:::

詳目顯示

回上一頁
題名:恆春半島海階土壤之成因及其在地形演育之意義
作者:黃文樹
作者(外文):Huang, Wen Shu
校院名稱:國立彰化師範大學
系所名稱:地理學系
指導教授:蔡衡
學位類別:博士
出版日期:2010
主題關鍵詞:土壤地形土壤對比恆春半島珊瑚礁石灰岩海階soil geomorphologypedogenic correlationHengchun Peninsulareef limestonemarinte terrace
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(1) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:1
  • 共同引用共同引用:0
  • 點閱點閱:82
由於構造活動影響,恆春半島分布許多珊瑚礁海階,不過因各海階地形受長期的地表作用影響,使得原有的地形面的對比困難,因此,藉由探討土壤形態與性質特徵的變化,有助於重建過去地景變遷的歷史。
本研究在墾丁地區和恆春西台地分別觀察5個和6個剖面,各土壤剖面並非完全與石灰岩呈現直接接觸的關係,並分析石灰岩中不溶性物質多在10%以下,且從土壤、沖積物和石灰岩的砂粒礦物分析,以及全量元素集群分析顯示,土壤非純源自珊瑚礁石灰岩淋溶後的殘餘物質,而可能來自於陸相的沉積物、海濱砂或沙丘砂。其次,除了KT-4、KT-5、HT-2a、HT-2b等土壤,因無明顯化育程度,可分類為弱育土或新成土外,其餘土壤普遍具有中度到良好的稜塊構造、緊實的結持度、中等的黏性與塑性等形態特徵,剖面中可觀察到黏粒包覆現象,黏粒和游離鐵有在Bt層聚積現象,另可能因質地較粗,砂粒含量較多,CEC值偏低多在10 cmol (+)/kg以下,惟除了KT-2的鹽基飽和度低於35%,可劃分為極育土綱外,其餘KT-3a、KT-3b、HT-1a、HT-1b、HT-1c、HT-1d均有較高的鹽基飽和度,分類為淋餘土綱。
各土壤的化育過程,應非從石灰岩風化開始,而是海階隆起前,先由諸地表作用力,帶來河流沉積物或沙丘砂堆積,海階離水後因長期受高溫多雨的氣候影響,由這些流水或風力的沉積物開始化育所致,不過,墾丁地區與恆春西台地地區的土壤地形作用過程不盡相同,墾丁地區的土壤地形演育模式應為:第一階段:此時位於高海水準面時期,陸地周緣生長裙礁。第二階段:海準面開始下降,裙礁逐漸露出水面,在波浪侵蝕下,形成濱台,同時由內陸侵蝕受流水搬運的沉積物或崩積物,亦開始堆積在珊瑚礁上。第三階段:已抬升的濱台完全離水,堆積的陸相沉積物進入長時間的土壤化育作用,未受到沉積物覆蓋而出露的珊瑚礁石灰岩,則受到淋溶作用的影響,形成各種溶蝕地形。第四階段:受強烈盛行的東北季風影響,濱海的沙丘發達,部分地區則覆蓋有厚層的風積砂。另外,恆春西台地的土壤地形演育模式則為:第一階段:在高海準面時期,珊瑚礁生成,並逐漸形成堡礁,而其後方形成潟湖,並堆積大量的潟湖沉積物。第二階段:海準面下降,堡礁出露水面,受波浪侵蝕逐漸形成廣大的濱台,同時潟湖內受河系發育之影響,堆積出礫石層,而在珊瑚礁波蝕棚上,或因濱砂堆積、或因風成作用將潟湖、河流等沉積物的砂粒徑物質攜至面上堆積。第三階段:因海準面持續下降與構造抬升,階面完全離水,上覆的風積砂和河流沉積物開始進行土壤化育作用,構成目前西台地高位階地上化育程度相仿的紅化土壤,如HT-1a、HT-1b、HT-1c和HT-1d等。
最後,將兩地土壤化育程度進行對比,則約可分為三個程度等級:最高為KT-2,第二則為 KT-3a (200-600 cm)、KT-3b、HT-1a、HT-1b、HT-1c、HT-1d,第三為KT-3a (0-200 cm)、KT-4、HT-2a、HT-2b、KT-5。進一步配合定年資料、地形面高度與全球海準面紀錄,則能試著重建恆春半島諸地形面的抬升過程與速率:首先,KT-2最早形成,約在135 ky年前,而其所處地形面的長期抬升速率則約為1.2 mm/yr。其次,約於120~80 ky則先後形成KT-3a、KT-3b、HT-1a、HT-1b、HT-1c、HT-1d等面,惟KT-3a和KT-3b所屬階面抬升速率約為1.2~1.5 mm/yr,而HT-1a~HT-1d所屬階面則約為1.4~2.5 mm/yr。再者,60 ky年前KT-4和HT-2a、HT-2b等地形面形成,KT-4所屬地形面的抬升速率約為3.4 mm/yr,而HT-2a和HT-2b所屬地形面則為1.3 mm/yr。此一結果,其意味著無論在墾丁地區或是恆春西台地的海階,其地形面抬升速率均有加速的現象,在更新世晚期較緩,而在全新世以來則有構造活動趨於活躍的趨勢,不過墾丁地區抬升速率均略大於恆春西台地地區。
The marine terraces of the Hengchun Peninsula, located in the southmost tip of the Central Range, were the excellent sites to exam the pedogenetic process and the geomorphic correlations for landform evolution and neo-tectonic activities. But the geomorphic correlations between researchers have been in controversy because of the subtle geomorphic features. This study provided new evidences based on pedogenic characteristics of the soils over the marine terraces to gauge the soil-geomorphic processes as well as re-consider the correlations of the marine terraces.
Five soils, labeled as KT-2, KT-3a, KT-3b, KT-4 and KT-5, and another six, labeled as HT-1a, HT-1b, HT-1c, HT-1d, HT-2a and HT-2b, were sampled on the marine terraces in Kengting area and West Table land respectively. Moreover, seven reef-limestones, one eolian dune sand and one beach sands were also sampled for the further determination of the minerals. The pedo-stratigraphic morphologies, unreasonable required amounts of reef-limestone for insoluble residue, sand-size fraction minerals of soils as well as limestone reveal that the soils over the marine terraces derived from the fluvial deposits, eolian or beach sands, which none-calcerous minerals of them were all inland source, instead of reef-limestone. The soils on the terraces with high altitudes, such as KT-2, KT-3a, KT-3b, HT-1a, HT-1b, HT-1c and HT-1d, were identified as higher genetic degrees with morphologies of clay coatings, argillic horizon, low CEC/caly, higher Fed and kaolinite contents. These soils were classified as Ultisols based on the Soil Taxonomy but the genetic degree of the KT-2 soil was slight higher than others. In contrast, the soils on the lower terraces, showing none or less genetic morphologies, were classified as Inceptisols and Entisols in the Soil Taxonomy. Therefore, a post-incisive chronosequence was formed because the pedogenic degree increased with the terrace altitudes (age).
Taking into consideration of the soil parent materials and the pedogenic morphologies, two soil-geomorphic models were respectively proposed to reveal the landform surface process after the terrace uplifting in the Kengting area and the West Tableland. In Kengting area, at the first stage, the sea level was the highest and the wave-platform of the reef was formed. The sea level started to descend and fluvial deposits from inland covered on the wave-platform at the second stage. Then, the wave-platform uplifted and departed from the sea level at the third stage, whereas the fluvial deposit experienced a long period of weathering to form Ultisols. At the last stage, eolian dune sands overlying on the part of the soils were caused by the strong northeast monsoon in modern time.
In the West Tableland, the barrier reef and the lagoon were formed while the highest sea level at first. At the second stage, the sea level descended whereas the barrier reef were eroded by wave to form a wave-platform and rivers moved deposits into the lagoon. The wave-platform was covered thick eolian sands that originated in fluvial deposits or the lagoon-shore sands. At the third stage, the wave-platform was abandoned for the sea level and inclined to the east due to the tectonic uplifting. The sand deposits on the wave-platform had been weathered and formed as the Ultisols.
According to the indicators of the soil properties, such as horizon index (HI), weighted profile development index (WPDI), clay, Fed, CEC/clay, and ECEC/clay, all soils on marine terraces in the Hengchun Peninsula were correlated as three levels: 1st was the KT-2 soil; 2nd was the KT-3a, KT-3b, HT-1a, HT-1b, HT-1c and HT-1d soils; 3rd was the KT-4, HT-2a, HT-2b, KT-5 soils. Furthermore, in convenience, the soils labels would be representative of the terraces that the soils belong to. Referring to pedogenic correlations and geomorphic features, like terrace altitudes, the marine terraces in the Hengchun Peninsula were correlated as five levels: KT-2 was the second level, whereas KT-3a, KT-3b, HT-1a, HT-1b, HT-1c and HT-1d were the third level. KT-4, HT-2a, HT-2b were the fourth level and KT-5 was the latest. The result of the pedogenic correlation conformed to the dating of the reef limestone. KT-2, KT-3a, KT-3b, HT-1a, HT-1b, HT-1c and HT-1d were abandoned at the last inter-glacier about 135-80 ky, but the age of the KT-2 with higher pedogenic degree was earlier than other soils. The KT-4, HT-2a and HT-2b formed after 60 ky.
千田勝己 (1980) 台灣某些紅壤的黏土礦物特性與有關理化性質之研究,台北,國立台灣大學農業化學研究所博士論文,130頁。
中央地質調查所 (1989) 恆春半島地質圖,台北,經濟部中央地質調查所。
六角兵吉和牧山鶴彥 (1934) 高雄洲恆春油田調查報告,台北,台灣總督府殖產局出版。
石再添、張瑞津、張政亮、連偵欽、林雪美 (1994) “台灣南端與東部海岸沙丘之地形學研究”,國立台灣師範大學地理研究報告,第21期,頁1-42。new window
石再添、張瑞津、鄧國雄、黃朝恩 (1996) 重修台灣省通志卷二土地志地形篇,南投,台灣省文獻會,958頁。
石再添、蔡文彩、許民陽、目崎茂和、木庭元晴 (1989) “墾丁國家公園地區的珊瑚礁定年與地形研究”,墾丁國家公園研究保育報告,第57號,頁1-58。
石再添、鄧國雄、張瑞津、楊貴三 (1985) “恆春地區的活斷層與地形面”,地理教育,第11期,頁1-14。
石再添、鄧國雄、許民陽、楊貴三 (1988) “台灣花東海岸海階的地形學研究”,國立台灣師範大學地理研究報告,第14期,頁1-50。new window
石再添和張瑞津 (1986) “由海階看海準變化與地殼變動”,地理教育,第12期,頁1-6。
石再添和許民陽 (1988) “台灣北端海岸的海階地形”,地理學研究,第12期,頁1-14。
石再添和許民陽 (1989) “臺灣北部海岸基隆至深澳段的海階”,地理教育,第15期,頁1-13。
石華(1989) “紅壤研究四十春”,土壤學報,第21期,頁174-179。
江志峰 (1991) 臺灣地區若干不同母質來源紅壤之特性、化育與分類,台中,國立中興大學土壤學研究所碩士論文。
江斐瑜 (1990) 南仁山區環境對土壤性質及化育作用之影響,台北,國立台灣大學農業化學研究所碩士論文。
余東峰 (1995) 面天山火山岩來源土壤之特性、化育與分類,台北,國立台灣大學農業化學研究所碩士論文。
吳樂群和陳華玟 (1990) “臺灣南部恆春西臺地北段晚更新世地層之沈積層序”, 經濟部中央地質調查所彙刊,第6號,頁13-50。
宋國城 (1991) 台灣地質圖說明書-恆春半島,台北,經濟部中央地質調查所。
李彥霖 (2004) 陂塘到大圳---桃園臺地水利變遷(1683-1945),台北,國立東吳大學歷史學研究所碩士論文。
李思根 (1983) “蘭嶼、綠島地形之比較研究”,花蓮師專學報,第14期,頁401-474。
沈于超(2005)台東長濱海階土壤之時間序列,屏東,國立屏東科技大學環境工程與科學系碩士論文。
周宗成 (1998) 磺嘴山地區土壤之特性、化育與分類,台北,國立台灣大學農業化學研究所碩士論文。
孟昭彝 (1964) “臺灣北部紅土層發展地形變化與第四紀晚期地殼變動關係之研究”,石油,第1卷,第2期,頁26-52。
林久芳 (1988) 台灣恒春半島及東部海岸全新世隆起珊瑚之鈾系定年研究,台北,國立台灣大學地質研究所碩士論文。
林光清 (1987) 拉拉山自然保護區之土壤,台北,國立台灣大學農業化學研究所碩士論文。
林淑芬 (1991) 桃園台地群紅壤之初步研究,台北,國立台灣大學地質學研究所碩士論文。
林聖欽 (1990) “宜蘭礁溪斷層海岸的海階地形”,地理教育,第16期,頁108-122。
洪國騰 (2005) 台灣北部林口層紅土來源和成因之礦物學和地球化學研究,台南,國立成功大學地球科學所碩士論文。
洪國騰和江威德 (2006) “台灣北部林口層紅土來源與成因之礦物學研究”,載於中國地質學會九十五年年會暨學術研討會大會手冊及論文摘要,桃園,中國地質學會,頁170。
胡金印 (2000) 恆春地區農業活動對落山風的調適,台北,國立臺灣師範大學地理研究所博士論文。new window
范佐東 (1997) 桃園台地埤塘型態分佈與運作機制之研究,台北,國立台灣師範大學地理學研究所碩士論文。
高政毅 (2003) 台灣北部灰燼土與極育土之過渡土壤之化育作用與指標因子,台北,國立台灣大學農業化學研究所碩士論文。
崔君至 (1999) 南仁山區土壤性質在不同地形位置之分佈,台北,國立台灣大學農業化學研究所碩士論文。
張仲民 (1981) 土壤化育與形態學,台北,國立編譯館。
梁琦舒 (2007) 濁水溪中游南岸地區階面土壤母質特性與地形演育之研究,彰化,國立彰化師範大學地理學系碩士論文。
梁翠容 (1989) 台灣東北角濱台地形之研究,台北,國立台灣師範大學地理研究所碩士論文。
許中民 (1986) 台灣南端恆春半島第四紀後期構造運動之研究,台北,國立台灣大學地質學研究所博士論文。
許正一 (1997) 浸水狀況下土壤飽和狀態、氧化還原過程與氧化還原形態特徵的關係,台北,國立台灣大學農業化學研究所博士論文。
許正一、王相華、伍淑惠、張英琇 (2004) 墾丁高位珊瑚礁自然保留區之化育作用與分類,台灣林業科學,第19卷,第2期,頁153-164。
許正一、賴美君、林盈成、駱佩如 (2002) “台灣南部泥岩惡地形土壤之化育作用與分類”,土壤與環境,第5卷,第4期,頁323-330。
許民陽 (1989) 台灣海階之地形學研究,台北,中國文化大學地學研究所碩士論文。new window
陳于高 (1993) 晚更新世以來南台灣地區海水面變化與新構造運動研究,台北,國立台灣大學地質學研究所博士論文。
陳文山、李偉彰、黃能偉、顏一勤、楊志成、楊小青、陳勇全、宋時驊 (2005) “恆春半島增積岩體的構造與地層特性:全新世恆春斷層的活動性”,西太平洋地質科學,第5卷,頁129-154。
陳文山、鄭穎敏、黃奇瑜 (1985) “台灣南部恆春半島之地質”,地質,第7卷,第1期,頁31-48。
陳文山和李偉彰 (1990) “西恆春台地地層之檢討”,地質,第10卷,第2期,第127-138頁。
陳文福和鄧屬予 (1990) “林口台地之第四系沉積環境”,中國地質學會會刊,第33卷,第1期,頁39-63。
陳民本和謝英宗 (1985) 墾丁國家公園地區海域及海濱石灰質砂之調查研究,墾丁國家公園保育調查報告,第21號,頁1-152。
陳建任 (2004) 琉球嶼海階土壤之化育作用,屏東,國立屏東科技大學環境工程與科學系碩士論文。
陳建良、林啟文、陳文山 (2005) “台灣南部恆春半島地殼變形初步研究”,經濟部中央地質調查所特刊,第16期,頁55-74。
陳彥谷 (2007) 臺灣中部地區紅壤化學風化與質量平衡之研究,彰化,國立彰化師範大學地理學系碩士論文。
黃文樹 (2003) 八卦台地南部階地地形與土壤化育之研究,彰化,國立彰化師範大學地理系碩士論文。
黃文樹、蔡衡、林登秋(2003) ”台灣河階對比研究之回顧與探討”,地理學報,第33期,頁19-37。new window
黃文樹、蔡衡、許正一 (2007) ”以土壤化育指數對比台東海階之地形演育”,2007年地球科學聯合會,桃園,中國地質學會。
黃文樹、蔡衡、許正一(2006)”土壤化育指數在濁水溪流域階地對比之應用”,地理學報,第45期,頁1-20。new window
黃佳鴻 (2005) 由台地紅壤性質探討第四紀之地形與氣候環境變遷,屏東,國立屏東科技大學環境工程學系碩士論文。
黃政恆 (1989) 七星山與紗帽山火山岩來源土壤之特性、化育與分類,台北,國立台灣大學農業化學研究所碩士論文。
楊貴三 (1986) 台灣活動層的地形學研究-特論活動層與地形面的關係,台北,中國文化大學地學研究所博士論文。new window
萬獻銘、唐淑芬、呂仲泰 (1985) “林口台地紅土之黏土礦物組成、構造及性質”,礦業技術,第23卷,第3期,頁177-195。
萬獻銘和陳淑華 (1988) “林口台地礫石風化之礦物學及化學特性研究及其與紅土形成之關係”,地質,第8卷,第1-2期,頁27-47。
葉慶龍 (1994) 恆春半島山地植群生態及其保育評估,台北,國立台灣大學森林學研究所博士論文。
葉學文和劉麗純 (2002) “台灣紅土的成因與古氣候”,中央研究院地球科學研究所研究報告,台北,中央研究院地球科學研究所。
詹新甫 (1974) “恆春半島之地層與構造並申論中新世傾瀉層”,台灣省地質調查所彙刊,第24號,頁99-108。
廖淑華 (1993) 以重疊分析法研究低海拔亞熱帶雨林之土壤化學性質、地形及植物種類之關係,台北,國立台灣大學農業化學研究所碩士論文。
齊士崢 (2004) “河階地的對比與成因”,環境與世界,第10期,頁43-64。new window
劉平妹和林久芳 (1987) “由海階變動地形看恆春半島全新世之新構造活動“,中國地質學會專刊,第9號,頁241-259。
劉佳怡 (2005) 台灣西北部海岸階地的地形學研究,台北,中國文化大學地學研究所碩士論文。
劉楨祺 (1992) 墾丁地區土壤之形態特性、化育作用與分類探討,台北,國立台灣大學農業化學研究所碩士論文。
樓穎慧 (1989) 大屯火山區海階的碳十四定年研究,台北,國立台灣大學地質研究所碩士論文。
蔡呈奇 (1994) 墾丁萬里得山區極育土之化育作用與地形的關係,台北,國立台灣大學農業化學研究所碩士論文。
蔡呈奇 (2001) 應用地域分析與地理資訊系統繪製土壤圖:以臺灣北部火山灰土壤為例,台北,國立台灣大學農業化學研究所博士論文。
鄧國雄 (1986) “海階的地形意義及其研究”,中國地理學會會刊,第14期,頁81-91。new window
鄧國雄、高慶珍、聞祝達、蔡佩娥 (1989) “蘭嶼、綠島海階的地形學研究”,台北市立師範學院學報,第20期,頁35-82。
蕭雅文 (2006) 大肚台地與新社地區紅土土壤剖面質量平衡之研究,國立彰化師範大學地理學系碩士論文。
賴政國 (1987) 台灣東部海岸山脈成功至豐濱海階地形之研究,台北,國立台灣大學地質研究所碩士論文。
謝兆申和王明果 (1989) 台灣土壤:台灣地區廿五萬分之一土壤圖說明書,台中,國立中興大學。
謝孟龍 (1990) 台灣花東海岸晚第四紀沉積層海階地形暨新構造運動的研究,台北,國立台灣大學地質研究所碩士論文。
簡士濠 (2004) 桃園中壢臺地不同水分境況下含鐵網紋極育土氧化還原形態特徵之鑑定與鐵錳結核生成機制,台北,國立台灣大學農業化學研究所博士論文。
Alexander, E. B. and B. Burt (1996) “Soil development on moraines of mendenhall glacier, southeast Alaska. 1. The moraines and soil morphology,” Geoderma, 72: 1-17.
Alexander, E. B. and N. Holowaychuk (1983) “Soils on terraces along the Cauca River, Colombia: I. Chronosequence characteristics,” Soil Science Society of American Journal, 47: 715-721.
Alonso, P., C. Sierra, E. Ortega, C. Dorronsoro (1994) “Soil development indices of soils developed on fluvial terraces (Peňaranda de Bracamonte, Salamanca, Spain),” Catena, 23: 295-308.
Aniku, J. R. F. and M. J. Singer (1990) “Pedogenic iron oxide trends in a marine terrace chronosequence,” Soil Science Society of American Journal, 54: 147-152.
Arduino, E., E. Barberis, F. Carraro, M.G. Forno (1984) “Estimating relative ages from iron-oxide/total-iron rations of soils in the western Po Valley, Italy,” Geoderma 33: 39-52.
Arduino, E., E. Barberis, F. A. Marsan, E. Zanini, M. Franchini (1986) “Iron oxides and clay minerals within profiles as indicators of soil age in northern Italy,” Geoderma 37: 45-55.
Atalay, I. (1997) “Red Mediterranean soils in some karstic regions of Taurus mountains, Turkey,” Catena, 28: 247-260.
Aurousseau, P., P. Curmi, L. M. Bresson (1985) “Micromorphology of the Cambic horizon,” in Soil micromorphology and soil classification, SSSA Special Publication No. 15 (Douglas, L. A. and M. L. Thompson, eds.), Madison, WI: Soil Science Society of America.
Báez, H. C., E. S. Rebolledo, S. Sedov, T. Pi Puig, J. G. Castro (2010) “Pedosediments of karstic sinkholes in the eolianites of NE Yucatán: A record of LateQuaternary soil development, geomorphic processes and landscape stability,” Geomorphology, doi:10.1016/j.geomorph.2010.03.002.
Bain, D. C., A. Mellor, M. S. E. Robertson-Rintoul, S. T. Buckland (1993) “Variations in weathering processes and rates with time in a chronosequence of sois from Gen Feshie, Scotland,”, Geoderma, 57: 275-293.
Barnhisel, R. and P. M. Bertsch (1982) “Aluminum,” in Methods of soil analysis, Part 2. Chemical and microbiological properties-Agronomy monograph No. 9 (Page, A. L. et al., eds.), Madison, WI: SAS and SSA, pp. 275-300.
Barrett, L. R. (2001) “A strand plain soil development sequence in northern Michigan, USA,” Catena, 44: 163-186.
Birkeland, P. W. (1990) “Soil-geomorphology research – a selective review,” Geomorphology, 3: 207-224.
Birkeland, P. W. (1999) Soils and Geomorphology (3td ed.), New York: Oxford.
Birkelnad, P. W. (1974) Pedology, weathering and geomorphological research, New York: Oxford University Press.
Blake, G. R., and K. H. Hartge (1986) “Bulk density,” p. 363-375. in Methods of soil analysis. Part 1. (2nd ed.), Agron. Monogr. 9. (Klute, A., eds.), Madison, WI.: ASA and SSSA.
Bockheim, J. G. (1980) “Solution and use of chronosequences in studying soil development,” Geoderma, 24: 71-85.
Bockheim, J. G., H. M. Kelsey, J. G. Marshall III (1992) “Soil development, relative dating, and correlation of late Quaternary marine terraces in Southwestern Oregon,” Quaternary Research, 37: 60-74.
Bockheim, J. G., J. G. Marshall and H. M. Kelsey (1996) “Soil forming processes and rates on uplifted marine terraces in southwestern Oregon, USA,” Geoderma, 73: 39-62.
Bockheim, J. G. and D. C. Douglass (2006) “Origin and significance of calcium carbonate in soils of southwestern Patagonia,” Geoderma, 136:751-762.
Brewer, R (1964) Fabric and mineral analysis of soils, New York: John Wiley & Sons.
Brimhall, G. H. and W. E. Dietrich (1987) “Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis,” Geochimica et Cosmochima Acta, 51: 567–587.
Brimhall, G. H., C. J. Lewis, C. Ford, J. Bratt, G. Taylor, O. Warin (1991) “Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in lateritization,” Geoderma, 51: 51-91.
Bronger, A. and J. A. Catt (1998) “The position of paleopedology in geosciences and agriculture sciences,” Quaternary International, 51-52: 87-93.
Bronger, A. and N. Bruhn-Lobin (1997) “Paleopedology of Terrae Rossae-Rhodoxeralfs from Quaternary calcarenites in NW Morocco,” Catena, 28: 279-297.
Bull, W. B. (1984) “Correlation of flights of global marine terrace,” in Tectonic Geomorphology (Morisawa, M. and J. Hack, eds.), Boston: Allen & Unwin, pp. 129-152.
Bullock, P. and M. L. Thompson (1985) “Micromorphology of Alfisols,” in Soil Micromorphology and Soil Classification, SSSA Special Publication No. 15 (Douglas, L. A. and M. L. Tompson, eds.), Madison, WI: Soil Science Society of America, pp. 17-47.
Buol, S. W., F. D. Hole, , R. J. McCracken, R. J. Southard (1997) Soil genesis and classification 4th edition, Ames, Iowa, USA: Iowa State University Press.
Burt, B. and E. B. Alexander (1996) “Soil development on moraines of mendenhall glacier, southeast alaska. 2. Chemical transformations and soil micromorphology,” Geoderma, 72: 19-36.
Catt, J. A. (1996) “Recent work on quaternary paleosols in britain,” Quaternary International, 34-36: 183-190.
Chadwick, O.A., G. H. Brimhall, D. M. Hendricks (1990) “From a black to a gray box – a mass balance interpretation of pedogenesis,” Geomorphology, 3: 369-390.
Chang, C.P., J. Angelierb, T. Q. Lee, C. Y. Huang (2003) “From continental margin extension to collision orogen: structural development and tectonic rotation of the Hengchun peninsula, southern Taiwan,” Tectonophysics, 361: 61-82.
Chen, Y. G. and T. K. Liu (1993) “Holocene radiocarbon dates in Hengchun Peninsula and their neotectonic implications,” Journal of the Geological Society of China, 36(4): 457-479.
Chi, W. C., D. L. Reed, G. Moore, T. Nguyen, C. S. Liu, N. Lundberg (2003) “Tectonic wedging along the rear of the offshore Taiwan accretionary prism,” Tectonophysics, 374: 199-217.
Cooke, M. J., L. A. Stern, J. L. Banner, L. E. Mack (2007) “Evidence for the silicate source of relict soils on the Edwards Plateau, central Texas,” Quaternary Research, 67: 275–285.
Cornu, S., D. Montagne, P. M. Vasconcelos (2009) “Dating constituent formation in soils to determine rates of soil processes: A review,” Geoderma, doi:10.1016/j.geoderma.2009.08.006.
Daniels, R. B. and R. D. Hammer (1992) Soil geomorphology, New York: John Wiley.
Danin, A., R. Gerson, J. Carty (1983) “Weathering patterns on hard limestone and dolomite by endolithic lichens and cyanobacteria: supporting evidence for eolian contribution to terra rossa soil,” Soil Science, 136: 213-217.
Darmody, R. G., C. E. Allen, C. E. Thorn (2005) “Soil topochronosequences at Storbreen, Jotunheimen, Norway,” Soil Science Society of American Journal, 69: 1275-1287.
Delgdo, R., J. Aguilar, G. Delgado (1994) “Use of numerical estimators and multivariate analysis to characterize the genesis and pedogenic evolution of Xeralfs from southern Spain,” Catena, 23: 309-325.
Dorronsoro, C. (1994) “Micromorphological index for the evolution of soil evolution in central Spain,” Geoderma, 61: 237-250.
Dorronsoro, C. and P. Alonso (1994) “Chronosequence in Almar river fluvial-terrace soil,” Soil Science Society of American Journal, 58: 910-925.
Driese, S. G., J. R. Jacobs, L. C. Nordt (2003) “Comparison of modern and ancient Vertisols developed on limestone in terms of their geochemistry and parent material,” Sedimentary Geology, 157: 49–69
Durn, G., F. Ottner, D. Slovenec (1999) “Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia,” Geoderma, 91: 125-150.
Effland, A. B. W. and W. R. Effland (1992) “Soil geomorphologhy studies in the US soil survey program,” Agricultural history, 66(2): 189-212.
Egli, M. and P. Fitze (2000) “Formulation of pedologic mass balance based on immobile elements: A revision,” Soil Science, 165(5): 437-443.
Egli, M., P., Fitze, and A. Mirabella (2001) “Weathering and evolution of soils formed on grantic, glacial deposits: Results from chronosequences of swiss alpine environments,” Catena, 45: 19-47.
Engel, S. A., T. W. Gardner, E. J. Ciokosz (1996) “Quaternary soil chronosequence on terraces of the Susquehanna river, Pennsylvania,” Geomorphology, 17: 273-294.
Ewing, H. A. and E. A. Nater (2002) “Holocene soil development on till and outwash inferred from lake-sediment geochemistry in Michigan and Wisconsin,” Quaternary Research, 57: 234-243.
Fedoroff, N. and H. Eswaran (1985) “Micromorphology of Ultisols,” in Soil micromorphology and soil classification, SSSA Special Publication No. 15 (Douglas, L. A. and M. L. Thompson, eds.), Madison, WI: Soil Science Society of America.
Feng, J. L., L. P. Zhu, Z. J. Cui (2009) “Quartz features constrain the origin of terra rossa over dolomite on the Yunnan-Guizhou Plateau, China,” Journal of Asian Earth Sciences, 36: 156-167.
Foos, A.M. (1991) “Aluminous lateritic soils, Eleuthera, Bahamas: A modern analog to carbonate paleosols,” Journal of Sedimentary Petrology, 61(3): 340-348.
Foster, J. and D. Cittleborough (2003) “Soil development on dolomites of the Cambrian Normanville Group at Delamere, south Australia,” in Advances in Regolith (Roach, I.C., eds.), Australia: CRC LEME, pp. 131-132.
Fujie, K., Y. Kitagawa, M. Saito, S. Toyoda, T. Naruse (2007) “Properties and uniformity of parent materials in dark red soils distributed in Mt. Kinshosan, Ohgaki City, Gifu Prefecture, Central Japan, and in Maesato, Ishigaki Island, Okinawa Prefecture Southwest Japan,” Pedologist, 51(2): 56-67 (in Japanese with English abstract).
Fujita, T., Y. Kitagawa, T. Okuda, K. Fujie, M. Saito, S. Toyoda, T. Naruse (2007) “Influence of Eolian dust on the parent materials in four reddish soils distributed in Yonaguni Island; Judging from ESR-signal Intensity of silt-sized fine quartz and composition in these soils,” Pedologists, 51(2): 68-75 (in Japanese with English abstract).
Gardner, W. H. and K. H. Hartge (1986) “Bulk density, “ in Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9 (Klut , A., eds.), Madison, WI: Soil Science Society of America, pp. 493-544.
Gee, G. W. and J. W. Bauder (1986) “Particle-size analysis,” in Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9 (Klut , A., eds.), Madison, WI: Soil Science Society of America, pp. 383-411.
Gerrard, J. (1992) Soil geomorphology: An integration of pedology and geomorphology, London, UK: Chapman & Hall.
Hallmark, C. T., L. P. Wilding, N. E. Smeck (1982) “Silicon,” in Methods of soil analysis, Part 2, Chemical and Microbiological Properties- Agronomy Monograpgs, No. 9. (Segoe, S. eds.), Madison WI: ASA-SSSA.
Harden, J. W (1982) “A quantirative index of soil development from field descriptions, examples from a chronosequence in Central California,” Geoderma, 28: 1-28.
Harden, J. W. (1988) “Genetic interpretations of elemental and chemical differences in a soil chronosequence, California,” Geoderma, 43: 179-193.
Harden, J. W. (1990) “Soil development on stable landforms and implications for landscape studies,” Geomorphology, 3: 391-398.
Harden, J. W., E. M. Tylor, C. Hill, R. K. Mark, L. D. McFadden, M. C. Reheis, J. M. Sowers, S. G. Wells (1991) “Rates of soil development from four soil chronosequences in the southern Great Basin,” Quaternary Research, 35: 383-399.
Harrison, J. B. J., L. D. McFadden, R. J. W. Weldon III (1990) “Spatial soil variability in the Cajon Pass chronosequence: Implications for the use of soils as a geochronological tool,” Geomorphology, 3: 399-416.
Henares, M. D. C., J. M. R. Espejo, F. Díaz del Olmo, (1993) “Alluvial terraces of the river Guadalquivir: The evidence of the small Mendoza lakes (Andalusia, Spain),” Catena, 20: 63-71.
Hovan, S.A., D.K. Rea, N.G. Pisias (1989) “A direct link between the Chian loess and marine δ18O records: Aeolian flux to the north Pacific,” Nature, 340: 296-298.
Howard, J. L., D. F. Amos, W. L. Daniels (1993) “Alluvial soil chronosequence in the inner coastal plain, central Virgina,” Quaternary Research, 39: 201-213.
Hseu, Z. Y. and C.S. Chen (2001) “Quantifying Soil Hydromorphology of a Rice-Growing Ultisol Toposequence in Taiwan,” Soil Science Society of America Journal, 65: 270-278.
Hseu, Z. Y., H. Tsai, H. C. His, Y. C. Chen (2007) “Weathering sequences of clay minerals in soils along a serpentinitic toposequence,” Clay & Clay Minerals, 55(4): 389-401.
Hsieh, M. L., P. M. Liew, M. Y. Hsu (2004) “Holocene tectonic uplift on the Hua-tung coast, eastern Taiwan,” Quaternary International, 115-116: 47-70.
Huang, C. Y., W. Y. Wu, C. P. Chang, S. Tsao, P. B. Yuan, C. W. Lin, X. Kuan-Yuan (1997) “Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan,” Tectonophysics, 281: 31-51.
Huang, W. S., H. Tsai, C. C. Tsai, Z. Y. Hseu, Z. S. Chen (2010) “Subtropical Soil Chronosequence on Holocene Marine Terraces in Eastern Taiwan,” Soil Science Society of America Journal, 74(4): 1271-1283.
Huggeett, R. J. (1998) “Soil chronosequence, soil development, and soil evolution, a critical review,” Catena, 32: 155-172.
IUSS Working Group WRB (2006) World reference base for soil resources 2006, 2nd edition, World Soil Resources Reports No. 103, FAO: Rome.
Jenny, H. (1941) Factors of soil formation, New York: McGraw-Hill.
Jenny, H. (1961) “Derivation of state factor equtions of soils and ecosystems,” Proceedings of the Soil Science Society of America, 25: 385-388.
Jenny, H. (1980) The soil resource: Origin and behaviour, Ecological studies, vol. 37, New York: Springer.
Johns, W. D., R. E. Grim, W. F. Bradley (1954) “Quantitative estimations of clay minerals by diffraction methods,” Journal of Sedimentary Petrology, 24(4): 242-251.
Johnson, D. L. and T. K. Rockwell (1982) “Soil geomorphology: Theory, concepts and principles with examples and applications on alluvial and marine terraces in coastal california,” Geological Society of America, Programs with Abstracts, 14: 176.
Johnson, D. L. and D. Watson-Stegner, (1987) “Evolution model of pedogenesis,” Soil Science, 143: 349-366.
Johnson, L. J., C. H. Chu, , G. A. Hussey (1985) “Quantitative clay mineral analysis using simultaneous linear equations,” Clay and Clay Minerals, 33(2): 107-117.
Jongmans, A. G., T. C. J. Feijtel, R. Miedema, N. V. Breemen, and A. Veldkamp (1991) “Soil formation in a quaternary terrace sequence of the Allier, Limagne, France. Macro- and micromorphology, particle size distribution, chemistry,” Geoderma, 49: 215-239.
Karlstom, E. T. and G. Osborn (1992) “Genesis of buried paleosols and soils in holocene and late pleistocene tills, Bugaboo glacier area, British Columbia, Canada,” Arctic Alpine Research, 24: 108-123.
Keller, E.A. and N. Pinter (2002) Active tectonics: Earthequakes, uplift, and landscape (2nd ed.), New Jersey: Prentice-Hall, Inc.
Kendrick, K. J. and R. C. Graham (2004) “Pedogenic silica accumulation in chronosequence soils, southern California,” Soil Science Society of American Journal, 68: 1295-1303.
Kendrick, K. J. and L. D. McFadden (1996) “Comparison and contrast of processes of soil formation in the San Timoteo Badlands with chronosequences in California,” Quaternary Research, 46: 149-160.
Khormali, F., A. Abtahi, S. Mahmoodi, G. Stoops (2003) “Argillic horizon development in calcareous soils of arid and semiarid regions of southern Iran,” Catena, 53: 273-301.
Kraus, M. J. (1999) “Paleosols in clastic sedimentary rock: Their geologic applications,” Earth-Science Reviews, 47: 41-70.
Langley-Turnbaugh, S.J., J.G. Bockheim (1997) “Time-dependent changes in pedogenic processes on marine terraces in coastal Oregon,” Soil Sci. Soc. Am. J., 61: 1428-1440.
Langley-Turnbaugh, S.J., J.G. Bockheim (1998) “Mass balance of soil evolution on late Quaternary marine terraces in coastal Oregon,” Geoderma, 84: 265-288.
Lee, T. Q., S. F. Lin, H. C. Chou (1999) “Preliminary magnetic study of the Quaternary red-soil bed on Lin Kou terrace, Northern Taiwan,” TAO, 10(4): 763-776.
Lee, T., J. H. Y. Chen, C. F. Dai, J. J. S. Shen (1993) “U-disequilibrium dating of corals in southern Taiwan by mass spectrometry,” Journal of the geological society of China, 36(1): 57-66.
Leigh, D. S. (1996) “Soil chronosequence of brasstown creek, blue ridge mountains. USA,” Catena, 26: 99-114.
Lichter, J. (1998) “Rates of weathering and chemical depletion in soils across a chronosequence of Lake Michigan sand dunes,” Geoderma, 85: 255-282.
Liew, P. M. and C. F. Lin (1987) “Holocene tectonic activity of the Hengchun Peninsula as evidenced by the deformation of the marine terraces,” Memoir of the geological society of China, 9: 241-259.
Liew, P. M., M. L. Hsieh, B. H. Shyu (2004) “An overview of coastal development in a Young Mountain Belt-Taiwan,” Quaternary International, 115-116: 39-45.
Lilienfein, J. R., Qualls, G., Uselman, S. M., and Bridgham, S. D. (2003) “Soil formation and organic matter accretion in a young andesitic chronosequence at Mt. Shasta California,” Geoderma, 116: 249-264.
Lin, A. T., B. Yao, S. K. Hsu, C. S. Liu, C. Y. Huang (2009) “Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity,” Tectonophysics, 479: 28-42.
Lin, Y.S., Y.G. Chen, Z. S. Chen, M. L. Hsieh (2005) “Soil morphological variations on the Taoyuan Terrace, Northwestern Taiwan: roles of topography and groundwater,” Geomorphology, 69: 138–151.
Lin, Y.S., Y.W. Lin, Y. Wang, Y.G. Chen, M. L. Hsu, S. H. Chiang, Z. S. Chen (2007) “Relationships between topography and spatial variations in groundwater and soil morphology within the Taoyuan-Hukou Tableland, Northwestern Taiwan,” Geomorphology, 90: 36–54.
Macleod, D.A. (1980) “The origin of the red Mediterranean soils in Epirus, Greece,” Journal of Soil Science, 31: 125-136.
Maejima, Y., S. Nagatsuka, T. Higashi (2002) “Application of the crystallinity ratio of free iron oxides for dating soils developed on the raised coral reef terraces of Kikai and Minami-Daito islands, southwest Japan,” The Quaternary Research, 41: 485-493.
Marsan, F. A., E. Barberis, E. Arduino (1988) “A soil chronosequence in northwestern italy: Morphological, physical and chemical characteristics,” Geoderma, 42: 51-64.
McFadden, L. D. and P. L. K. Knuepfer (1990) “Soil geomorphology: The linkage of pedology and surficial processes,” Geomorphology, 3: 197-205.
McKeague, J. A. and J. H. Day (1966) “Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils,” Can. J. Soil Sci., 46: 13-22.
McLean, E. O. (1982) “Soil pH and lime requirement,” in Methods of Soil Analysis, Part 2. 2nd ed., Agron. Monogr. 9 (Page, A. L. et al., eds.), Madison, WI: SAS and SSA, pp. 199-224.
Mee, A. C., E. A. Bestland, N. A. Spooner (2004) “Age and origin of Terra Rossa soils in the Coonawarra area of South Australia,” Geomorphology, 58: 1-25.
Mehra, O. P., and M. L. Jackson (1960) “Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate,” Clays Clay Miner, 7: 317-327.
Mella, W. and A. R. Mermut (2009) “Genesis and mineralogy of soils formed on uplifted coral reef in West Timor, Indonesia,” Geoderma, 154: 544-553.
Menéndez, I., J. L. Díaz-Hernández, J. Mangas, I. Alonso, P. J. Sánchez-Soto (2007) “Airborne dust accumulation and soil development in the Noeth-East sector of Gran Canaria (Canary Islands, Spain),” Journal of Arid Environments, 71: 57-81.
Merino, E. and A. Banerjee (2008) “Terra Rossa genesis, implications for karst, aeolian dust: a geodynamic thread,” The Journal of Geology, 116: 62-75.
Merritts, D. J., O. A. Chadwick, D. M. Hendricks (1991) “Rates and processes of soil evolution on uplifted marine terraces, northern California,” Geoderma, 51: 241-275.
Minasny, B., A. B. Mcbratney, S. Salvador-Blanes (2008) “Quantitative models for pedogenesis — A review,” Geoderma, 144: 140-157.
Mizota, Z., H. Endo, K.T. Um, M. Kusakabe, M. Noto, Y. Matsuhisa (1991) “The eolian origin of silty mantle in sedentary soils from Korea and Japan,” Geoderma, 49: 153-164.
Mokma, D. L., M. Yli-Halla, K. Lindqvist (2004) “Podozol formation in sandy soils of Finland,” Geoderma, 120: 259-272.
Monastra, V., L. A. Derry, O. A. Chadwick (2004) “Multiple sources of lead in soils from a Hawaiian chronosequence,” Chemical Geology, 209: 215-231.
Moore, W. S. (1982) “Late Pleistocene sea level history,” in Uranium series disequilibrium: applications to environmental problem (Ivanovich, M. and R. S. Harmon, eds.), NY: Oxford University Press.
Muhs, D. R. (1982) “A soil chronosequence on quaternary marine terraces, san Clemente Island, California,” Geoderma, 28: 257-283.
Muhs, D. R. (2001) “ Evolution of soils on Quaternary reef terraces of Barbados, West Indies,” Queternary Research, 56: 66-78.
Muhs, D. R., C. A. Bush, K. C. Stewart, T. R. Rowland, R. C. Crittenden (1990) “Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands,” Quaternary Research, 33: 157-177.
Muhs, D. R. and J. R. Budahn (2009) “Geochemical evidence for African dust and volcanic ash inputs to terra rossa soils on carbonate reef terraces, northern Jamaica, West Indies,” Quaternary International, 196: 13-35.
Muhs, D. R., R. C. Crittenden, J. N. Rosholt, C. A. Bush, K. T. Stewart (1987) “Genesis of marine terrace soils, Barbados, West Indies: Evidence from mineralogy and geochemistry,” Earth Surface Processes and Landforms, 12: 605–618.
Nagatsuka, S. and Y. Maejima (2001) “Dating of soil on the raised coral reef terraces of kikai island in the Ryukyus, southwest Japan, with special reference to the age of red-yellow soils,” The Quaternary Research, 40: 137-147.
Nelson, D. W. and L. E. Sommer (1982) “Total carbon, organic carbon, and organic matter,” In Methods of soil analysis, Part 2. Chemical and microbiological properties. Agronomy monograph No. 9 (Page, A. L. et al., eds.), Madison, WI: SAS and SSA.
Nieuwenhuyse, A., P. S. J. Verburg, A. G. Jongmans (2000) “Mineralogy of a soil chronosequence on andesitic lava in humid tropical Costa Rica,” Geoderma, 98: 61-82.
Olson, C. G. (1989) “Soil geomorphology research and the importance of paleosol stratigraphy to Quaternary investigations, Midwestern USA,” Catena Suppl., 16: 129-142.
Olson, C. G., R. V. Ruhe, M. J. Mausbach (1980) “The Terra Rossa limestone contact phenomena in Karst, Southern Indiana,” Soil Scinece Society of American Journal, 44: 1075-1079.
Ota, Y. and M. Yamaguchi (2004) “Holocene coastal uplift in the western Pacific Rim in the context of late Quaternary uplift,” Quaternary International, 120: 105-117.
Ottner, F., S. Gier, M. Kuderna, B. Schwaighofer (2000) “Results of an inter-laboratory comparison of methods for quantitative clay analysis,” Applied Clay Science, 17: 223-243.
Perrin, R. M. S. (1964) “The analysis of chalk and other limestones for geochemical studies,” in Analysis of calcareous materials, Journal of the Society of Chemical Industry, Monogr. Ser. No. 18. (Society of Chemical Industry eds.), London: Society of Chemical Industry, pp. 208-221.
Phillips, J. D. and C. Lorz (2008) “Origins and implications of soil layers,” Earth-science reviews, 84: 144-155.
Pillans, B. (1997) “Soil development at snail’s pace: evidence from a 6 Ma soil chronoquence on basalt in north Queensland, Australia,” Geoderma, 80: 117-128.
Polenz, M. and H.M. Kelsey (1999) “Development of a Late Quaternary Marine Terraced Landscape during On-Going Tectonic Contraction, Crescent City Coastal Plain, California,” Quaternary Research, 52: 217–228
Priori, S., E. A. C. Costantini, E. Capezzuoli1, G. Protano, A. Hilgers, D. Sauer, F. Sandrelli (2008) “Pedostratigraphy of Terra Rossa and Quaternary geological evolution of a lacustrine limestone plateau in central Italy,” Journal of Plant Nutrient Soil Science, 171: 509-523.
Quimet, R. (2008) “Using compositional change within soil profiles for modeling base cation transport and chemical weathering,” Geoderma, doi: 10.1016/j.geoderma.2008.01.007.
Rapp Jr., G. and C. L. Hill (2006) Geoarchaeology: The Earth-Science Approach to Archaeological Interpretation, 2nd ed., US: Yale University Press.
Reheis, M. C., J. W. Harden, L. D. McFadden, R. R. Shroba (1989) “Development rates of late Quaternary soils, Silver Lake Playa, California,” Soil Science Society of American Journal, 53: 1127-1140.
Rhoades, J. D. (1982) “Cation exchange capacity,” in Methods of Soil Analysis, Part 2. Chemical and microbiological properties. Agron. Monogr. 9. (Page, A. L., eds.), Madison, WI: ASA and SSSA, pp. 149-157.
Richards, K. S., R. R. Arnett, S. Ellis (1985) Geomorphology and soils, London: George Allen & Unwin.
Ruhe, R. V. (1975) Geomorphology, geomorphic processes and surficial geology, Boston: Houghten Mifflin.
Runge, E. C. A. (1973) “Soil development sequences and energy models,” Soil Science, 115: 183-193.
Sauer, D., I. Schülli-Maurer, R. Sperstad, R. Sørensen, K. Stahr (2009) “Albeluvisol development with time in loamy marine sediments of southern Norway,” Quaternary International, 209: 31-43.
Schaetzl, R. J. and S. Anderson (2005) Soils: genesis and geomorphology, NY: Cambridge University Press.
Schaetzl, R.J. (1998) “Lithologic discontinuities in some soils on drumlins: theory, detection, and application,” Soil Science, 163(7): 570-590.
Schellmann, W. (1981) “Considerations on the definition and classification of laterites,” in Proceedings of the International Seminar on Lateritisation Processes, Trivandrum, India (Balkema Rotterdam, A. A. eds.), Calcutta: Geological Survey of India, pp. 1-10.
Shaw, J. N., J. W. Odom, B. F. Hajek (2003) “Soils on Quaternary terraces of the Tallapoosa central Alabama,” Soil Science, 168(10): 707-717.
Simonson, R. W. (1959) “Outline of a generalised theory of soil genesis,” Proceedings of the Soil Science Society of America, 23: 152-156.
Simonson, R. W. (1994) “Morphology and composition of specimen soils, Okinawa,” Geoderma, 63: 19-42.
Simonson, R.W. (1995) “Airbone dust and its significance to soils,” Geoderma, 65: 1-43.
Singer, M. J., P. Fine, K. L. Verosub, O. A. Chadwick (1992) “Time dependence of magnetic susceptibility of soil chronosequences on the California coast,” Quaternary Research, 37: 323-332.
Soil Conservation Service (1984) Procedures for collecting soil samples and methods of analysis for soil survey, Soil Survey Invest Rep. 1, Washington, D.C.: U.S. Gov. Print. Office.
Soil Survey Staff (1993) Soil Survey Manual, USDA Handbook No. 18, Washington, DC: U. S. Gov. Print. Office.
Soil Survey Staff (2006) Keys to Soil Taxonomy, 10th ed., Washington, D.C.: U.S. Gov. Print. Office.
Stevens, P. R. and Walker, T. W. (1970) The chronosequence concept and soil formation, The Quarterly Review of Biology, 45: 333-350.
Stuut, J. B., I. Smalley, K. O’Hara-Dhand (2009) “Aeolian dust in Europe: African sources and European deposits,” Quaternary International, 198: 234–245.
Šušteršič, F., K. Rejšek, M. Mišič, F. Eichler (2009) “The role of loamy sediment (terra rossa) in the context of steady state karst surface lowering,” Geomorphology, 106: 25-45.
Thomas, G. W. (1982) “Exchangeable cation,” In A. L. Page, et al. (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy monograph No. 9, pp. 159-165.
Tonkin, P. J. and L. R. Basher (1990) “Soil-stratigraphic techniques in the study of soil and landform evolution across the Southern Alps, New Zealand,” Geomorphology, 3: 547-575.
Torrent, J., U. Schwertmann, D. G. Schulze, (1980) “Iron oxide mineralogy of some soils of two river terrace sequence in Spain,” Geoderma, 23: 191-208.
Tsai, C. C. and Z. S. Chen (2000) ”Lithologic discontinuities in Ultisols along a toposequence in Taiwan,” Soil Science, 165(7): 587-596.
Tsai, C. C., H. Tsai, Z. Y. Hseu, Z. S. Chen (2007a) “Soil genesis along a chronosequence on marine terraces in eastern Taiwan,” Catena, 71(3): 394-405.
Tsai, H., W. S. Huang, Z. Y. Hseu (2007b) “Pedogenic correlation of lateritic river terraces in central Taiwan,” Geomorphology, 88: 201-213.
Tsai, H., W. S. Huang, Z. Y. Hseu, Z. S. Chen (2006) “A river terraces soil chronosequence of the Pakua tableland in central Taiwan,” Soil Science, 171(2): 167-179.
Tsai, H., Z. Y. Hseu, S. T. Huang, W. S. Huang, Z. S. Chen (2010) “Pedogenic properties of surface deposits used as evidence for the type of landform formation of the Tadu tableland in central Taiwan,” Geomorphology, 114: 590-600.
Tsai, H., Z. Y. Hseu, W. S. Huang, Z. S. Chen (2007c) “Pedogenic approach to resolving the geomorphic evolution of the Pakua river terraces in central Taiwan,” Geomorphology, 83: 14-28.
Tsai, H., Y. Maejima, Z. Y. Hseu (2008) “Meteoric 10Be dating of highly weathered soils from fluvial terraces in Taiwan,” Quaternary International, 188: 185-196
Tsui, C. C., C. S. Chen, C. F. Hsieh (2004) “Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan,” Geoderma, 123: 131-142.
Van Wambeke, A. (1962) “Criteria for classifying tropical soils by age,” Journal of Soil Science, 13: 124-132.
VandenBygaart, A. J. and R. Protz (1995) “Soil genesis on a chronosequence, Pinery Provincial Park, Ontario,” Candian Journal of Soil Science, 75: 63-72.
Vidic, N., M. Pavich, F. Lobnik (1991) “Statistical analyses of soil properties on a quaternary terrace sequence in the Uppe Sava river valley, Slovenia, Yugoslavia,” Geoderma, 51: 189-212.
Vreeken, W. J. (1975) “Principal kinds of chronosequences and their significance in soil history,” Journal of Soil Science, 26(4): 378-394.
Wilde, S. A. (1946) Forest soils and forest growth, Walthur: Chronica Botanica.
Wysocki, D.A., P.J. Schoeneberger, H. E. LaGarry (2000) “Geomorphology of soil landscapes,” in Handbook of soil science (Sumner, M., eds.), New York: CRC Press, pp. E1– E39.
Yaalon, D. H. (1971) “Soil-forming processes in time and space,” In Paleopedology--origin, nature and dating of paleosols (Yaalon, D. H. eds.), Jerusalem: Int. Soc. Soil Sci. and Israel Univ. Press, pp. 29-39.
Yaalon, D. H. (1975) “Conceptual models in pedogenesis: Can soil forming factors be solved,” Geoderma, 14: 189-205.
Yaalon, D. H. (1983) “Climate, time and soil development,” in Pedogenesis and soil taxonomy: I. Concepts and interactions (Wilding, L. P., N. E. Smeck, G. F. Hall eds.), Amsterdam: Elsevier, pp. 223-251.
Yaalon, D.H. (1997) “Soils in the Mediterranean region: what makes them different,” Catena, 28: 157-169.
Yamaguchi, M. and Y. Ota (2004) “Tectonic interpretations of Holocene marine terraces, east coast of Coastal Range, Taiwan,” Quaternary International, 115-116: 71-81.
Yassoglou, N., C. Kosmas, N. Moustakas (1997) “The red soils, their origin, properties, use and management in Greece,” Catena, 28: 261-278.




 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE