:::

詳目顯示

回上一頁
題名:以慣性感測器分析不同層級游泳者動作差異之研究
作者:黃谷臣 引用關係
作者(外文):HUANG,KU-CHEN
校院名稱:國立體育大學
系所名稱:體育研究所
指導教授:陳五洲
學位類別:博士
出版日期:2017
主題關鍵詞:動作參數動作分析動作模型穩定性分析stroke parametersstroke analysismovement modelstability analysis
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:4
本研究旨在建構慣性感測器分析游泳技術之方法,並以該方法分析不同層級游泳者動作間的差異。共有9名男性大學生參與實驗,依其游泳成就分為優秀選手組、一般選手組及休閒游泳組。在研究參與者的右手掌、左手掌及上背部設置慣性感測器,擷取因游泳動作所造成感測數據的變化。研究獲致下列結果:一、手掌位置的波形樣態具較大的振幅及峰值,捷式與仰式的最大峰值在Z軸,蛙式與蝶式則以Y軸的峰值最大。二、上背位置的感測數值在軀幹轉動、傾角或偏移的分析上皆明顯大於下背位置。三、不同層級游泳者在划手參數及軀幹轉動上達顯著差異,隨著層級越高,划幅的效果愈趨重要,軀幹的轉動、傾角及偏移也越小。四、優秀選手組之動作穩定性明顯高於休閒游泳組。結論:一、手掌及上背位置的感測資料有較佳的波形辨識效果,以感測裝置探究游泳技術時不應忽略此一重要關鍵。二、各式泳姿的最大峰值出現在不同軸向上,以設定波形閾值進行划手次數演算時,應慎選關鍵軸向之資料進行分析。三、以相關係數概念評量選手動作穩定性的方法具體可行。四、動作模型可以清楚表徵游泳者划水動作的現況,透過大量數據的蒐集,可作為動作辨識或提供游泳教學訓練上的參考。
The purpose of this study was to set up a method for analyzing swimming technique, by comparing the differences in values obtain from inertia sensors attached to swimmers of different abilities. 9 male college swimmers participated this study and divided into three groups according to their swimming performance. We fixed inertial sensor on the hands and upper backs of the participants to capture sensory data from their swimming movement. Result: A) The hands’ waveforms are large than the arms in amplitude and peak; the Z-axis peak of the freestyle stroke and backstroke was the largest, while the maximum peak of the Y-axis was produced by breaststroke and the butterfly. B) The upper back sensory values were greater than those of the lower back in body rotation, pitch and yaw. C) There were has significant differences in stroke length, speed and efficiency. The three groups of swimmers also showed has significant differences in body rotation, pitch and yaw. D) The results showed that the correlation coefficient of the elite group was significantly higher than the recreational group. Conclusion: A) Hands and upper back location has higher recognition effect than the other locations. While using sensor devices to explore swimming techniques, the position of these sensors on the body plays a critical factor. B) The waveform threshold accounting for stroke provides the crucial axial data on the different styles. C) It is feasible to evaluate the stability of a swimmer through the concept of correlation coefficient. D) The movement model can clearly describe the status of strokes.
中文部分
王順正 (1999)。運動強度的判定 (心跳率)。運動生理學週訊第17期。取自http://epsport.idv.tw/epsport/week/show.asp?repno=17
石又 (2010)。以陀螺儀感測器測量跑步過程足部內旋情況。未出版碩士論文,國立臺灣師範大學,臺北市。
朱耀明、林財世 (2005)。淺談 RFID 無線射頻辨識系統技術。生活科技教育月刊,38 (2),73-87。
吳鴻志、陳俊宏 (2011)。運用無線感測傳輸系統於陸上捷泳划手之運動資訊分析。論文發表於2011資通技術管理與應用會議,臺北市,國立台北健康護理大學。
吳鴻志、鐘博全、陳璽煌 (2012)。無線微機電感測器系統應用於沙灘手球騰空接球射門動作分析。華人運動生物力學期刊,7,168-172。new window
李大麟 (2000)。200 公尺游泳競賽成績與身體型態因素之分析。未出版碩士論文,國立體育學院教練研究所。
李垂裕、黃長福、李靜雯 (2013)。游泳抓台式與起跑式出發之水面下運動生物力學分析。華人運動生物力學期刊,9,11-17。new window
武育勇 (1998)。游泳論。台北縣:啟英文化。
邱美虹、劉俊庚,2008。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。
金明央 (2011)。無線微機電感測器系統應用於棒球投手投球動作分析。未出版碩士論文,樹德科技大學:高雄市。
相子元 (2009)。運動生物力學之趨勢。華人運動生物力學期刊,1,52-55。new window
胡程鈞、蕭新榮、湯文慈 (2011)。身體滾轉對自由式游泳運動表現之影響。大專體育,113,42-48。new window
徐嘉良、陶武訓 (2002)。2001年東亞運游泳選拔賽女子50公尺自由式划頻、划幅的研究。大專體育學刊,4 (1),121-128。new window
張淳皓、何金山、王敏憲、林國全 (2014)。以無線穿戴式裝置分析高爾夫推桿之身體轉動參數。休閒觀光與運動健康學報,4 (2),81-90。new window
張淳皓、何金山、林國全 (2014)。穿戴式感測裝置用於米字步法測驗之信效度分析。屏東教大體育,17,243-250。new window
教育部 (2015)。國語大辭典。檢索自http://dict.revised.moe.edu.tw/
陳永輝、鄧有光、蕭新榮、黃谷臣、藍志凱 (2010)。智慧型多功能計時蛙鏡之設計與模擬。2010國際商管學術研討會-資訊管理技術與實務應用發展研討會。
陳志剛 (2011)。無線微機電感測器系統應用於網球發球動作分析。未出版碩士論文,樹德科技大學:高雄市。
陳俊宏 (2012)。微機電感測器系統運用於捷泳動作分析。未出版碩士論文,樹德科技大學:高雄市。
黃谷臣 (2016)。感測器部署位置對游泳動作分析之影響。真理大學運動知識學報,13,102-111。new window
黃谷臣、呂子修、潘孟鉉、陳五洲 (2015)。慣性感測器運用在游泳姿勢分析。大專體育學刊,17 (3),303-316。 doi:10.5297/ser.1703.005new window
黃長福 (2015)。穩定。載於體育運動大辭典。檢索自http://sportspedia.perdc.ntnu.edu.tw/content?MainID=580
黃鈺萍、傅麗蘭 (2015)。三軸加速規應用於患者功能性活動坐到站評估之探討。醫學與健康期刊,4 (1),1-12。new window
劉于詮、楊素冠、陳秀榮、林信佑、陳良乾 (2010)。無線射頻辨識技術應用於運動設施管理之初探-以長榮大學為例。長榮運動休閒學刊,4,85–96。new window
劉康田、張淳皓、孟範武、何金山 (2013)。影像分析與慣性裝置運用於游泳划手動作分析之探討。嘉大體育健康休閒期刊,12 (3),310-316。doi: 10.6169/NCYUJPEHR.12.3.30new window
潘帝仁 (2012)。無線微機電感測器系統應用於網球反手下旋球之動作與球拍分析。未出版碩士論文,樹德科技大學:高雄市。
鍾祥賜、蕭秀萍 (2004)。上肢投擲動作之開放式動力鏈理論研究。中華體育季刊,18 (1),52-59。new window
羅元鴻 (2011)。無線微機電感測器系統應用於優秀棒球選手打擊動作分析。未出版碩士論文,樹德科技大學:高雄市。

英文部分
Abel, R., Antonio, S., Luıs, L., Jorge, R., & Francisco, A. (2006). The effect of swimmer’s hand/forearm acceleration on propulsive forces generation using computational fluid dynamics. Journal of Biomechanics, 39, 1239–1248.
Ahmadi, A., Rowlands, D.D., & James, D.A. (2010). Development of inertial and novel marker-based techniques and analysis for upper arm rotational velocity measurements in tennis. Sports Engineering, 12, 179–188.
Anderson, R., Harrison, A., & Lyons, A.M. (2005). Rowing. Sports Biomechanics, 4 (2), 179–195. doi :10.1080/14763140508522862.
Andreoni, G., Perego, P., Fusca, M.C., Lavezzari, R., & Santambrogio, G.C. (2014). Smart garments for performance and training assessment in sport. In Proceedings of the 2014 EAI 4th International Conference onWireless Mobile Communication and Healthcare (Mobihealth), Athens, Greece, pp.267–270.
Anthony, J.J. & Chalfant, S.E. (2010). Multi-state performance monitoring system. U.S. Patent US20100210975A1.
Auvinet, B., Gloria, E., Renault, G., & Barrey, E. (2002). Runner’s stride analysis: comparison of kinematic and kinetic analyses under field conditions. Science & Sports, 17 (2), 92–94.
Aziz, O., Lo, B., King, R., Darzi, A., & Yang, G.Z. (2006). Pervasive Body Sensor Network: An Approach to Monitoring the Post-Operative Surgical Patient. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge, MA, USA, pp.4–18. 

Bächlin, M., & Tröster, G. (2012). Swimming performance and technique evaluation with wearable acceleration sensors. Pervasive and Mobile Computing, 8 (1), 68-81. doi: 10.1016/j.pmcj.2011.05.003
Bächlin, M., Förster, K., & G. Tröster. (2009). SwimMaster: a wearable assistant for swimmer. In Proceedings of the 11th international conference on Ubiquitous computing. New York: ACM. pp.215-224. doi:10.1145/1620545.1620578
Barden, J.M., Kell, R.T., & Kobsar, D. (2011). The effect of critical speed and exercise intensity on stroke phase duration and bilateral asymmetry in 200-m front crawl swimming. Journal Sports Science, 29, 517–526.
Bassett Jr, D. R., Rowlands, A. V., & Trost, S. G. (2012). Calibration and validation of wearable monitors. Medicine and science in sports and exercise, 44 (S1), S32.
Beanland, E., Main, L. C., Aisbett, B., Gastin, P., & Netto, K. (2014). Validation of GPS and accelerometer technology in swimming. Journal of Science and Medicine in Sport, 17 (2), 234-238.
Beetz, M., Kirchlechner, B., & Lames, M. (2005). Computerized real-time analysis of football games, IEEE Pervasive Computing 4 (3), 33–39.
Bixler, B. & Riewald, S. (2002). Analysis of a swimmer’s hand and arm in steady flow conditions using computational fluid dynamics. Journal of Biomechanics, 35, 713–717
Bonnet, V., Mazza, C., McCamley, J., & Cappozzo, A. (2013). Use of weighted fourier linear combiner filters to estimate lower trunk 3D orientation from gyroscope sensors data. Journal of NeuroEngineering and Rehabilitation, 10, 1–7.
Bouten, C.V., Sauren, A., Verduin, M., & Jansen, J. (1997). Effects of placement and orientation of body-fixed accelerometers on the assessment of energy expenditure during walking. IEEE Trans. Medical and Biological Engineering and Computing, 35, 50–56.
Burchfield, R.; Venkatesan, S. (2010). A Framework for Golf Training Using Low-Cost Inertial Sensors. In Proceedings of the 2010 International Conference on Body Sensor Networks (BSN), Biopolis, Singapore, pp.267–272.
Callaway, A.J. & Cobb, J.E. (2012). Linear acceleration measurement utilizing inter-instrument synchronization: A comparison between accelerometers and motion-based tracking approaches. Measurement in Physical Education and Exercise Science, 16, 151–163.
Callaway, A.J., Cobb, J.E., & Jones, I. (2009). A comparison of video and accelerometer based approaches to performance monitoring in swimming. International Journal of Sports Science & Coaching, 4 (1), 139–153.
Cappaert, J. M., Pease, D. L., & Troup, J. P. (1995). Three-Dimensional Analysis of the Men‘s 100-m Freestyle during the 1992 Olympic Games. Journal of Applied Biomechanics, 11(1), 103-112.
Chakravorti, N., Le Sage, T., Slawson, S., Conway, P., & West, A. (2013). Design & implementation of an integrated performance monitoring tool for swimming to extract stroke information at real time. IEEE Trans. Human Machine System, 43, 199–213.
Clarys, J. P. (1975). Swimming II: In Proceedings of the Second International Symposium on Biomechanics in Swimming, Brussels, Belgium (Vol. 2). University Park Press.
Conroy, L.; Ó’Conaire, C.; Coyle, S.; Healy, G.; Kelly, P.; O’Connor, N.; Caulfield, B.; Connaghan, D.; Smeaton, A.; Nixon, P. (2009). TennisSense: A Multi-Sensory Approach to Performance Analysis in Tennis. In Proceedings of the 27th International Society of Biomechanics in Sports Conference 2009, Limerick, Ireland, Poster. 

Dadashi, F., Aminian, K., Crettenand, F., & Millet, G.P. (2013). Towards estimation of front-crawl energy expenditure using the wearable aquatic movement analysis system (wamas). In Proceedings of the 2013 IEEE International Conference on Body Sensor Networks, Cambridge, MA, USA. pp.1-6.
Dadashi, F., Crettenand, F., Millet, G. P., & Aminian, K. (2012). Front-crawl instantaneous velocity estimation using a wearable inertial measurement unit. Sensors, 12 (10), 12927-12939. doi:10.3390/s121012927
Dadashi, F., Crettenand, F., Millet, G., Seifert, L., Komar, J., & Aminian, K. (2011). Front crawl propulsive phase detection using inertial sensors. Portuguese Journal of Sport Sciences, 11 (2), 855-858.
Dadashi, F., Millet, G. P., & Aminian, K. (2014). Estimation of front-crawl energy expenditure using wearable inertial measurement units. IEEE Sensors Journal, 14 (4), 1020-1027. doi:10.1109/JSEN.2013.2292585
Dadashi, F., Millet, G.P., & Aminian, K. (2015). A bayesian approach for pervasive estimation of breaststroke velocity using a wearable imu. Pervasive and Mobile Computing, 19, 37–46.
Daniel, A. M., Abel, I. R., Francisco B. A., João P. V., Leandro, M., Victor M. R., & António, J.S. (2009). Hydrodynamic analysis of different thumb positions in swimming. Journal of Sports Science & Medicine.8 (1), 58–66.
Daukantas, S., Marozas, V., & Lukosevicius, A. (2008). Inertial sensor for objective evaluation of swimmer performance. In Proceedings of the 11th International Biennial Baltic Electronics Conference, Tallinn, Estonia, pp.321–324.
Davey, N., Anderson, M., & James, D.A. (2005). An accelerometer-based system for elite athlete swimming performance analysis. Proc. SPIE 5649, Smart Structures, Devices, and Systems II, 409. doi:10.1117/12.582264.
Davey, N., Anderson, M., & James, D.A. (2008). Validation trial of an accelerometer-based sensor platform for swimming. Sports Technology, 1 (4-5), 202–207. doi:10.1002/jst.59
Farzin, D., Florent, C., Gregoire, P. M., Ludovic, S., John, K. & Kamiar, A. (2013). Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals. Journal of Sports Sciences, 31 (11), 1251–1260. doi:10.1080/02640414.2013.778420
Figueiredo, P., Seifert, L., Vilas-Boas, J.P., & Fernandes, R.J. (2012). Individual profiles of spatio-temporal coordination in high intensity swimming. Human Movement Science, 31, 1200–1212.
Fulton, S.K., Pyne, D.B., & Burkett, B.J. (2009). Validity and reliability of kick count and rate in freestyle using inertial sensor technology. Journal of Sports Science. 27(10), 1051–1058. doi:10.1080/02640410902998247
Fulton, S.K., Pyne, D.B., & Burkett, B.J. (2011). Optimizing kick rate and amplitude for paralympic swimmers via net force measures. Journal Sports Science, 29, 381–387.
Ghasemzadeh, H., Loseu, V., Guenterberg, E., & Jafari, R. (2009). Sport training using body sensor networks: A statistical approach to measure wrist rotation for golf swing. In Proceedings of the Fourth International Conference on Body Area Networks, pp.2.
Gilbert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894.
Hagem, R. M., O'Keefe, S. G., Fickenscher, T., & Thiel, D. V. (2013). Self-contained adaptable optical wireless communications system for stroke rate during swimming. IEEE Sensors Journal, 13 (8), 3144-3151. doi:10.1109/JSEN.2013.2262933
Hagem, R. M., Thiel, D. V., & Fickenscher, T. (2013). Real-time swimmers' feedback based on smart infrared (SSIR) optical wireless sensor. Electronics Letters, 49 (5), 340-341.
Hagem, R.M., Theil, D.V., O’Keefe, S.G., Wixted, A., & Fickenscher, T. (2011). Low-cost short-range wireless optical fsk modem for swimmer’s feedback. Sensors, 2011 IEEE, Limerick, pp.258-261. doi:10.1109/ICSENS.2011.6127036
Halsey, L. G., Shepard, E. L., & Wilson, R. P. (2011). Assessing the development and application of the accelerometry technique for estimating energy expenditure. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158 (3), 305-314.
James, D.A., Leadbetter, R.I., Neeli, A.R., Burkett, B.J., Thiel, D.V., & Lee, J.B. (2011). An integrated swimming monitoring system for the biomechanical analysis of swimming strokes. Sports Technology, 4, 141–150.
Jefferies, S.M., Jefferies, C.M., & Donohue, S. (2012). The effect of real-time feedback on swimming technique. Journal of International Society of Swimming Coaching, 2, 41–49.
Jensen, U., Prade, F., & Eskofier, B. M. (2013). Classification of kinematic swimming data with emphasis on resource consumption. In Proceedings of 2013 IEEE International Conference on Body Sensor Networks. pp.1-5.
Jovanov, E., Milenkovic, A., Otto, C., & deGroen, P.C. (2005). A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2 (6), 1-10.
Keskinen, K.L. & Komi, P.V. (1993). Stroking characteristics of front crawl swimming during exercise. Journal of Applied Biomechanics 9, 219-226.
Khoo, B. H., Lee, B. K. J., Arosha Senanayake, S. M. N., & Wilson, B. D. (2009). System for determining within-stroke variations of speed in swimming. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore: IEEE. pp.1927-1932. doi:10.1109/AIM.2009.5229771
Krishnan, N. C., Juillard, C., Colbry, D., & Panchanathan, S. (2009). Recognition of hand movements using wearable accelerometers. Journal of Ambient Intelligence and Smart Environments, 1 (2), 143-155. doi:10.3233/AIS-2009-0019
Kruger, A. & Edelmann-Nusser, J. (2010). Application of a full body inertial measurement in alpine skiing: A comparison with an optical video based system. Journal of Applied Biomechanics, 26, 516–521.
Lai, A., James, D.A., Hayes, J.P., & Harvey, E.C. (2003). Semi-automatic calibration technique using six inertial frames of reference. In Proceedings SPIE, vol. 5274, pp.531–542. doi: 10.1117/12.530199
Lapinski, M., Berkson, E., Gill, T., Reinold, M., & Paradiso, J. A. (2009). A distributed wearable, wireless sensor system for evaluating professional baseball pitchers and batters. In Proceedings of 2009 International Symposium on Wearable Computers. IEEE. pp.131-138. doi:10.1109/ISWC.2009.27.
Le Sage, T., Bindel, A., Conway, P.P., Justham, L.M., Slawson, S.E., & West, A.A. (2011). Embedded programming and real time signal processing of swimming strokes. Sports Engineering, 14, 1–14.
Lecoutere, J. & Puers, R. (2014). Wireless communication with miniaturized sensor devices in swimming. Procedia Engineering, 72, 398–403. doi: 10.1016/j.proeng.2014.06.069
Lee, J.B., Burkett, B.J., Thiel, D.V., & James, D.A. (2011). Inertial sensor, 3d and 2d assessment of stroke phases in freestyle swimming. Procedia Engineering, 13, 148–153.
Lee, J.B., Leadbetter, R.I., Ohgi, Y., Theil, D.V., Burkett, B., & James, D.A. (2011). Quantifying and assessing biomechanical differences in swim turn using wearable sensors. Sports Technology, 4, 128–133.
Levinson, D. A. (1987). Internal stroke motions and the effective coaching of stroke mechanics. Journal of Swimming Research, 3(2), 21-28.
Liu, J.Q., Fang, H.B., Xu, Z.Y., Mao, X.H., Shen, X.C., Chen, D.… Cai, B.C. (2008). A mems-based piezoelectric power generator array for vibration energy harvesting. Microelectronics Journal, 39, 802–806.
Liu, Q., Hay, J.G. & Andrews, J.G. (1993). Body roll and handpath in freestyle swimming: An Experimental study. Journal of Applied Biomechanics 9, 238-253.
Maglischo, E.W. (2003). Swimming fastest: Human Kinetics Publishers.
Mayagoitia, R.E., Nene, A.V., & Veltink, P.H. (2002). Accelerometer and rate gyroscope measurement of kinematics: An inexpensive alternative to optical motion analysis systems. Journal of Biomechanics, 35, 537–542.
Michahelles, F. & Schiele, B. (2005). Sensing and monitoring professional skiers. IEEE Pervasive Computing, 4 (3), 40-45.doi: 10.1109/MPRV.2005.66
Mooney, R., Corley, G., Godfrey, A., Quinlan, L. R., & ÓLaighin, G. (2015). Inertial Sensor Technology for Elite Swimming Performance Analysis: A Systematic Review. Sensors, 16(1), 18. doi:10.3390/s16010018
Nickos, V., Vassilios, G., Nickos, A., Panagiotis, K., Christos, C. & Giorgos, M. (2007). Underwater stroke kinematics during breathing & breath-holding front crawl swimming. Journal of sports science & medicine 6 (1), 58-62.
Nikodelis, T., Kollias, I., & Hatzitaki, V. (2005). Bilateral inter-arm coordination in freestyle swimming: Effect of skill level and swimming speed. Journal Sports Science, 23, 737–745.
Ohgi, Y., Ichikawa, H., Homma, M., & Miyaji, C. (2003). Stroke phase discrimination in breaststroke swimming using a tri-axial acceleration sensor device. Sports Engineering, 6 (2), 113-123. doi:10.1007/BF02903532
Ohgi, Y., Kaneda, K., & Takakur, A. (2014). Sensor data mining on the kinematical characteristics of the competitive swimming. Procedia Engineering, 72, 829–834. doi: 10.1016/j.proeng.2014.06.036
Osborough, C.D., Payton, C.J., & Daly, D.J. (2010). Influence of swimming speed on inter-arm coordination in competitive unilateral arm amputee front crawl swimmers. Human Movement Science, 29, 921–931.
Pan, M. S., Huang, K. C., Lu, T. H., & Lin, Z. Y. (2016). Using accelerometer for counting and identifying swimming strokes. Pervasive and Mobile Computing, 31, 37-49. doi: 10.1016/j.pmcj.2016.01.011
Pansiot, J., Lo, B., & Yang, G.Z. (2010). Swimming stroke kinematic analysis with BSN. In Proceedings of IEEE 2010 International Conference on Body Sensor Networks. Singapore: IEEE. pp.153-158. doi:10.1109/BSN.2010.11
Paul, S., Ambreen, C., David, F., Jim, R., & James, S. (2012). Biomechanical differences between experienced & inexperienced wheelchair users during sport. Prosthetics Orthotics International, 36 (3), 324-331.
Payton, C.J., Baltzopoulos, V., & Bartlett, R.M. (2002). Contributions of rotations of the trunk and upper extremity to hand velocity during front crawl swimming. Journal of Applied Biomechanics, 18, 243–256.
Payton, C.J., Bartlett, R.M., Baltzopoulos, V. & Coombs, R. (1999). Upper extremity kinematics & body roll during preferred–side breathing & breath–holding front crawl swimming. Journal of Sport Sciences 17, 689 - 696.
Phillips, C.W.G., Forrester, A.I.J., Hudson, D.A., & Turnock, S.R. (2014). Comparison of kinematic acquisition methods for musculoskeletal analysis of underwater flykick. Procedia Engineering, 72, 56–61.
Sacilotto, G., Franco, R., Mason, B., & Ball, N. (2013). Investigation of front crawl stroke phases within force-time profiles in elite and sub-elite male sprint swimmers. Journal of Science and Medicine in Sport, 16, e19.
Sanders, R.H. (1999). Hydrodynamic characteristics of a swimmer's hand. Journal of Applied Biomechanics, 15, 3-26.
Schnitzler, C., Seifert, L., Alberty, M., & Chollet, D. (2010). Hip velocity and arm coordination in front crawl swimming. Journl of Sports Medicine. 31, 875–881.
Seifert, L., Chollet, D., & Bardy, B.G. (2004). Effect of swimming velocity on arm coordination in the front crawl: A dynamic analysis. Journal Sports Science, 22, 651–660. doi:10.1080/02640410310001655787
Seifert, L., L’Hermette, M., Komar, J., Orth, D., Mell, F., Merriaux, P.…Davids, K. (2014). Pattern recognition in cyclic and discrete skills performance from inertial measurement units. Procedia Engineering, 72, 196–201.
Seifert, L., Leblanc, H., Chollet, D., & Delignieres, D. (2010). Inter-limb coordination in swimming: Effect of speed and skill level. Human Movement Science, 29, 103–113. doi: 10.1016/j.humov.2009.05.003.
Seifert, L., Leblanc, H., Herault, R., Komar, J., Button, C., & Chollet, D. (2011). Inter-individual variability in the upper-lower limb breaststroke coordination. Human Movement Science, 30, 550–565.
Siirtola, P., Laurinen, P., Röning, J., & Kinnunen, H. (2011). Efficient accelerometer-based swimming exercise tracking. In Proceedings of IEEE 2011 Symposium on Computational Intelligence and Data Mining. Pairs, France: IEEE. pp.156-161. doi:10.1109/CIDM.2011.5949430
Slawson, S. E, Justham, L. M, West, A. A, Conway, P. P, Caine, M. P, & Harrison, R. (2008). Accelerometer profile recognition of swimming strokes. The Engineering of Sport, 7, 81–87.
Slawson, S. E., Justham, L. M., Conway, P. P., Le-Sage, T., & West, A. A. (2012). Characterizing the swimming tumble turn using acceleration data. Journal Sports Engineering Technology, 226, 3–15. doi: 10.1177/1754337111428395.
Southard, D., & Miracle, A. (1993). Rhythmicity, ritual, and motor performance: A study of free throw shooting in basketball. Research Quarterly for Exercise and Sport, 64, 284-290.
Stager, J.M., & Johnston, J.D. (2006). Identification of factors impacting the relationship between accelerometer counts and swimming energy expenditure: 2867. Medicine Science Sports Exercise, 38 (5), S560. doi:10.1249/00005768-200605001-03202
Stamm, A., James, D. A., & Thiel, D.V. (2013). Velocity profiling using inertial sensors for freestyle swimming. Sports Engineering, 16 (1), 1-11. doi:10.1007/s12283-012-0107-6
Stamm, A., James, D.A., Hagem, R.M., & Theil, D.V. (2012). Investigating arm symmetry in swimming using inertial sensors. In Proceedings of the IEEE Sensors, Taipei, Taiwan, pp.28–31.
Stuart, M., Colleen, M., & Shawn, D. (2012). The effect of real-time feedback on swimming technique. Journal of International Society of Swimming Coaching, 2 (2), 41.
Supej, M. (2010). 3D measurements of alpine skiing with an inertial sensor motion capture suit and GNSS RTK system. Journal Sports Science, 28, 759–769.
Thomas, O., Sunehag, P., Dror, G., Yun, S., Kim, S., Robards, M., … Saunders, P. (2010). Wearable sensor activity analysis using semi-markov models with a grammar. Pervasive and Mobile Computing, 6, 342–350.
Vannozzi, G., Donati, M., Gatta, G., & Cappozzo, A. (2010). Analysis of swim turning, underwater gliding and stroke resumption phase in top division swimmers using a wearable inertial sensor device. In Biomechanics and Medicine in Swimming XI; Kjendlie, P.L., Stallman, R.K., Cabri, J., Eds.; Norwegian School of Sport Sciences: Oslo, Norway, pp.178–180.
Winters, J. M. & Wang, Y. (2003). Wearable sensors & tele-rehabilitation: Integrating intelligent tele-rehabilitation assistants with a model for optimizing home therapy. IEEE Engineering in Medicine & Biology Magazine, 22 (3), 56-65.
Wixted, A. J., Thiel, D. V., Hahn, A. G., Gore, C. J., Pyne, D. B., & James, D. A. (2007). Measurement of energy expenditure in elite athletes using MEMS-based triaxial accelerometers. IEEE Sensors Journal, 7 (4), 481-488. doi:10.1109/JSEN.2007.891947
Wright, B. & Stager, J. (2013). Quantifying competitive swim training using accelerometer-based activity monitors. Sports Engineering, 16, 155–164.
Yanai, T. (2003). Stroke frequency in front crawl: Its mechanical link to the fluid forces required in non-propulsive directions. Journal of Biomechanics, 36 (1), 53-62.
Yang, S. & Li, Q. (2012). Inertial sensor-based methods in walking speed estimation: A systematic review. Sensors, 12, 6102–6116.
Yoo, J., Yan, L., Lee, S., Kim, H., & Yoo, H. J. (2009). A wearable ECG acquisition system with compact planar-fashionable circuit board-based shirt. IEEE Transactions on Information Technology in Biomedicine, 13(6), 897-902.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE