:::

詳目顯示

回上一頁
題名:補充支鏈胺基酸、精胺酸與瓜胺酸對跆拳道反應式技術表現與中樞疲勞的影響
作者:陳一凡
作者(外文):Chen, I-Fan
校院名稱:中國文化大學
系所名稱:體育學系運動教練碩博士班
指導教授:吳慧君
張振崗
學位類別:博士
出版日期:2015
主題關鍵詞:游離色胺酸Trp/BCAA比值雙任務測驗運動自覺強度free tryptophanTrp/BCAAdual taskratings of perceived exertion
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(1) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:12
支鏈胺基酸 (branched-chain amino acids, BCAA) 、精胺酸 (arginine, Arg) 和瓜胺酸 (citrulline, Cit) 具多種生理功能,補充BCAA可能可以降低游離色胺酸 (free tryptophan) 進入大腦,進而降低血清素 (serotonin) 合成,延緩中樞疲勞;補充Arg與Cit可能促進尿素循環,加速血氨轉換成尿素。綜合補充BCAA、Arg與Cit,可能降低運動誘發之中樞疲勞。目的:探討合併補充BCAA、Arg與Cit對跆拳道模擬比賽後,中樞疲勞與反應式專項技術測試之影響。方法:以12位男性大學優秀跆拳道選手為對象,採交叉平衡次序之實驗設計。以間歇性運動型態模擬跆拳道比賽中之負荷,每位受測者需進行三次的腳踏車間歇性衝刺運動,每次運動中含3回合,每回合包含4個間歇型運動 (5秒全力衝刺及25秒休息之交替) ,衝刺的阻力為0.1 kp/kg,每回合2分鐘,回合間休息1分鐘。在第三次運動開始前60分鐘,補充0.17 g/kg BCAA、0.05 g/kg Arg與0.05 g/kg Cit (AA 測試) 或安慰劑 (PL測試;麥芽糊精與維生素E)。跆拳道反應式專項技術測試於早餐食用後1小時、第一、第二與第三次運動後進行測驗,包括測定前動作反應時間 (premotor reaction time, PRT)、動作反應時間 (motor reaction time, MRT) 、反應時間 (reaction time, RT) 、動作時間 (movement time, MT) 、總反應時間 (total response time, TRT) 、與雙任務測驗 (dual task) 情況下的第二任務時間。血液採集於早餐前、第一次運動後、第二次運動後以及第三次運動前與運動後,共五個採血點,分析血漿中支鏈胺基酸、色胺酸、氮氧化物、氨、尿素、葡萄糖、甘油、非酯化脂肪酸和乳酸濃度,並於早餐前、第一次運動前與運動後、第二次運動前與運動後以及第三次運動前與運動後,詢問運動自覺強度 (ratings of perceived exertion, RPE)。結果:在評估中樞疲勞的指標中,AA測試在第三次運動後的PRT (A動作0.142±0.016 s;B動作0.141±0.018 s;C動作0.139±0.015 s;D動作0.139±0.012 s)、第二任務反應時間 (0.259±0.030 s) 均顯著快於PL測試 (PRT:A動作0.166±0.016 s;B動作0.163±0.023 s;C動作0.162±0.009 s;D動作0.168±0.024 s;第二任務反應時間:0.293±0.049 s) ,血漿Trp/BCAA比值(35.0±4.3) 亦顯著低於PL測試 (70.0±9.6),但RPE值在兩測試間無顯著差異;血液生化值部分,AA測試在第三次運動後的氮氧化物 (13.2±5.7 μM) 顯著高於PL測試 (8.2±4.0 μM),而氨、尿素、葡萄糖、甘油、非酯化脂肪酸和乳酸在兩測試間無顯著差異;在運動表現中,兩測試間的平均功率總合與最大功率總和於三次運動中皆無顯著差異。結論:跆拳道選手在運動前合併補充BCAA、Arg與Cit,可降低大腦中樞處理反應時間 (PRT) 、提升運動後的注意力,因此可能具有延緩中樞疲勞的作用;補充Arg與Cit可增加氮氧化物濃度,但對加速代謝產物例如氨、尿素與乳酸,以及萄萄糖、甘油、非酯化脂肪酸則無顯著影響。
Branched-chain amino acids (BCAA), arginine (Arg) and citrulline (Cit) are involved in multiple physiological functions. The supplementation of BCAA could reduce cerebral uptake of free tryptophan, leading to the decrease in serotonin synthesis. The lower cerebral serotonin levels may prevent central fatigue. Arg and Cit may alleviate hyperammonemia by increasing urea cycle. The combination of these supplements could reduce central fatigue induced by exercise and improve the performance. Purpose: The purpose of this study was to investigate the effect of supplementation of BCAA, Arg and Cit on central fatigue and the specific test for Taekwondo reactive skills after three intermittent high-intensity exercises. Methods: Twelve elite collegiate male Taekwondo athletes were recruited and randomly assigned in counterbalanced order. Subjects completed the interval exercise imitating the real volume of Taekwondo competition. Each period of exercise contained three 2-min rounds on a 0.1 kp/kg cycloergometer. Each round contained 4 repeats of 5-s sprint and 25-s rest. Each round was separated by a 2-min rest. The supplement contained 0.17 g/kg BCAA, 0.05 g/kg arginine, and 0.05 g/kg citrulline (AA trial) or placebo (maltodextrin and VitE, PL trial) and given 60 min before the third period of exercise. The premotor reaction time (PRT), motor reaction time (MRT), reaction time (RT), movement time (MT), total response time (TRT) and the time of second task in a dual-task scenario were measured in the Taekwondo skill test. The test was conducted 1 hour after the breakfast, and after each round. Plasma concentrations of BCAA, tryptophan, nitrogen oxide (NOx), ammonia, urea, glucose, glycerol, and nonesterified fatty acid (NEFA) were determined. Ratings of perceived exertion (RPE) was also recorded using the Borg scale. Results: The AA trial showed significantly faster PRT (AA trial:A movement 0.142±0.016 s, B movement 0.141±0.018 s, C movement 0.139±0.015 s, D movement 0.139±0.012 s; PL trial: movement 0.166±0.016 s, B movement 0.163±. 0.023 s, C movement 0.162±0.009 s, D movement 0.168±0.024 s). The time of the second trial in dual task (AA trial 0.259±0.030 s; PL trial 0.293±0.049 s) at the end of the third period. The ratio of plasma Trp/BCAA in the AA trial (35.0±4.3) was significantly lower than that in the PL trial (70.0±9.6). The value of RPE was similar between the two trials. The AA trial (13.2±5.7 μM) elicited significantly higher NOx concentrationthan the PL trail (8.2±4.0 μM) in the third period. Nevertheless, the two trials did not appear significant differences in the concentrations of ammonia, urea, glucose, glycerol, NEFA, and blood lactate. The performances of average power value and maximum power value were also similar in each period of intermittent exercise between the two trials. Conclusion: The combination of BCAA, Arg and Cit supplementation could result in better PRT in Taekwondo skill tests after 3 periods of intermittent exercise, possibly throught the attenuation of central fatigue. Combination of Arg and Cit could stimulate the blood vessel dilatation to augment flow of blood via higher NOx concentration. It appeared that the supplement had no significant effect on metabolite removal.
一、中文部分
邱名穗 (2012) 。補充支鏈胺基酸與精胺酸對連續兩天籃球比賽體能與技術表現之影響。國立台灣體育運動大學。台中市。
黃玫嫙 (2011) 。補充支鏈胺基酸與精胺酸對連續二天手球運動表現及肌肉損傷之影響。國立台灣體育運動大學。台中市。
蔡葉榮、許志耀 (2002) 。跆拳道踢擊動作之技術分析。中華體育季刊,16 (2) , 14-19。new window
劉宗翰、張振崗 (2008) 。補充精胺酸對運動表現之影響。大專體育,96,152-159。new window

二、英文部分
Abernethy, B. (1988). Dual-task methodology and motor skills research: some applications and methodological constraints. Journal of Human Movement Studies, 14(3), 101-132.
Alvares, T. S., Conte-Junior, C. A., Silva, J. T., & Paschoalin, V. M. F. (2014). L-arginine does not improve biochemical and hormonal response in trained runners after 4 weeks of supplementation. Nutrition Research, 34(1), 31-39.
Ando, S., Kokubu, M., Kimura, T., Moritani, T., & Araki, M. (2008). Effects of acute exercise on visual reaction time. International Journal of Sports Medicine, 29(12), 994-998.
Ando, S., Yamada, Y., & Kokubu, M. (2010). Reaction time to peripheral visual stimuli during exercise under hypoxia. Journal of Applied Physiology, 108(5), 1210-1216.
Abernethy, B. (1988). Dual-task methodology and motor skills research: some applications and methodological constraints. Journal of Human Movement Studies, 14(3), 101-132.
Atkinson, G. (2002). Analysis of repeated measurements in physical therapy research: multiple comparisons amongst level means and multi-factorial designs. Physical Therapy in Sport, 3(4), 191-203.
Bednarz, B., Wolk, R., Chamiec, T., Herbaczynska-Cedro, K., Winek, D., & Ceremuzynski, L. (2000). Effects of oral L-arginine supplementation on exercise-induced QT dispersion and exercise tolerance in stable angina pectoris. International Journal of Cardiology, 75(2), 205-210.
Bendahan, D., Mattei, J. P., Ghattas, B., Confort-Gouny, S., Le Guern, M. E., & Cozzone, P. J. (2002). Citrulline/malate promotes aerobic energy production in human exercising muscle. British Journal of Sports Medicine, 3(4), 282-289.
Benton, A. (1986). Reaction time in brain disease: some reflections. Cortex, 22(1), 129-140.
Benwell, N. M., Mastaglia, F. L., & Thickbroom, G. W. (2007). Changes in the functional MR signal in motor and non-motor areas during intermittent fatiguing hand exercise. Experimental Brain Research, 182(1), 93-97.
Bescos, R., Gonzalez-Haro, C., Pujol, P., Drobnic, F., Alonso, E., Santolaria, M. L., ... & Galilea, P. (2009). Effects of dietary L-arginine intake on cardiorespiratory and metabolic adaptation in athletes. International Journal of Sport Nutrition and Exercise Metabolism, 19(4), 355-365.
Blomstrand, E. (2006). A role for branched-chain amino acids in reducing central fatigue. The Journal of Nutrition, 136(2), 544S-547S.
Blomstrand, E., Andersson, S., Hassmen, P. A., Ekblom, B., & Newsholme, E. A. (1995). Effect of branched‐chain amino acid and carbohydrate supplementation on the exercise‐induced change in plasma and muscle concentration of amino acids in human subjects. Acta Physiologica Scandinavica, 153(2), 87-96.
Blomstrand, E., Celsing, F., & Newsholme, E. A. (1988). Changes in plasma concentrations of aromatic and branched‐chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiologica Scandinavica, 133(1), 115-121.
Blomstrand, E., Hassmén, P., Ek, S., Ekblom, B., & Newsholme, E. A. (1997). Influence of ingesting a solution of branched‐chain amino acids on perceived exertion during exercise. Acta Physiologica Scandinavica, 159(1), 41-49.
Blomstrand, E., Hassmén, P., Ek, S., Ekblom, B., & Newsholme, E. A. (1997). Influence of ingesting a solution of branched‐chain amino acids on perceived exertion during exercise. Acta Physiologica Scandinavica, 159(1), 41-49.
Blum, A., Hathaway, L., Mincemoyer, R., Schenke, W. H., Kirby, M., Csako, G., ... Cannon, R. O. (2000). Effects of oral L-arginine on endothelium-dependent vasodilation and markers of inflammation in healthy postmenopausal women. Journal of the American College of Cardiology, 35(2), 271-276.
Böger, R. H., Tsikas, D., Bode-Böger, S. M., Phivthong-ngam, L., Schwedhelm, E., & Frölich, J. C. (2004). Hypercholesterolemia impairs basal nitric oxide synthase turnover rate: a study investigating the conversion of l-[guanidino-]- arginine to N-labeled nitrate by gas chromatography–mass spectrometry. Nitric Oxide, 11(1), 1-8.
Borg, G. (1973). Perceived exertion: a note on" history" and methods. Medicine & Science in Sports & Exercise, 5, 90-93.
Brisswalter, J., Durand, M., Delignieres, D., & Legros, P. (1995). Optimal and non-optimal demand in a dual task of pedalling and simple reaction time: effects on energy expenditure and cognitive performance. Journal of Human Movement Studies, 29(1), 15-34.
Burtscher, M., Brunner, F., Faulhaber, M., Hotter, B., & Likar, R. (2005). The prolonged intake of L-arginine-L-aspartate reduces blood lactate accumulation and oxygen consumption during submaximal exercise. Journal of Sports Science and Medicine, 4(3), 314-322.
Carr, B. M., Etnier, J. L., & Fisher, K. M. (2013). Examining the time course of attention in a soccer kick using a dual task paradigm. Human Movement Science, 32(1), 240-248.
Chang, C. K., Chang, C. K., Chang, J. H., Huang, M. H., Liang, Y. C., & Liu, T. H. (2015). Branched-chain amino acids and arginine improve performance in two consecutive days of simulated handball games in male and female athletes: a randomized trial. PloS One, 10(3), e0121866.
Cheng, J. W., Baldwin, S. N., & Balwin, S. N. (2001). L-arginine in the management of cardiovascular diseases. The Annals of pharmacotherapy, 35(6), 755-764.
Cheuvront, S. N., Carter, R., Kolka, M. A., Lieberman, H. R., Kellogg, M. D., & Sawka, M. N. (2004) . Branched-chain amino acid supplementation and human performance when hypohydrated in the heat. Journal of Applied Physiology, 97(4), 1275-1282.
Ceremużyński, M. D., Chamiec, M. D., & Herbaczyńska-Cedro, M. D. (1997). Effect of supplemental oral L-arginine on exercise capacity in patients with stable angina pectoris. The American Journal of Cardiology, 80(3), 331-333.
Cohen, J. (1988). Statistical power analysis for the behavioral sciencies. Florence, KY: Routledge.
Curis, E., Nicolis, I., Moinard, C., Osowska, S., Zerrouk, N., Bénazeth, S., & Cynober, L. (2005). Almost all about citrulline in mammals. Amino Acids, 2 (3), 177-205.
Davey, P. R., Thorpe, R. D., & Williams, C. (2002). Fatigue decreases skilled tennis performance. Journal of Sports Sciences, 20(4), 311-318.
Davis, J. M., Alderson, N. L., & Welsh, R. S. (2000). Serotonin and central nervous system fatigue: nutritional considerations. The American Journal of Clinical Nutrition, 72(2) ,573s-578s.
Davis, J. M., Welsh, R. S., De Volve, K. L., & Alderson, N. A. (1999) . Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. International Journal of Sports Medicine, 20(5), 309-314.
De Bandt, J. P., Cynober, L., Lim, S. K., Coudray-Lucas, C., Poupon, R., & Giboudeau, J. (1995). Metabolism of ornithine, α-ketoglutarate and arginine in isolated perfused rat liver. British Journal of Nutrition, 73(2), 227-239.
Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247-248.
El-Hattab, A. W., Emrick, L. T., Craigen, W. J., & Scaglia, F. (2012). Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders. Molecular Genetics and Metabolism, 107(3), 247-252.
Edemann, D. H., & Schiffrin, E. L. (2004). Endothelial dysfunction. Journal of the American Society of Nephrology, 15(8), 1983-1992.
Enoka, R. M., & Stuart, D. G. (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology, 72(5), 1631-1648.
Eto, B., Peres, G., & Moel, G. L. (1994). Effects of an ingested glutamate arginine salt on ammonemia during and after long lasting cycling. Archives of Physiology And Biochemistry, 102(3), 161-162.
Fernstrom, J. D. (2005). Branched-chain amino acids and brain function. The Journal of Nutrition, 13(6), 1539S-1546S.
Fischman, M. G. (1984). Programming times as a function of number of movement parts and changes in movement direction. Journal of Motor Behavior, 16(4), 405-423.
Forbes, S. C., & Bell, G. J. (2011). The acute effects of a low and high dose of oral L-arginine supplementation in young active males at rest. Applied Physiology, Nutrition, and Metabolism, 36(3), 405-411.
Fujita, H., Yamabe, H., & Yokoyarna, M. (2000). Effect of L-arginine administration on myocardial thallium-201 perfusion during exercise in patients with angina pectoris and normal coronary angiograms. Journal of Nuclear Cardiology, 7(2), 97-102.
Gabbett, T., Kelly, J., & Pezet, T. (2008). A comparison of fitness and skill among playing positions in sub-elite rugby league players. Journal of Science and Medicine in Sport, 11(6), 585-592.
Gabbett, T. J., & Abernethy, B. (2012). Dual-task assessment of a sporting skill: influence of task complexity and relationship with competitive performances. Journal of Sports Sciences, 30(16), 1735-1745.
Gadomski, S., Cutrufello, P., Zavorsky, G., & Demkosky, C. (2014). The Effect of L-citrulline and Watermelon Juice on Anaerobic and Aerobic Exercise Performance. In International Journal of Exercise Science: Conference Proceedings, 9(2), 23.
Gandevia, S. C. (Ed.). (1995). Fatigue: neural and muscular mechanisms 384. New York, NY: Plenum Publishing Corporation.
Gandevia, S. C. (1998). Neural control in human muscle fatigue: changes in muscle afferents, moto neurones and moto cortical drive. Acta Physiologica Scandinavica, 162(3), 275-283.
Gallahue, D. L., & Ozmun, J. C. (2002). Understanding motor development: Infants, childern, adolescents, adults (5th ed.). Singapore: McGraw-Hill.
Gielen, S., Schuler, G., & Hambrecht, R. (2001). Exercise training in coronary artery disease and coronary vasomotion. Circulation, 103(1), e1-e6.
Gijsman, H. J., Scarnà, A., Harmer, C. J., McTavish, S. F., Odontiadis, J., Cowen, P. J., & Goodwin, G. M. (2002). A dose-finding study on the effects of branch chain amino acids on surrogate markers of brain dopamine function. Psychopharmacology, 160(2), 192-197.
Goldberg, A. L., & Chang, T. W. (1978). Regulation and significance of amino acid metabolism in skeletal muscle. Federation Proceedings, 37(9), 2301-2307.
Gonçalves, L. C., Bessa, A., Freitas-Dias, R., Luzes, R., Werneck-de-Castro, J. P., Bassini, A., & Cameron, L. C. (2012). A sportomics strategy to analyze the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise. Journal of the International Society of Sports Nutrition, 9(1), 30.
Gomez-Merino, D., Bequet, F., Berthelot, M., Riverain, S., Chennaoui, M., & Guezennec, C. Y. (2001). Evidence that the branched-chain amino acid L-valine prevents exercise-induced release of 5-HT in rat hippocampus. International Journal of Sports Medicine, 22(5), 317-322.
Green, H. J. (1997) . Mechanisms of muscle fatigue in intense exercise. Journal of Sports Sciences, 15(3), 247-256.
Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Analytical Biochemistry, 126(1), 131-138.
Greer, B. K., White, J. P., Arguello, E. M., & Haymes, E. M. (2011). Branched-chain amino acid supplementation lowers perceived exertion but does not affect performance in untrained males. The Journal of Strength & Conditioning Research, 25(2), 539-544.
Grimble, G. K. (2007) . Adverse gastrointestinal effects of arginine and related amino acids. The Journal of Nutrition, 137 (6), 1693S-1701S.
Hampson, D. B., Gibson, A. S. C., Lambert, M. I., & Noakes, T. D. (2001). The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Medicine, 31(13), 935-952.
Hanson, C., & Klimovitch Lofthus, G. (1978). Effects of fatigue and laterality on fractionated reaction time. Journal of Motor Behavior, 10(3), 177-184.
Henry, F. M., & Rogers, D. E. (1960). Increased response latency for complicated movements and a" memory drum" theory of neuromotor reaction. Research Quarterly of the American Association for Health, Physical Education, & Recreation.
Hsu, M. C., Chien, K. Y., Hsu, C. C., Chung, C. J., Chan, K. H., & Su, B. (2011). Effects of BCAA, arginine and carbohydrate combined drink on post-exercise biochemical response and psychological condition. The Chinese Journal of Physiology, 54(2), 71-78.
Huang, H. J., & Mercer, V. S. (2001). Dual-task methodology: applications in studies of cognitive and motor performance in adults and children. Pediatric Physical Therapy, 13(3), 133-140.
Jang, T. R., Wu, C. L., Chang, C. M., Hung, W., Fang, S. H., & Chang, C. K. (2011). Effects of carbohydrate, branched-chain amino acids, and arginine in recovery period on the subsequent performance in wrestlers. Journal of the International Society of Sports Nutrition, 8(1), 21. doi: 10.1186/1550-2783-8-21.
Kahneman, D. (1973). Attention and effort [Adobe Digital Editions version]. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.398.5 285&rep=rep1 &type=pdf
Kaore, S. N., Amane, H. S., & Kaore, N. M. (2013). Citrulline: pharmacological perspectives and its role as an emerging biomarker in future. Fundamental & Clinical Pharmacology, 27(1), 35-50.
Katz, A., Broberg, S., Sahlin, K., & Wahren, J. (1986). Muscle ammonia and amino acid metabolism during dynamic exercise in man. Clinical Physiology, 6(4), 365-379.
Kent-Braun, J. A. (1999). Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. European Journal of Applied Physiology and Occupational Physiology, 80(1), 57-63.
Khan, M. A., Mourton, S., Buckolz, E., & Franks, I. M. (2008). The influence of advance information on the response complexity effect in manual aiming movements. Acta psychologica, 127(1), 154-162.
Kitamura, S. S., Ortolani, E. L., Mori, C. S., Maruta, C. A., Antonelli, A. C., Sucupira, M. C., & dos Santos, M. L. (2003). Treatment of ammonia intoxication in rats with urea cycle amino acids, furosemide and fluids. Veterinary and Human Toxicology, 45(2), 65.
Klimovitch, G. (1977). Startle response and muscular fatigue effects upon fractionated hand grip reaction time. Journal of Motor Behavior, 9(4), 285-292.
Knicker, A. J., Renshaw, I., Oldham, A. R., & Cairns, S. P. (2011). Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Medicine, 41(4), 307-328.
Kobayashi, Y., Narita, K., Chiba, K., Takemoto, H., Morita, M., & Morishita, K. (2014). Effects of L-citrulline diet on stress-induced cold hypersensitivity in mice. Pharmacognosy Research, 6(4), 297.
Koppo, K., Taes, Y. E., Pottier, A., Boone, J., Bouckaert, J., & Derave, W. (2009). Dietary arginine supplementation speeds pulmonary VO2 kinetics during cycle exercise. Medicine and Science in Sports and Exercise, 41(8), 1626-1632.
Lamb, K. L., Eston, R. G., & Corns, D. (1999). Reliability of ratings of perceived exertion during progressive treadmill exercise. British Journal of Sports Medicine, 33(5), 336-339.
Layman, D. K. (2002). Role of leucine in protein metabolism during exercise and recovery. Canadian Journal of Aapplied Physiology, 27 (6), 646-662.
Legros, P., Delignieres, D., Durand, M., & Brisswalter, J. (1992). Influence of physical effort on simple and choice reaction time in high-level basketball players. Science and Sports, 7, 9-14.
Liu, T. H., Wu, C. L., Chiang, C. W., Lo, Y. W., Tseng, H. F., & Chang, C. K. (2009). No effect of short-term arginine supplementation on nitric oxide production, metabolism and performance in intermittent exercise in athletes. The Journal of Nutritional Biochemistry, 20(6), 462-468.
Luiking, Y. C., Poeze, M., Ramsay, G., & Deutz, N. E. (2009). Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. The American Journal of Clinical Nutrition, 89(1), 142-152.
Lupinacci, N. S., Rikli, R. E., Jones, C. J., & Ross, D. (1993). Age and physical activity effects on reaction time and digit symbol substitution performance in cognitively active adults. Research Quarterly for Exercise and Sport, 64(2), 144-150.
MacLean, D. A., Graham, T. E., & Saltin, B. (1994). Branched-chain amino acids augment ammonia metabolism while attenuating protein breakdown during exercise. American Journal of Physiology-Endocrinology and Metabolism, 267(6), E1010-E1022.
MacLean, D. A., Graham, T. E., & Saltin, B. (1996). Stimulation of muscle ammonia production during exercise following branched-chain amino acid supplementation in humans. The Journal of Physiology, 493 (Pt 3), 909-922.
Madsen, K., Maclean, D. A., Kiens, B., & Christensen, D. (1996). Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km. Journal of Applied Physiology, 81(6), 2644-2650.
Magnuson, C. E., Robin, D. A., & Wright, D. L. (2008). Motor programming when sequencing multiple elements of the same duration. Journal of Motor Behavior, 40(6), 532-544.
McMenamy, R. H., & Oncley, J. L. (1958). The specific binding of L-tryptophan to serum albumin. Journal of Biological Chemistry, 233(6), 1436-1447.
Meeusen, R., Watson, P., & Dvorak, J. (2006). The brain and fatigue: New opportunities for nutritional interventions?, Journal of Sports Sciences, 24(7), 773-782.
Meneguello, M. O., Mendonca, J. R., Lancha, A. H., & Costa Rosa, L. F. B. P. (2003). Effect of arginine, ornithine and citrulline supplementation upon performance and metabolism of trained rats. Cell Biochemistry and Function, 21(1), 85-91.
Mittleman, K. D., Ricci, M. R., & Bailey, S. P. (1998). Branched-chain amino acids prolong exercise during heat stress in men and women. Medicine and Science in Sports and Exercise, 30(1), 83.
Mutch, B. J., & Banister, E. W. (1983). Ammonia metabolism in exercise and fatigue: a review. Medicine and Science in Sports and Exercise, 15(1), 41.
Nybo, L., Dalsgaard, M. K., Steensberg, A., Møller, K., & Secher, N. H. (2005). Cerebral ammonia uptake and accumulation during prolonged exercise in humans. The Journal of Physiology, 563(1), 285-290.
Pérez-Guisado, J., & Jakeman, P. M. (2010). Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. The Journal of Strength & Conditioning Research, 24(5), 1215-1222.
Peters, J. H. C., Wierdsma, N. J., Teerlink, T., Van Leeuwen, P. A. M., Mulder, C. J. J., & Van Bodegraven, A. A. (2008). The citrulline generation test: proposal for a new enterocyte function test. Alimentary Pharmacology & Therapeutics, 27(12), 1300-1310.new window
Price, J., Gill, D. L., Etnier, J., & Kornatz, K. (2009). Free-throw shooting during dual-task performance: Implications for attentional demand and performance. Research Quarterly for Exercise and Sport, 80(4), 718-726.
Rampinini, E., Impellizzeri, F. M., Castagna, C., Azzalin, A., Bravo, D. F., & Wisloff, U. (2008). Effect of match-related fatigue on short-passing ability in young soccer players. Medicine and Science in Sports and Exercise, 40(5), 934.
Riazi, R., Wykes, L. J., Ball, R. O., & Pencharz, P. B. (2003) . The total branched-chain amino acid requirement in young healthy adult men determined by indicator amino acid oxidation by use of L-[1-13C] phenylalanine. The Journal of Nutrition, 133 (5), 1383-1389.
Rougé, C., Des Robert, C., Robins, A., Le Bacquer, O., Volteau, C., De La Cochetière, M. F., & Darmaun, D. (2007). Manipulation of citrulline availability in humans. American Journal of Physiology-Gastrointestinal and Liver Physiology, 293(5), G1061-G1067.
Santos, V. G., Franchini, E., & Lima-Silva, A. E. (2011). Relationship between attack and skipping in taekwondo contests. The Journal of Strength & Conditioning Research, 25 (6), 1743-1751.
Schaefer, A., Piquard, F., Geny, B., Doutreleau, S., Lampert, E., Mettauer, B., & Lonsdorfer, J. (2002). L-arginine reduces exercise-induced increase in plasma lactate and ammonia. International Journal of Sports Medicine, 23(6), 403-407.
Schmidt, R. A. (1991). Motor learning & performance: From principles to practice. Champaign, IL: Human Kinetics.
Schmidt, R. A., & Lee, T. (2011). Motor Control and Learning: A behavior emphasis (5th ed.) . Champaign, IL: Human Kinetics.
Schwedhelm, E., Maas, R., Freese, R., Jung, D., Lukacs, Z., Jambrecina, A., ... Böger, R. H. (2008). Pharmacokinetic and pharmacodynamic properties of oral L‐citrulline and L‐arginine: impact on nitric oxide metabolism. British Journal of Clinical Pharmacology, 65(1), 51-59.
Scott, T. J., Black, C. R., Quinn, J., & Coutts, A. J. (2013). Validity and reliability of the session-RPE method for quantifying training in Australian football: a comparison of the CR10 and CR100 scales. The Journal of Strength & Conditioning Research, 27(1), 270-276.
Shao, A., & Hathcock, J. N. (2008). Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regulatory Toxicology and Pharmacology, 50(3), 376-399.
Shimomura, Y., Murakami, T., Nakai, N., Nagasaki, M., & Harris, R. A. (2004). Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. The Journal of Nutrition, 134(6), 1583S-1587S.
Stephens, J. R., & Levy, R. H. (1994). Effects of Valproate and Citrulline on Ammonium‐Induced Encephalopathy. Epilepsia, 35(1), 164-171.
Stepto, N. K., Shipperd, B. B., Hyman, G., McInerney, B., & Pyne, D. B. (2011). Effects of high-dose large neutral amino acid supplementation on exercise, motor skill, and mental performance in Australian Rules Football players. Applied Physiology, Nutrition, and Metabolism, 36(5), 671-681.
Strüder, H. K., Hollmann, W., Platen, P., Donike, M., Gotzmann, A., & Weber, K. (1998). Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Hormone and Metabolic Research, 30(4), 188-194.
Styles, E. (2006). The psychology of attention. Psychology Press [Adobe Digital Editions version]. Retrieved from https://www. icarus-counseling.com
Sureda, A., Córdova, A., Ferrer, M. D., Pérez, G., Tur, J. A., & Pons, A. (2010). L-citrulline-malate influence over branched chain amino acid utilization during exercise. European Journal of Applied Physiology, 110 (2), 341-351.
Takeda, K., Machida, M., Kohara, A., Omi, N., & Takemasa, T. (2011). Effects of citrulline supplementation on fatigue and exercise performance in mice. Journal of Nutritional Science and Vitaminology, 57(3), 246-250.
Tarazona-Díaz, M. P., Alacid, F., Carrasco, M., Martínez, I., & Aguayo, E. (2013). Watermelon juice: potential functional drink for sore muscle relief in athletes. Journal of Agricultural and Food Chemistry, 61(31), 7522-7528.
Tsuei, B. J., Bernard, A. C., Barksdale, A. R., Rockich, A. K., Meier, C. F., & Kearney, P. A. (2005). Supplemental enteral arginine is metabolized to ornithine in injured patients. Journal of Surgical Research, 123(1), 17-24.
Van Hall, G., van Der Vusse, G. J., Söderlund, K., & Wagenmakers, A. J. (1995). Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. The Journal of Physiology, 489(1), 251-261.
van Wijck, K., Wijnands, K. A., Meesters, D. M., Boonen, B., van Loon, L. J., Buurman, W. A., ... & Poeze, M. (2014). L-Citrulline Improves Splanchnic Perfusion and Reduces Gut Injury during Exercise. Medicine & Science in Sports & Exercise, 46(11), 2039-2046.
Visek, W. J. (1986). Arginine needs, physiological state and usual diets. A reevaluation. The Journal of Nnutrition, 116(1), 36-46.
Vøllestad, N. K. (1997). Measurement of human muscle fatigue. Journal of Neuroscience Methods, 74(2), 219-227.
Watson, P., Shirreffs, S. M., & Maughan, R. J. (2004). The effect of acute branched-chain amino acid supplementation on prolonged exercise capacity in a warm environment. European Journal of Applied Physiology, 93(3), 306-314.
Weiss, A. D. (1965). The locus of reaction time change with set, motivation, and age. Journal of Gerontology, 20(1), 60-64.
Wax, B., Kavazis, A. N., & Luckett, W. (2015a). Effects of Supplemental Citrulline-Malate Ingestion on Blood Lactate, Cardiovascular Dynamics, and Resistance Exercise Performance in Trained Males. Journal of Dietary Supplements. Advance online publication. doi: 10.3109/19390211.2015.1008615
Wax, B., Kavazis, A. N., Weldon, K., & Sperlak, J. (2015b). Effects of Supplemental Citrulline Malate Ingestion During Repeated Bouts of Lower-body Exercise in Advanced Weight Lifters. The Journal of Strength & Conditioning Research, 29(3), 786-792.
Wu, G. (1998). Intestinal mucosal amino acid catabolism. The Journal of Nutrition, 128(8), 1249-1252.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top