:::

詳目顯示

回上一頁
題名:國中學生為什麼改變了心智模式?以電學教-學序列為例
書刊名:臺北市立教育大學學報. 教育類
作者:林靜雯 引用關係
作者(外文):Lin, Jing-wen
出版日期:2012
卷期:43:1
頁次:頁59-92
主題關鍵詞:心智模式教-學序列電學Mental modelTeaching-learning sequenceElectricity
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:16
  • 點閱點閱:64
本研究探討學生於電學教-學序列(teaching-learning sequence, TLS)活動中可能的反應類型,及影響其修正其認知特徵之因素與來源。研究者將 30位電學學習成就及診斷式測驗成績相當的七年級生,根據其心智模式分成六小組(三種心智模式 ×TLS設計組與傳統組)。並以設計過的電學教 -學序列及教科書中的教 -學序列,分別對六小組進行 8堂教學實驗,過程中並以學習歷程紀錄表,讓學生自陳認知特徵修正情形,及影響修正的因素與來源。研究發現學生於一連串教 -學序列中,可能的反應類型有八種。修正因素中,學生最重視新想法解決問題的能力。此外,影響 TLS設計組修正的來源較多元,且有較多科學知識或學習經驗支持其修正。研究者希冀這些結果能提供教師設計概念改變教-學序列時之參考。
The aims of this study are to explore students’ response types when they face a series of conceptual change teaching activities and to understand the sources and factors influence students in revising their cognitive character. This study uses electricity as the research topic. According to the electricity diagnostic test designed by the author, thirty 7th graders with equal achievement test and diagnostic test scores are selected and then are assigned to 6 groups (designed-TLS and traditional groups ×3 mental models) which based on their mental models. The designed teaching-learning sequence (TLS) based on students’ mental models in electricity and the TLS which appeared in textbook are adopted respectively to carry out teaching experiments. Ten learning progress record sheets per student are used to evaluate if students revised their incorrect cognitive character, and the sources and factors which influence their revisions. The results show there are eight possible response types when students face a series of teaching activities. Besides, the designed-TLS group has more total revision as well as real revision numbers than the traditional group. As for the revising sources and factors of cognitive characters, students revise their cognitive characters for “the reasons” of new concepts themselves. Among these factors, students think highly of the problem solving ability of a new concept. Furthermore, the influencing sources in the experimental group are more diverse than the comparison group, and are supported by more scientific knowledge and past learning experiences. These results provide the factors that should be noted for future conceptual changes in TLS design.
期刊論文
1.林靜雯、邱美虹(2000)。探究學生串聯電路認知特徵演化歷程之跨年級研究。教育科學研究期刊,54(4),139-170。new window  延伸查詢new window
2.邱美虹、林靜雯、Chiu, M. H.、Lin, Templin(2005)。Promoting Fourth Graders' Conceptual Change of Their Understanding of Electric Current via Multiple Analogies。Journal of Research in Science Teaching,42(4),429-464。  new window
3.Méheut, M.、Psillos, D.(2004)。Teaching-learning sequences: Aims and tools for science education research。International Journal of Science Education,26(5),515-535。  new window
4.林靜雯(20080900)。跨年級學生電學心智模式一致性與課程進程之比較研究。教育與心理研究,31(3),53-79。new window  延伸查詢new window
5.楊文金(19990900)。「期望地位」對同儕互動的影響分析。科學教育學刊,7(3),217-232。new window  延伸查詢new window
6.Chinn, C. A.、Brewer, W. F.(1998)。An empirical test of a taxonomy of responses to anomalous data in science。Journal of Research in Science Teaching,35(6),623-654。  new window
7.Chinn, C. A.、Brewer, W. F.(1993)。The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction。Review of Educational Research,63(1),1-49。  new window
8.Vosniadou, S.(1994)。Capturing and modeling the process of conceptual change。Learning and instruction,4(1),45-69。  new window
9.Magnusson, S. J.、Boyle, R. A.、Templin, M.(1997)。Dynamic science assessment: A new approach for investigating conceptual change。The Journal of the Learning Science,6(1),91-142。  new window
10.Posner, G. J.、Strike, K. A.、Hewson, P. W.、Gertzog, W. A.(1982)。Accommodation of a scientific conception: Toward a theory of conceptual change。Science Education,66(2),211-227。  new window
11.林靜雯、邱美虹(2007)。以概念演化觀點分析我國電學教科書之教學序列。國立編譯館館刊,35(2),3-14。  延伸查詢new window
12.林靜雯(2007)。探究九年國教實施後科學教科書之編寫內容多元性與編審制度之關係--以國中電學主題為例。科學教育研究舆發展季刊,49,1-18。  延伸查詢new window
13.Chinn, C. A.、Malhotra, B. A.(2002)。Children's responses to anomalous scientific data: How is conceptual change impeded?。Journal of Educational Psychology,94,327-343。  new window
14.林靜雯、邱美虹(2009)。教-學序列研究對科學教學的啓示。科學教育月刊,323,2-14。  延伸查詢new window
15.Clement, J.、Steinberg, M.(2002)。Step-wise evolution of models of electric circuits: A 'learning-aloud' case study。Journal of the Learning Sciences,11(4),389-452。  new window
16.Treagust, D. F.、Duit, R.(2008)。Conceptual change: A discussion of theoretical, methodological and practical challenges for science education。Culture Study of Science Education,3,297-328。  new window
17.Treagust, D. F.、Harrison, A.、Venville, G.、Dagher, Z.(1996)。Using an analogical teaching approach to engender conceptual change。International Journal of Science Education,18,213-229。  new window
18.Komorek, M.、Duit, R.(2004)。The teaching experiment as a powerful method to develop and evaluate teaching and learning sequences in the domain of non-linear systems。International Journal of Science Education,26(5),619-633。  new window
19.Lin, J. Y.(2007)。Responses to anomalous data obtained from repeatable experiments in the laboratory。Journal of Research in Science Teaching,44(3),506-528。  new window
20.Vosniadou, S.、Ioannides, C.(2001)。Designing learning environments to promote conceptual change in science。Learning and Instruction,11,381-419。  new window
會議論文
1.Lin, J. W.、Chiu, M. H.(2006)。Students' Conceptual Evolution in Electricity - The Cladistical Perspective。  new window
2.林靜雯、邱美虹(2008)。以概念演化樹探究學生電學心智模式演化之歷程。  延伸查詢new window
3.Lin, J. W.、Chiu, M. H.(2010)。Investigating the influences of mental model based teaching-learning sequence on students learning: An example of electricity。Leuven, Belgium。  new window
4.Lin, J. W.、Chiu, M. H.(2008)。Investigating the influences of mental model based teaching-learning sequences on students learning in electricity。Baltimore, U.S.A.。  new window
5.Lin, J. W.、Chiu, M. H.(2009)。Why are mental model based teaching-learning sequences in electricity effective? Perspective from students' affection attitude。Istanbul Turkey。  new window
6.Tiberghien, A.(1980)。Modes and conditions of learning-An example: The learning of some aspects of the concept of heat288-309。  new window
7.Katu, N.、Lunetta, V. N.、van den Berg, E.(1993)。Teaching experiment methodology。Ithaca。  new window
8.Niedderer, H.、Goldberg, F.(1995)。Learning pathway and knowledge construction in elective circuit。Leeds, UK。  new window
9.Schwedes, H.、Schmidt, D.(1992)。Conceptual change and theoretical comments。Kiel, Germany。  new window
10.Steffe, L. P.(1983)。The teaching experiment methodology in a constructivist research program。Boston。  new window
圖書
1.Toulmin, Stephen(1972)。Human understanding: The collective use and evolution of concepts。Princeton, NJ:Princeton University Press。  new window
2.Osborne, R.、Freyberg, P.、Bell, Beverley(1985)。Learning in science: The implications of children's science。Auckland, NZ:Heinemann。  new window
3.White, Richard Thomas、Gunstone, Richard F.(1992)。Probing Understanding。Falmer Press。  new window
4.Hempel, Carl Gustav(1966)。Philosophy of Natural Science。Prentice Hall, Inc.。  new window
5.Kuhn, Thomas Samuel(1970)。The Structure of Scientific Revolutions。University of Chicago Press。  new window
6.國立編譯館(2003)。國民中學理化第二冊。臺北市。  延伸查詢new window
7.Steffe, L. P.、D'Ambrosio, B.(1996)。Using teaching experiments to enhance understand students' mathematics。Improving Teaching and Learning in Science and Mathematics。New York。  new window
8.Gunstone, R. F.、Mitchell, I. J.(1998)。Metacognition and conceptual change。Teaching science for understanding: A human constructivist view。San Diego。  new window
圖書論文
1.Glynn, S. M.、Duit, R.、Thiele, R. B.(1995)。Teaching science with analogies: A strategy for constructing knowledge。Learning science in school: Research reforming practice。Mahwah, New Jersey:Lawence Erlbaum Associates。  new window
2.Schwedes, H.、Dudeck, W.-G.(1996)。Teaching electricity by help of a water analogy。Research in Science Education in Europe。London:Falmer Press。  new window
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
QR Code
QRCODE