2949-2962.
Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: the case for the visual word form area. Neuroimage, 22(1), 466-476.
Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M. A., et al. (2000). The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123 ( Pt 2), 291-307.
Cohen, L., Jobert, A., Le Bihan, D., & Dehaene, S. (2004). Distinct unimodal and multimodal regions for word processing in the left temporal cortex. Neuroimage, 23(4), 1256-1270.
Cohen, L., Lehericy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S. (2002). Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain, 125(Pt 5), 1054-1069.
Cohen, L., Martinaud, O., Lemer, C., Lehericy, S., Samson, Y., Obadia, M., et al. (2003). Visual word recognition in the left and right hemispheres: anatomical and functional correlates of peripheral alexias. Cerebral Cortex, 13(12), 1313-1333.
Cohen, M. S., Kosslyn, S. M., Breiter, H. C., DiGirolamo, G. J., Thompson, W. L., Anderson, A. K., et al. (1996). Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain, 119 ( Pt 1), 89-100.
Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20, 273-297.
Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage, 19(2 Pt 1), 261-270.
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179-194.
Davidoff, J., Fonteneau, E., & Fagot, J. (2008). Local and global processing: Observations from a remote culture. Cognition, 108(3), 702-709.
DeFrancis, J. (1984). The Chinese language: Fact and fantasy. Honolulu: University of Hawaii Press.
Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: a proposal. Trends in Cognitive Sciences, 9(7), 335-341.
Dehaene, S., Jobert, A., Naccache, L., Ciuciu, P., Poline, J. B., Le Bihan, D., et al. (2004). Letter binding and invariant recognition of masked words: behavioral and neuroimaging evidence. Psychological Science, 15(5), 307-313.
Dehaene, S., Le Clec, H. G., Poline, J. B., Le Bihan, D., & Cohen, L. (2002). The visual word form area: A prelexical representation of visual words in the fusiform gyrus. Neuroreport, 13(3), 321-325.
DeYoe, E. A., Carman, G. J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., et al. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 93(6), 2382-2386.
Diamond, R., & Carey, S. (1986). Why faces are and are not special - an effect of expertise. Journal of Experimental Psychology:General, 115(2), 107-117.
Dien, J. (2008). Looking both ways through time: The Janus model of lateralized cognition. Brain and Cognition, 67(3), 292-323.
Dien, J. (2009). A tale of two recognition systems: implications of the fusiform face area and the visual word form area for lateralized object recognition models. Neuropsychologia, 47(1), 1-16.
Dong, Y., Fukuyama, H., Honda, M., Okada, T., Hanakawa, T., Nakamura, K., et al. (2000). Essential role of the right superior parietal cortex in Japanese kana mirror reading: An fMRI study. Brain, 123 ( Pt 4), 790-799.
Dougherty, R. F., Koch, V. M., Brewer, A. A., Fischer, B., Modersitzki, J., & Wandell, B. A. (2003). Visual field representations and locations of visual areas V1/2/3 in human visual cortex. Journal of Vision, 3(10), 586-598.
Dupont, P., De Bruyn, B., Vandenberghe, R., Rosier, A. M., Michiels, J., Marchal, G., et al. (1997). The kinetic occipital region in human visual cortex. Cerebral Cortex, 7(3), 283-292.
Engel, S. A., Glover, G. H., & Wandell, B. A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex, 7(2), 181-192.
Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598-601.
Esterman, M., Chiu, Y. C., Tamber-Rosenau, B. J., & Yantis, S. (2009). Decoding cognitive control in human parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(42), 17974-17979.
Everson, M. E. (1998). Word recognition among learners of Chinese as a foreign language: Investigating the relationship between naming and knowing. Modern Language Journal, 82(2), 194-204.
Farah, M. J. (1990). Visual agnosia. Cambridge, MA: MIT Press.
Farah, M. J., & Wallace, M. A. (1991). Pure Alexia as a Visual Impairment - a Reconsideration. Cognitive Neuropsychology, 8(3-4), 313-334.
Fiez, J. A., & Petersen, S. E. (1998). Neuroimaging studies of word reading. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 914-921.
Fink, G. R., Marshall, J. C., Halligan, P. W., & Dolan, R. J. (1999). Hemispheric asymmetries in global/local processing are modulated by perceptual salience. Neuropsychologia, 37(1), 31-40.
Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195-207.
Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189-210.
Fu, S., Chen, Y., Smith, S., Iversen, S., & Matthews, P. M. (2002). Effects of word form on brain processing of written Chinese. Neuroimage, 17(3), 1538-1548.
Gauthier, I., Behrmann, M., & Tarr, M. J. (1999). Can face recognition really be dissociated from object recognition? Journal of Cognitive Neuroscience, 11(4), 349-370.
Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience, 3(2), 191-197.
Gauthier, I., & Tarr, M. J. (1997). Becoming a "Greeble" expert: Exploring mechanisms for face recognition. Vision Research, 37(12), 1673-1682.
Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform ''face area'' increases with expertise in recognizing novel objects. Nature Neuroscience, 2(6), 568-573.
Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4), 870-878.
Glass, L. (1969). Moire effect from random dots. Nature, 223(5206), 578-580.
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20-25.
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.
Grill-Spector, K., & Kanwisher, N. (2005). Visual recognition: As soon as you know it is there, you know what it is. Psychological Science, 16(2), 152-160.
Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Research, 41(10-11), 1409-1422.
Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., & Malach, R. (1998). A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Human Brain Mapping, 6(4), 316-328.
Han, S., Jiang, Y., & Gu, H. (2004). Neural substrates differentiating global/local processing of bilateral visual inputs. Human Brain Mapping, 22(4), 321-328.
Han, S., Weaver, J. A., Murray, S. O., Kang, X., Yund, E. W., & Woods, D. L. (2002). Hemispheric asymmetry in global/local processing: Effects of stimulus position and spatial frequency. Neuroimage, 17(3), 1290-1299.
Hanson, S. J., Matsuka, T., & Haxby, J. V. (2004). Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area? Neuroimage, 23(1), 156-166.
Hasson, U., Avidan, G., Deouell, L. Y., Bentin, S., & Malach, R. (2003). Face-selective activation in a congenital prosopagnosic subject. Journal of Cognitive Neuroscience, 15(3), 419-431.
Hasson, U., Levy, I., Behrmann, M., Hendler, T., & Malach, R. (2002). Eccentricity bias as an organizing principle for human high-order object areas. Neuron, 34(3), 479-490.
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425-2430.
Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews: Neuroscience, 7(7), 523-534.
Hayworth, K. J., & Biederman, I. (2006). Neural evidence for intermediate representations in object recognition. Vision Research, 46(23), 4024-4031.
Healy, A. F., & Cunningham, T. F. (1992). A developmental evaluation of the role of word shape in word recognition. Memory and Cognition, 20(2), 141-150.
Hebb, D. O. (1949). The organization of behavior. New York: Wiley & Sons.
Hellige, J. B., & Adamson, M. M. (2007). Hemispheric differences in processing handwritten cursive. Brain and Language, 102(3), 215-227.
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat''s visual cortex. The Journal of Physiology, 160, 106-154.
Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215-243.
Hubel, D. H., & Wiesel, T. N. (1969). Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. The Journal of Physiology, 202(1), 251-260.
Hue, C. W. (2003). Number of characters a college student knows. Chinese Journal of Psychology, 31, 300-339.
Hue, C. W., & Tzeng, A. (2000). Lexical recognition task: A new method for the study of chinese character recognition. Acta Psychologia Sinica, 32, 60-65.
Ino, T., Nakai, R., Azuma, T., Kimura, T., & Fukuyama, H. (2009). Recognition and reading aloud of kana and kanji word: An fMRI study. Brain Research Bulletin, 78(4-5), 232-239.
James, T. W., Culham, J., Humphrey, G. K., Milner, A. D., & Goodale, M. A. (2003). Ventral occipital lesions impair object recognition but not object-directed grasping: An fMRI study. Brain, 126(Pt 11), 2463-2475.
Jobard, G., Crivello, F., & Tzourio-Mazoyer, N. (2003). Evaluation of the dual route theory of reading: A metanalysis of 35 neuroimaging studies. Neuroimage, 20(2), 693-712.
Johnson, J. S., & Olshausen, B. A. (2003). Timecourse of neural signatures of object recognition. Journal of Vision, 3(7), 499-512.
Jordan, K., Heinze, H. J., Lutz, K., Kanowski, M., & Jancke, L. (2001). Cortical activations during the mental rotation of different visual objects. Neuroimage, 13(1), 143-152.
Joseph, J. E., Partin, D. J., & Jones, K. M. (2002). Hypothesis testing for selective, differential, and conjoined brain activation. Journal of Neuroscience Methods, 118(2), 129-140.
Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679-685.
Kanwisher, N., Chun, M. M., McDermott, J., & Ledden, P. J. (1996). Functional imaging of human visual recognition. Brain Research. Cognitive Brain Research, 5(1-2), 55-67.
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302-4311.
Kao, C. H., Chen, D. Y., & Chen, C. C. (2010). The inversion effect in visual word form processing. Cortex, 46(2), 217-230.
Kevan, A., & Pammer, K. (2009). Predicting early reading skills from pre-reading measures of dorsal stream functioning. Neuropsychologia, 47(14), 3174-3181.
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Paper presented at the Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence.
Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39(16), 2729-2737.
Kourtzi, Z., & Huberle, E. (2005). Spatiotemporal characteristics of form analysis in the human visual cortex revealed by rapid event-related fMRI adaptation. Neuroimage, 28(2), 440-452.
Kourtzi, Z., & Kanwisher, N. (2000). Cortical regions involved in perceiving object shape. Journal of Neuroscience, 20(9), 3310-3318.
Kourtzi, Z., & Kanwisher, N. (2001). Representation of perceived object shape by the human lateral occipital complex. Science, 293(5534), 1506-1509.
Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3863-3868.
Kuncheva, L. I., & Rodriguez, J. J. (2010). Classifier ensembles for fMRI data analysis: An experiment. Magnetic Resonance Imaging, 28(4), 583-593.
Kuo, W. J., Yeh, T. C., Duann, J. R., Wu, Y. T., Ho, L. T., Hung, D., et al. (2001). A left-lateralized network for reading Chinese words: A 3T fMRI study. Neuroreport, 12(18), 3997-4001.
Kuo, W. J., Yeh, T. C., Lee, C. Y., Wu, Y. T., Chou, C. C., Ho, L. T., et al. (2003). Frequency effects of Chinese character processing in the brain: An event-related fMRI study. Neuroimage, 18(3), 720-730.
Kuo, W. J., Yeh, T. C., Lee, J. R., Chen, L. F., Lee, P. L., Chen, S. S., et al. (2004). Orthographic and phonological processing of Chinese characters: An fMRI study. Neuroimage, 21(4), 1721-1731.
LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. Neuroimage, 26(2), 317-329.
Larsson, J., & Heeger, D. J. (2006). Two retinotopic visual areas in human lateral occipital cortex. Journal of Neuroscience, 26(51), 13128-13142.
Leder, H., & Bruce, V. (2000). When inverted faces are recognized: The role of configural information in face recognition. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 53(2), 513-536.
Legge, G. E., Cheung, S. H., Yu, D., Chung, S. T., Lee, H. W., & Owens, D. P. (2007). The case for the visual span as a sensory bottleneck in reading. Journal of Vision, 7(2), 9 1-15.
Legge, G. E., Mansfield, J. S., & Chung, S. T. (2001). Psychophysics of reading. XX. Linking letter recognition to reading speed in central and peripheral vision. Vision Research, 41(6), 725-743.
Levi, D. M., Hariharan, S., & Klein, S. A. (2002). Suppressive and facilitatory spatial interactions in peripheral vision: Peripheral crowding is neither size invariant nor simple contrast masking. Journal of Vision, 2(2), 167-177.
Levi, D. M., Klein, S. A., & Aitsebaomo, A. P. (1985). Vernier acuity, crowding and cortical magnification. Vision Research, 25(7), 963-977.
Levi, D. M., Klein, S. A., & Chen, I. (2008). What limits performance in the amblyopic visual system: Seeing signals in noise with an amblyopic brain. Journal of Vision, 8(4), 1 1-23.
Levy, I., Hasson, U., Avidan, G., Hendler, T., & Malach, R. (2001). Center-periphery organization of human object areas. Nature Neuroscience, 4(5), 533-539.
Liu, C., Zhang, W. T., Tang, Y. Y., Mai, X. Q., Chen, H. C., Tardif, T., et al. (2008). The Visual Word Form Area: Evidence from an fMRI study of implicit processing of Chinese characters. Neuroimage, 40(3), 1350-1361.
Livingstone, M. S., Freeman, D. C., & Hubel, D. H. (1996). Visual responses in V1 of freely viewing monkeys. Cold Spring Harbor Symposia on Quantitative Biology, 61, 27-37.
Lux, S., Marshall, J. C., Thimm, M., & Fink, G. R. (2008). Differential processing of hierarchical visual stimuli in young and older healthy adults: Implications for pathology. Cortex, 44(1), 21-28.
Malach, R., Levy, I., & Hasson, U. (2002). The topography of high-order human object areas. Trends in Cognitive Sciences, 6(4), 176-184.
Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences of the United States of America, 92(18), 8135-8139.
Martelli, M., Majaj, N. J., & Pelli, D. G. (2005). Are faces processed like words? A diagnostic test for recognition by parts. Journal of Vision, 5(1), 58-70.new window
McKone, E. (2004). Isolating the special component of face recognition: Peripheral identification and a Mooney face. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(1), 181-197.
McKone, E., Brewer, J. L., MacPherson, S., Rhodes, G., & Hayward, W. G. (2007). Familiar other-race faces show normal holistic processing and are robust to perceptual stress. Perception, 36(2), 224-248.
McKone, E., Martini, P., & Naykayama, K. (2003). Isolating holistic processing in faces (and perhaps objects) In M. A. Peterson & G. Rhodes (Eds.), Perception of faces, objects, and scenes. (pp. 92-119). NY: Oxford University Press.
Mechelli, A., Price, C. J., Noppeney, U., & Friston, K. J. (2003). A dynamic causal modeling study on category effects: Bottom-up or top-down mediation? Journal of Cognitive Neuroscience, 15(7), 925-934.
Mosig, M. O., Lipkin, E., Khutoreskaya, G., Tchourzyna, E., Soller, M., & Friedmann, A. (2001). A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion. Genetics, 157(4), 1683-1698.
Navon, D. (1977). Forest before trees - precedence of global features in visual-perception. Cognitive Psychology, 9(3), 353-383.
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424-430.
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
Ostwald, D., Lam, J. M., Li, S., & Kourtzi, Z. (2008). Neural coding of global form in the human visual cortex. Journal of Neurophysiology, 99(5), 2456-2469.
Pammer, K., Hansen, P., Holliday, I., & Cornelissen, P. (2006). Attentional shifting and the role of the dorsal pathway in visual word recognition. Neuropsychologia, 44(14), 2926-2936.
Pammer, K., Lavis, R., Cooper, C., Hansen, P. C., & Cornelissen, P. L. (2005). Symbol-string sensitivity and adult performance in lexical decision. Brain and Language, 94(3), 278-296.
Pammer, K., & Vidyasagar, T. R. (2005). Integration of the Visual and Auditory Networks in Dyslexia: A Theoretical Perspective. Journal of Research in Reading, 28, 320-331.
Pelli, D. G., Burns, C. W., Farell, B., & Moore-Page, D. C. (2006). Feature detection and letter identification. Vision Research, 46(28), 4646-4674.
Pelli, D. G., Farell, B., & Moore, D. C. (2003). The remarkable inefficiency of word recognition. Nature, 423(6941), 752-756.
Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision, 4(12), 1136-1169.
Penny, W. D., Holmes, A. P., & Friston, K. J. (2003). Random effects analysis. . In R. S. J. Frackowiak (Ed.), Human brain function, second edition. (pp. 843-850). London: Academic Press.
Perea, M., & Rosa, E. (2002). Does "whole-word shape" play a role in visual word recognition? Perception and Psychophysics, 64(5), 785-794.
Poldrack, R. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1998). The neural basis of visual skill learning: An fMRI study of mirror reading. Cerebral Cortex, 8(1), 1-10.
Polk, T. A., & Farah, M. J. (2002). Functional MRI evidence for an abstract, not perceptual, word-form area. Journal of Experimental Psychology: General, 131(1), 65-72.
Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197 Pt 3, 335-359.
Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. Neuroimage, 19(3), 473-481.
Proverbio, A. M., Wiedemann, F., Adorni, R., Rossi, V., Del Zotto, M., & Zani, A. (2007). Dissociating object familiarity from linguistic properties in mirror word reading. Behavioral and Brain Functions, 3, 43.
Rayner, K., & Pollatsek, A. (1989). The psychology of reading. New York: Prentice-Hall.
Reinholz, J., & Pollmann, S. (2005). Differential activation of object-selective visual areas by passive viewing of pictures and words. Brain Research. Cognitive Brain Research, 24(3), 702-714.
Rhodes, G., Brake, S., & Atkinson, A. P. (1993). What''s lost in inverted faces? Cognition, 47(1), 25-57.
Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019-1025.
Riesenhuber, M., & Poggio, T. (2002). Neural mechanisms of object recognition. Current Opinion in Neurobiology, 12(2), 162-168.
Riesenhuber, M., & Wolff, B. S. (2009). Task effects, performance levels, features, configurations, and holistic face processing: A reply to Rossion. Acta Psychologica, 132(3), 286-292.
Rossion, B., Caldara, R., Seghier, M., Schuller, A. M., Lazeyras, F., & Mayer, E. (2003). A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain, 126, 2381-2395.
Rossion, B., Dricot, L., Devolder, A., Bodart, J. M., Crommelinck, M., de Gelder, B., et al. (2000). Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 12(5), 793-802.
Rossion, B., & Gauthier, I. (2002). How does the brain process upright and inverted faces? Behavioral & Cognitive Neuroscience Reviews, 1(1), 63-75.
Rumelhart, D. E., McClelland, J. L., & the PDP research group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Volume I. Cambridge, MA: MIT Press.
Ryan, L., & Schnyer, D. (2007). Regional specificity of format-specific priming effects in mirror word reading using functional magnetic resonance imaging. Cerebral Cortex, 17(4), 982-992.
Schendan, H. E., & Lucia, L. C. (2010). Object-sensitive activity reflects earlier perceptual and later cognitive processing of visual objects between 95 and 500ms. Brain Research, 1329, 124-141.
Schlaggar, B. L., Brown, T. T., Lugar, H. M., Visscher, K. M., Miezin, F. M., & Petersen, S. E. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296(5572), 1476-1479.
Sekuler, E. B., & Behrmann, M. (1996). Perceptual cues in pure alexia. Cognitive Neuropsychology, 13(7), 941-974.
Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., et al. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically- based intervention. Biological Psychiatry, 55(9), 926-933.
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., et al. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52(2), 101-110.
Shaywitz, S. E., Shaywitz, B. A., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., et al. (2003). Neural systems for compensation and persistence: Young adult outcome of childhood reading disability. Biological Psychiatry, 54(1), 25-33.
Starrfelt, R., & Gerlach, C. (2007). The visual what for area: Words and pictures in the left fusiform gyrus. Neuroimage, 35(1), 334-342.
Stehling, M. K., Turner, R., & Mansfield, P. (1991). Echo-planar imaging: Magnetic resonance imaging in a fraction of a second. Science, 254(5028), 43-50.
Sun, F., Morita, M., & Stark, L. W. (1985). Comparative patterns of reading eye movement in Chinese and English. Perception and Psychophysics, 37(6), 502-506.
Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers.
Tan, L. H., Feng, C. M., Fox, P. T., & Gao, J. H. (2001). An fMRI study with written Chinese. Neuroreport, 12(1), 83-88.
Tan, L. H., Hoosain, R., & Peng, D. L. (1995). Role of presemantic phonological code in Chinese character identification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 43-54.
Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25(1), 83-91.
Tan, L. H., Liu, H. L., Perfetti, C. A., Spinks, J. A., Fox, P. T., & Gao, J. H. (2001). The neural system underlying Chinese logograph reading. Neuroimage, 13(5), 836-846.
Tan, L. H., Spinks, J. A., Gao, J. H., Liu, H. L., Perfetti, C. A., Xiong, J., et al. (2000). Brain activation in the processing of Chinese characters and words: A functional MRI study. Human Brain Mapping, 10(1), 16-27.
Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 46(2), 225-245.
Taylor, J. C., Wiggett, A. J., & Downing, P. E. (2007). Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas. Journal of Neurophysiology, 98(3), 1626-1633.
Temple, E. (2002). Brain mechanisms in normal and dyslexic readers. Current Opinion in Neurobiology, 12(2), 178-183.
Teo, P. C., Sapiro, G., & Wandell, B. A. (1997). Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Transactions on Medical Imaging, 16(6), 852-863.
Thomas, J. P. (1985a). Detection and identification: How are they related? Journal of the Optical Society of America A. Optics and Image Science, 2(9), 1457-1467.
Thomas, J. P. (1985b). Effect of static-noise and grating masks on detection and identification of grating targets. Journal of the Optical Society of America A. Optics and Image Science, 2(9), 1586-1592.
Toet, A., & Levi, D. M. (1992). The two-dimensional shape of spatial interaction zones in the parafovea. Vision Research, 32(7), 1349-1357.
Tootell, R. B., Hadjikhani, N., Hall, E. K., Marrett, S., Vanduffel, W., Vaughan, J. T., et al. (1998). The retinotopy of visual spatial attention. Neuron, 21(6), 1409-1422.
Tsang, Y. K., & Chen, H. C. (2009). Do position-general radicals have a role to play in processing Chinese characters? Language and Cognitive Processes, 24(7/8), 947-966.
Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6(7), 767-773.
Tyler, C. W., & Chen, C. C. (2000). Signal detection theory in the 2AFC paradigm: Attention, channel uncertainty and probability summation. Vision Research, 40(22), 3121-3144.
Tyler, C. W., & Chen, C. C. (2006). Spatial summation of face information. Journal of Vision, 6(10), 1117-1125.
Tyler, C. W., Likova, L. T., Chen, C. C., Kontsevich, L. L., Schira, M. M., & Wade, A. R. (2005). Extended concepts of occipital retinotopy. Current Medical Imaging Reviews, 1(3), 319-329.
Tyler, C. W., & McBride, B. (1997). The Morphonome image psychophysics software and a calibrator for Macintosh systems. Spatial Vision, 10(4), 479-484.
Tzeng, O. J., Hung, D. L., & Cotton, B. (1979). Visual interalisation effect in reading Chinese characters. Nature, 282(5738), 499-501.
Vigneau, M., Jobard, G., Mazoyer, B., & Tzourio-Mazoyer, N. (2005). Word and non-word reading: What role for the Visual Word Form Area? Neuroimage, 27(3), 694-705.
Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 55(1), 143-156.
Wandell, B. A., Chial, S., & Backus, B. T. (2000). Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience, 12(5), 739-752.
Wandell, B. A., Dumoulin, S. O., & Brewer, A. A. (2007). Visual field maps in human cortex. Neuron, 56(2), 366-383.
Wang, M. Y., & Kuo, B. C. (2007). The inversion effects for Chinese characters. Paper presented at the Cognitive Neuroscience Society 2007 Annual Meeting.
Wang, S. Y. (1973). The Chinese language. Scientific American, 228, 50-63.
Wilson, H. R., & Wilkinson, F. (1998). Detection of global structure in Glass patterns: Implications for form vision. Vision Research, 38(19), 2933-2947.
Yang, M. J., & Cheng, C. M. (1999). Hemisphere differences in accessing lexical knowledge of Chinese characters. Laterality, 4(2), 149-166.
Yeh, S. L., & Li, J. L. (2002). Role of structure and component in judgments of visual similarity of Chinese characters. Journal of Experimental Psychology: Human Perception and Performance, 28(4), 933-947.
Yeh, S. L., Li, J. L., Takeuchi, T., Sun, V., & Liu, W. R. (2003). The role of learning experience on the perceptual organization of Chinese characters. Visual Cognition, 10(6), 729-764.
Yin, R. K. (1969). Looking at Upside-down Faces. Journal of Experimental Psychology, 81(1), 141-&.
Yovel, G., & Kanwisher, N. (2004). Face perception: Domain specific, not process specific. Neuron, 44(5), 889-898.
Yovel, G., & Kanwisher, N. (2005). The neural basis of the behavioral face-inversion effect. Current Biology, 15(24), 2256-2262.
Zeki, S., Perry, R. J., & Bartels, A. (2003). The processing of kinetic contours in the brain. Cerebral Cortex, 13(2), 189-202.
Zhang, J. Y., Zhang, T., Xue, F., Liu, L., & Yu, C. (2009). Legibility of Chinese characters in peripheral vision and the top-down influences on crowding. Vision Research, 49(1), 44-53.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top