:::

詳目顯示

回上一頁
題名:臺灣海岸山脈東翼河階地形發育之研究
作者:孫稜翔
作者(外文):Sun, Leng-Hsiang
校院名稱:國立臺灣師範大學
系所名稱:地理學系
指導教授:沈淑敏
學位類別:博士
出版日期:2013
主題關鍵詞:河階地層配置發育模式海岸山脈fluvial terracelithological arrangementevolution modelCoastal Range
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(2) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:61
臺灣位於弧陸碰撞帶,東部海岸山脈為抬升速率最高地區之一,該區河階地形發達,前人研究常以高抬升率為造就其階地發達的主因。然而該區內河流普遍短小,還需哪些環境因子的配合,才能在河流持續下切的過程中拓展谷床,成就未來的河階面?因此,本文以海岸山脈東翼為研究區,藉由河階、山麓沖積扇及海階崖的對比,階地露頭的特徵、河床礫石的調查,流域的地層配置與地形特性,輔以前人文獻於階地沉積物年代以及古氣候的研究成果,達成三項目的:(1)了解本區河階特性與分布;(2)分析河階發達的環境因素,尤其是流域內地層配置的重要性;(3)根據河階特性,提出不同分區之河階發育模式。本文研究對象為海岸山脈(長約150公里) 東翼207個中小型流域,不包含豐濱溪、秀姑巒溪、馬武窟溪等較高等級河流和最南端部分地區。
根據本研究判釋結果,研究區中103條河流判釋得河階地形,其中流域面積最小的僅為6公頃 (0.06 km2)。整體而言,流域面積愈大,河階愈發達,階序數愈多;多數河流階序可達5-6階,三仙溪階序最多,可達10階,只有1-2階的均為最小河流。根據河階特徵,本研究區河流可大致分為3區:中段的靜浦至新蘭間約76 km區域,河階最為發達;北段河階主要分布在水璉溪和蕃薯寮溪兩條較大溪流;最南端河階也主要只分布在兩條溪流。此外,中段那些只發育在海階範圍內的小溪流,也有少數發育零星河階。絕大多數的河階分布於砂頁岩互層和泥岩為主的八里灣層、蕃薯寮層和利吉層等弱岩區,屬火成岩硬岩區的都鑾山層區只有少數堆積型階地分布。
本研究野外調查共記錄124個露頭,根據其中46個露頭調查所組合成的21個剖面顯示,本區河階多屬侵蝕型階地(岩石河階),可反映本區河流在全新世快速抬升背景下,河流持續下切的歷程。雖然本區河階都發育於弱岩區,但根據統計分析,在流域面積相似狀況下,具備上游硬岩、下游軟岩之地層配置流域,河階總面積最大。由此推斷,當上游有都鑾山層供給硬岩巨礫時,可發揮工具效應(tool effect) 拓寬河道,而有利於階面形成。此外,本區中、南段海階發達,隨著海階崖後退,河長變短,會造成最下游段額外下切的效果。
基於河階特徵和影響因素,本研究推論中段河階最發達地區的河階發育過程。靜浦至新蘭間的全新世的抬升率為海岸山脈東翼的高區,且上游硬岩、下游軟岩的地層配置最為典型,在此狀況下,位於上游的都鑾山層受地震或暴雨驅動岩石碎屑進入河道,易在硬軟岩層交界處因土石流堆積,形成堆積型河階。且本區中、下游階地多屬侵蝕型河階,堆積層厚度多小於10公尺,且河口多有沖積扇或扇階分布,顯示上游沈積物大多通過中下游段至河口堆積,當都鑾山層的巨礫通過軟岩區河道時,軟硬岩層岩性的顯著差異,巨礫工具效應更顯著,有利於谷床加寬,而隨著陸地抬升,河流持續下切,河階陸續生成。其他兩區則因隆升率或地層配置的狀況不同,而與中段溪流發育出不同的河階特徵。簡言之,海岸山脈東翼這些中小型流域河階很發達的原因,除了高抬升率和有弱岩出露之外,地層配置的效應顯然也很重要。
Located at the Taiwan–Luzon arc-continent collision boundary, Coastal Range is one of the areas with the highest Holocene uplifted rate in Taiwan. Widespread fluvial terraces on the eastern flank of Coastal Range is usually believed due to the high uplift rate and the consequent channel downcutting. The picture of how well-developed the terraces is and what environmental factors combined to contribute to the development of the terraces is not clear. Thus, this research aims (1) to understand the morphological characteristics and spatial distribution of the fluvial terraces, (2) to analyze the major controlling factors of the terraces, and (3) to suggest various evolution models (scenarios) of formation of the terraces in the drainage basins on the eastern flank of Coastal Range. The study area consists of 207 drainage basins and the three river with the highest drainage order are not included.
Based on the aerial photo interpretation and field investigation, fluvial terraces have been found in the 103 drainage basins on the eastern flank of Coastal Range, among them the smallest drainage basin is only 6 ha (0.06 km2) in size. As a whole, the greater the area of the drainage basin is, the larger the total terrace surface is and the number of terrace flight is. The number of terrace flight in most drainage basins is 5 to 6, and is 12 in the Sansien Basin. The terraces of the rivers from Chinpu to Hsinlan (76 km in length along the coast) are the most well-developed in the study area. In terms of geology, terraces are almost exclusively distributed in the less resistant formations (soft rocks) which are characterized by interbedded sandstone and shale, and mudstone, i.e., Paliwan Formation, Fanshuiliao Formation and Lichi Formation; in the more resistant volcanic bedrocks (hard rocks), i.e., Tuluanshan Formation, only a few depositional terraces developed.
46 out of 124 outcrops on the terrace scarps, which were investigated in the filed, consisting of 21 cross sections of the fluvial terraces show the most terraces are erosional terraces and it also reflects the rapid Holocene uplift rate and the continuous channel downcutting. Statistical analysis also shows those drainage basins with hard rocks (Tuluanshan Formation) in the upper stream and soft rocks (mainly Paliwan Formation) in the lower stream have the larger total terrace area. It is believed that such lithological arrangement strengthens so-called tool effect as the resistant boulders from Tuluanshan Formation transported downstream through much weaker Paliwan Formation the channel widened.
In terms of the regional difference of the fluvial terraces in the study area, the area between the Chinpu and Hsinlan has the highest uplift rate and the most typical lithological arrangement of hard rocks upstream and soft rocks downstream. Under such circumstance, triggered by frequent earthquakes or typhoon rainfalls, abundant coarse sediments move into channels and are subject to form depositional terraces at the boundary of hard/soft rock boundary. The thickness of the depositional layer on the straths usually less than 10 m and the widespread debris-flow fan or fan terrace at the river mouth shows that most sediments from upstream reaches are quickly transported downstream along the very steep channel. On the way, resistant boulders, probably in the form of debris flows, increase the width of the channels effectively. In short, apart from the rapid uplift rate and the existence of weak rocks, lithological arrangement is also a crucial factor in contributing to the very well-developed fluvial terraces in such small drainage basins in the eastern flank of Coastal Range.
王源、陳文山(1993a):《海岸山脈地質圖(北幅)》,經濟部中央地質調查所。
王源、陳文山(1993b):《海岸山脈地質圖(南幅)》,經濟部中央地質調查所。
石再添(1977):〈臺灣東部花東海岸域的地形學計量研究〉,《地理研究報告》,3: 143-170。new window
石再添、楊貴三(1985):〈八卦台地的活斷層與地形面〉,《國立台灣師範大學地理研究報告》,11:173-186。new window
石再添、鄧國雄(1977):〈花東海岸的海岸地形〉,《地理教育》,3:12-19。
石再添、鄧國雄、許民陽、楊貴三:(1988)〈臺灣花東海岸海階的地形學研究〉,《地理研究報告》,14:1-50。new window
石再添、鄧國雄、黃朝恩(1975):〈大肚溪流域的地形學計量研究〉,《臺灣文獻》,26(2):23-82。new window
石再添、鄧國雄、黃朝恩、張瑞津(1976):〈濁水溪流域的地形學計量研究〉,《臺灣文獻》,27(4):1-22。new window
石再添、鄧國雄、張瑞津、石慶得、楊貴三、許民陽(1984a):〈臺灣西南部與南部活斷層的地形學研究〉,《地理學研究報告》,10:49-94。new window
石再添、鄧國雄、黃朝恩(1975):〈大肚溪流域的地形計量學研究〉,《臺灣文獻》,26(2):23-82。new window
石再添、張瑞津、黃朝恩、石慶得、楊貴三、孫林耀明(1983a):〈臺灣北部與東部活斷層的地形學研究〉,《師大地理研究報告》,9:20-72。new window
石再添、張瑞津、楊貴三(1983b):〈后里臺地的活斷層與地形面〉,《中國地理學會會刊》,11:46-55。
石再添、張瑞津、楊貴三、許民陽(1985a):〈草屯與車籠埔河階群的活斷層與地形面〉,《中國地理學會會刊》,13:1-12。
石再添、張瑞津、鄧國雄、楊貴三(1985b):〈竹東臺地活斷層的分布與特性〉,《地理學研究》,9:1-16。
石再添、鄧國雄、張瑞津、楊貴三(1985c):〈恆春地區的活斷層與地形面〉,《地理教育》,11:1-14。
石再添、鄧國雄、楊貴三 (1984b):〈大肚臺地的活斷層與地形面〉,《中國地理學會會刊》,12:9-21。
石再添、鄧國雄、楊貴三、許民陽(1986a):〈新社河階群的活斷層與地形面〉,《地學彙刊》,5:29-39。
石再添、鄧國雄、張瑞津、石慶得、楊貴三(1986b):〈臺灣活斷層的地形學研究〉,《師大地研所地理研究報告》,12:1-44。new window
何立德(2007):〈探討河階成因性名詞之必要性〉,《高雄師大學報》,23:19-28。
何春蓀(1997):《臺灣地質概論 臺灣地質圖說明書》(二版三刷),臺北縣:經濟部中央地質調查所。
吳麗娟(2000):《台灣北部主要河川遷急點之地形學研究》,中國文化大學地學研究所碩士論文。
林名璟(2008):《利用河階發育年代、堆積特徵與其分佈來探討荖濃溪之河流演育過程》,國立臺灣大學理學院地質科學所碩士論文。
林朝棨(1957):《臺灣地形》,臺灣省通志稿 卷一 土地志‧地理篇,臺灣省文獻委員會,23-36。
周淑文(1997):《基隆河地形演演育過程》,國立台灣大學地理研究所碩士論文。
范舜侑(2008):《貓羅溪集水區地形對車籠埔斷層活動的反應》,國立彰化師範大學地理學系碩士論文。
徐鐵良(1954):〈臺灣東部海岸山脈地形與近期上升運動〉,《臺灣省地質調查所會刊》,7:9-18。
高鵬飛(1990):《臺灣海岸山脈東坡南北段河階地形之比較研究─以馬武窟溪和豐濱溪為例》,國立臺灣師範大學地理學研究所碩士論文。
陳文民、陳恩倫、方國運、劉思謙、陳明義(2006):〈台東海岸山脈值群分類與製圖〉,《林業研究季刊》,28(4):53-76。
陳邦禮(1996):《蘭陽溪上游沖積扇的地形演育》,國立臺灣大學地理學研究所碩士論文。new window
陳惠芬(1984):〈從三角點檢測成果見到的臺灣的地盤升降〉,《經濟部中央地質調查所特刊》,3:127-140。
陳肇夏(1994):《臺灣變質相圖》,臺北:經濟部中央地質調查所。
張瑞津、石再添(1990):〈河階研究的概觀〉,《中國地理學會會刊》,18:1-8。new window
張瑞津、石再添、高鵬飛、曾正雄(1990):〈豐濱溪河階的地形學研究〉,《師大地理學研究》,14:47-64.
張瑞津、石再添、沈淑敏、張政亮(1992a):〈花東縱谷南段河階的地形學研究〉,《地理學研究》,16:27-63。new window
張瑞津、石再添、沈淑敏、張政亮(1992b):〈花東縱谷北段河階的地形學研究〉,《地理研究報告》,18:241-292。new window
張瑞津、鄧國雄、劉明崎(1998):《苗栗丘陵河階之地形學研究》,國立台灣師範大學地理研究報告,29:97-112。new window
張瑞津、石再添、曾正雄、高鵬飛、陳美鈴(1991):〈海岸山脈東坡河階的地形學研究〉,《國立台灣師範大學地理研究報告》,17:99-145。new window
張瑞津、石再添、楊淑君、林譽方、陳翰霖(1994):花東縱谷沖積扇的地形學研究,國立臺灣師範大學地理研究報告,21:43-74。new window
張瑞津、石再添、楊淑君、林譽方、陳翰霖、董德輝(1995a):蘭陽地區沖積扇的地形學研究,國立臺灣師範大學地理研究報告,23:151-191。new window
張瑞津、石再添、楊淑君、林譽方、陳翰霖、董德輝(1995b):高屏溪谷與潮州斷崖沖積扇的地形學研究,國立臺灣師範大學地理研究報告,24:39-87。new window
張瑞津、鄧國雄、劉明崎(1999):〈頭前溪階地之地形學研究〉,《國立台灣師範大學地理研究報告》,31:61-81。new window
張瑞津、鄧國雄、劉明崎(2000):〈新店溪河階之地形學研究〉,《國立台灣師範大學地理研究報告》,33:179-197。new window
張瑞津、沈淑敏、楊貴三(2002):《地震地質調查及活動斷層資料庫建置計畫」槽溝開挖與古地震研究計畫 (1/5)─臺灣島河階地形資料庫的建置 (1/3) 北部地區》,經濟部中央地質調查所。
張瑞津、沈淑敏、楊貴三(2003):《地震地質調查及活動斷層資料庫建置計畫」槽溝開挖與古地震研究計畫 (2/5)─臺灣島河階地形資料庫的建置 (2/3) 西南部地區》,經濟部中央地質調查所。
張瑞津、楊貴三、沈淑敏(2004):《地震地質調查及活動斷層資料庫建置計畫」槽溝開挖與古地震研究計畫 (3/5)─臺灣島河階地形資料庫的建置 (3/3) 東部地區》,經濟部中央地質調查所。
許民陽(1988),《臺灣海階之地形學研究》,私立中國文化大學地學研究所博士論文。new window
黃文樹(2003):〈八卦台地南部階地地形與土壤化育之研究〉,《國立彰化師範大學地理學系碩士論文》。
黃文樹、蔡衡、林登秋(2003):〈臺灣河階對比研究之回顧與探討〉,《地理學報》,33:19-37。new window
黃美璇(2001):《荖濃溪流域之河階地與地形演育》,國立高雄範大學地理學系碩士論文。
黃珮瑜(2008):《大里溪流域地形對車籠埔斷層活動的反應》,國立彰化師範大學地理學系碩士論文。
黃祥慶(1995):《桃園台地群之礫石堆積層》,國立中央大學應用地質研究所碩士論文。
曾士林(1994):《新店溪河階與曲流之地形學研究》,中國文化大學地理學研究所碩士論文。
傅炯貴(1998)《蘭陽溪上游沖積扇河階之成因─河流反應暫時基準面的變化》,國立成功大學地球科學系碩士論文。
楊貴三(1986):《台灣活斷層的地形學研究─特論活斷層與地形面的關係》,私立中國文化大學地學研究所博士論文。new window
楊貴三(1988):〈新店溪中游河流地形的研究〉,《國立臺灣師範大學地理教育》,14:85-97。
楊貴三(1992):〈台灣東部木瓜溪流域的地形學研究〉,《社會科教育學報》,1:1-90。
楊貴三、沈淑敏(2010):《臺灣全志 卷二土地志 地形篇》,南投:國史館臺灣文獻館。
楊貴三、張瑞津、沈淑敏、石同生(2007):〈埔里盆地的地形面、活動構造與地形演育〉,《地理研究》,46:1-16。new window
齊士崢(1994):〈立霧溪流域的河階地〉,《國立台灣大學地理學系地理學報》,17:33-46。new window
齊士崢(1995):〈立霧溪流域的地形演育〉,國立臺灣大學地理學研究所博士論文。new window
齊士崢、宋國城(2000):〈台灣界限斷層帶上沖積扇階地地形發育的複雜性〉,《環境與世界》,4:77-91。new window
齊士崢、宋國城、陳邦禮、謝孟龍、蔡衡、傅炯貴(1998):〈蘭陽溪上游沖積扇的地形演育〉,《環境與世界》,2:137-150。new window
齊士崢、黃美璇(2001):〈荖濃溪的河階地和地形演育〉,《環境與世界》,5: 123-140。new window
劉平妹(1987):《台灣東部海階之新期變動地形研究(I):豐濱─成功段》,行政院國家科學委員會專題研究計畫成果報告。
劉平妹、謝孟龍(2006):《臺灣東部晚第四紀地質調查及地形演育研究 (1/2)》,中央地質調查所報告第95-01號。
劉平妹、謝孟龍(2007):《臺灣東部晚第四紀地質調查及地形演育研究 (2/2)》,中央地質調查所報告第96-01號。
劉宇軒(2004):《台灣海岸山脈北段森林植物群落之研究》,國立東華大學自然資源管理研究所碩士論文。
劉志學(1989):《立霧溪河階之沉積學研究與對比》,國立臺灣大學地質學系碩士論文。
劉明錡(2004):《臺灣西北部河階之地形學研究》,國立臺灣師範大學地理學系博士論文。new window
趙秋益(1993):《台灣中部陳有蘭溪流域的河階地與地形演育之研究》,國立高雄範大學地理學系碩士論文。
趙偉智(1999):《以擴散模式模擬河流縱剖面探討蘭陽溪扇階之演育》,國立成功大學地球科學研究所碩士論文。
廖俊言(1995):《地形定年法應用於河階對比與斷層活動性之探討》,國立成功大學地球科學研究所碩士論文。
蔡怡真(2002):《新竹地區活斷層之地形學研究》,國立彰化師範大學地理學研究所碩士論文。
蔡衡(2000):〈論八卦臺地南部階地之成因〉,《中國地理學會會刊》,28:239-253。new window
蔡衡(2004):《台灣地區河階地形之複合對比》,國立成功大學地球科學研究所博士論文。
鄧國雄、沈淑敏(1990):〈臺灣海岸山脈太原盆地河流地形之研究〉,《師大地理研究報告》,16:199-223.
賴政國(1987):《台灣東部海岸山脈成功至豐賓海階地形之研究》,國立台灣大學地理學研究所碩士論文。
謝孟龍(1990):《台灣花東海岸晚第四紀沉積層海階地形暨新構造運動的研究》,國立台灣大學地質學研究所碩士論文。
謝孟龍(2007):〈臺灣河階地形研究的回顧、檢討與展望〉,《經濟部中央地質調查所特刊》,18:209-242.
謝孟龍、劉平妹(2010):〈花東海岸全新世地殼上升速率的再檢討〉,《經濟部中央地質調查所彙刊》,23:165-199。
蘇惠貞(2007):《急水溪中上游的構造地形:以地形面與地形指標探討》,國立臺灣師範大學地理研究所碩士論文。
龔琪嵐(2002):〈楠梓仙溪流域與荖濃溪流域之地形演育研究〉,國立高雄範大學地理學系碩士論文。
龔琪嵐、齊士崢(2004):〈楠梓仙溪流域的河階地與地形演育〉,《地理學報》,38:47-62。new window
小山正忠、竹原秀雄(1967):《新版標準土色帖》,東京都:日本色研事業株式會社。
大塚彌之助(1928):〈秀姑巒溪と海岸山脈〉,《地理學評論》,4:74-78。
富田芳郎(1937):〈淡水河河岸段丘の地形面對比に就て〉,《臺灣地學記事》,8 10-12):101-119。富田芳郎(1940a):〈臺灣の河谷地形に就ぃて〉,《矢部教授還曆紀念論文集》。
富田芳郎(1940b):〈臺灣の段丘に就ぃて〉,《科學の臺灣》,8(3):83-88。
富田芳郎(1972):《臺灣地形發達史の研究》,東京都:古今書院。
Benda, L. &; Dunne, T. (1997): Stochastic forcing of sediment routing and storage in channel networks, Water Resources Research, 33(12): 2865-2880.
Berryman, K., Marden, M., Eden, D., Mazengarb, C., Ota, Yoko &; Moriya, I. (2000): Tectonic and paleoclimatic significance of Quaternary river terraces of the Waipaoa River, east coast, North Island, New Zealand, New Zealand Journal of Geology &; Geophysics, 43: 229-245.
Boison, P. J., &; Patton, P. C. (1985): Sediment storage and terrace formation in Coyote Gulch basin, South-central Utah, Geology, 13: 31-34.
Bookhagen, B., Fleitmann, D., Nishiizumi, K., Strecker, M. R. &; Thiede, R. C. (2006): Holocene monsoonal dynamics and fluvial terrace formation in the northwest Himalaya, India, Geology, 34(7): 601-604.
Bridgland, D. R. (2000): River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation, Quaternary Science Reviews, 19: 1293-1303.
Bridgland, D. R. &; Schreve, D. C. (2009): Implications of new Quaternary uplift models for correlation between the Middle and Upper Thames terrace sequences, UK, Global and Planetary Change, 68(4): 346-356.
Bridgland, D. &; Westaway, R. (2008): Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon, Geomorphology, 98: 285-315.
Bull, W. B. (1962): Relations of alluvial fan size and slope to drainage basin size and lithology in western Fresno County, California, U.S., Geological Survey Professional Paper: 450B: 51-53.
Bull, W. B. (1977): The alluvial fan environment. Progress in Physical Geography, 1: 223-270.
Bull, W. B. (1979): Threshold of critical power in streams, Geological Society of America Bulletin, 90: 453-464.
Bull, W. L., &; Knuepfer, L. K. (1987): Adjustments by the Charwell River, New Zealand, to uplift and climatic changes, Geomorphology, 1: 15-32.
Bull, W. B. (1990): Stream-terrace genesis: implications for soil development, Geomorphology, 3: 351-367.
Bull, W. B. (1991): Geomorphic Responses to Climatic Change. New York: Oxford University Press.
Bull, W. B. (2007): Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. Oxford: Black Publishing Ltd.
Chang, J.-C. (1982): Stream Order and Stream Net Ratios of Drainage Basins in Taiwan. A Doctoral Dissertation of the University of Tsukuba.
Chang, J.-C. (1996): Channel morphology on the eastern slope of the coastal range in Taiwan, Journal of the Geological Society of China, 39(4): 465-483.
Chen, Y., Hung, J., Lai. K. Lin, Y.-N., Wilcox, Tarka &; Mueller, K. (2007): River terrace development in response to folding above active wedge thrusts Houli, Central Taiwan, Journal of Asian Earth Sciences, 31: 240-250.
Chen, W.-S., Huang, M.-T., &; Liu, T.-K. (1991): Neotectonic significance of the Chimei fault in the coastal range, eastern Taiwan, Proceedings of the Geological Society of China, 34(1): 43-56.
Chen, Y. &; Liu, T. (1991): Radiocarbon dates of river terraces along the lower Tahanchi, northern Taiwan: their tectonic and geomorphic implications, Proceedings of the Geological Society of China, 34(4): 337-347.
Chen, Y., Shyu, J. B. H., Ota, Y., Chen, W., Hu, J., Tsai, B. &; Wang, Y. (2004): Active structures as deduced from geomorphic features: a case in Hsinchu Area, Northwestern Taiwan, Quaternary International, 115-116: 189-199.
Cheng, S., Deng, Q., Zhou, S., &; Yang, G. (2002): Strath terraces of Jinshaan Canyon, Yellow River, and Quaternary tectonic movements of the Ordos Plateau, north China, Terra Nova, 14: 215-224.
Ching, K.-E., Hsieh, M.-L., Johnson, K. M., Chen, K.-H., Rau, R.-J. &; Yang, M. (2011): Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008, Journal of Geophysical Research, 116: B08406, doi:10.1029/2011JB008242.
Claessens, L., Veldkamp, A., ten Broeke, E. M. &; Vloemans, H. (2009) A Quaternary uplift record for the Auckland region, North Island, New Zealand, based on marine and fluvial terraces, Global and Planetary Change, 68: 383-394.
Clement, A. J. H. &; Fuller, I. C. (2007): Fluvial responses to environmental change in the North Island, New Zealand, during the past c. 30 ka recorded in river terrace sequences: a review and model for river behaviour, New Zealand Journal of Geology, 50: 101-116.
Cowie, P. A., Whittaker, A. C., Attal, M., Roberts, G., Tucker, G. E. &; Ganas, A. (2008): New constraints on sediment-flux-dependent river incision: Implications for extracting tectonic singals from river profiles, Geology, 36(7): 535-538.
Dollar, E. S. J. (2002): Progress report - Fluvial geomorphology, Progress in Physical Geography, 26(1): 123-143.
Dollar, E. S. J. (2004): Progress report - Fluvial geomorphology, Progress in Physical Geography, 28(3): 405-450.
Dutta, S., Suresh, N &; Kumar, R. (2012): Climatically controlled Late Quaternary terrace staircase development in the fold-and-thrust belt of the Sub Himalaya, Palaeogeography, Palaeoclimatology, Palaeoecology, 356-357: 16-26.
Finnegan, N. J., Sklar, L. S. &; Fuller, T. K. (2007): Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experiment bedrock channel, Journal of Geophysical Research, 112: F03S11, doi: 10.1029/2006JF000569.
Fuller, T. K., Perg, L. A., Willenbring, J. K. &; Lepper, K. (2009): Field evidence for climate-driven changes in sediment supply leading to strath terrace formation, Geology, 37(5): 467-470.
García, A. F., Zhu, Z., Ku, T. L., Chadwick, O. A. &; Montero, J. C. (2004): An incision wave in the geologic record, Alpujarran Corridor, southern Spain (Almería), Geomorphology, 60: 37-72.
Gibbard, P. L. &; Lewin, J. (2009): River incision and terrace formation in the late Cenozoic of Europe, Tectonophysics, 474: 41-55.
Goudie (2004): Encyclopedia of Geomorphology. Volume 2. J-Z. London and New York: Routledge Ltd, 1039-1043.
Hancock, G. S. &; Anderson, R. S. (2002): Numerical modeling of fluvial strath-terrace formation in response to oscillating climate, Geological Society of America Bulletin, 114(9): 1131-1142.
Hanson, P. R., Mason, J. A. &; Goble, R. J. (2006): Fluvial terrace formation along Wyoming’s Laramie Range as a response to increased late Pleistocene flood magnitudes, Geomorphology, 76: 12-25.
Howard, A. D. (1959) Numerical systems of terraces nomenclature - A critique, The Journal of Geology, 67(2): 239-243.
Howard, A. D. (1962): The Chungchou photogeologic anomaly, Petroleum Geology of Taiwan, 1: 121-125.
Ho, L. D. (2006): Fluvial terraces in the Fengpin River basin of the Coastal Range, eastern Taiwan. Unpublished PhD thesis of School of Anthropology, Geography and Environmental Studies, the University of Melbourne, Australia.
Holbrook, J. &; Schumm, S. A. (1999): Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings, Tectonophysics, 305: 287-306.
Howard, A. D. (1959): Numerical systems of terraces nomenclature - A critique, The Journal of Geology, 67(2): 239-243.
Hsieh, M. &; Chyi, S (2010): Late Quaternary mass-wasting records and formation of fan terraces in the Chen-yeo-lan and Lao-nung catchments, central-southern Taiwan, Quaternary Science Reviews, 29: 1399-1418.
Hsieh, M. &; Knuepfer P. L. K. (2001): Middle-late Holocene river terraces in the Erhjen River Basin, southwestern Taiwan─implications of river response to climate change and active tectonic uplift, Geomorphology, 38: 337-372.
Hsieh, M. &; Knuepfer P. L. K. (2002): Synchroneity and morphology of Holocene river terraces in the southern Western Foothills, Taiwan: A guide to interpreting and correlating erosional river terraces across growing anticlines, Geological Society of America Special Paper, 358: 59-78.
Hsieh, M., Lai, T. &; Liew, P. (1994): Holocene climatic river terraces in an active tectonic-uplifting area, middle part of the coastal range, eastern Taiwan, Journal of the Geological Society of China, 37(1): 97-114.
Hsieh, M.-L., Liew, P.-M., &; Hsu, M.-Y. (2004): Holocene tectonic uplift on the Hua-tung coast, eastern Taiwan, Quaternary International, 115-116: 47-70.
Hsieh, M.-L., Liew, P.-M. &; Chen, H.-W. (2011): Early Holocene catastrophic mass-wasting event and fan-delta development on the Hua-tung coast, eastern Taiwan, Geomorphology, 134: 378-393.
Hsieh, M.-L. &; Rau, R.-J. (2009): Late Holocene coseismic uplift on the Hua-tung coast, eastern Taiwan: Evidence from mass mortality of intertidal organisms, Tectonophysics, 474: 595-609.
Hsu, T.-L. (1962): A study on the coastal geomorphology of Taiwan, Proceedings of the Geological Society of China, 5: 29-45.
Huggett, R. J. (2007): Fundamentals of Geomorphology. (2nd) New York: Routledge.
Ishimura, D. &; Kakiuchi, Y. (2011): Chronology and processes of fluvial terrace formation in northeastern Kinki district, southwest Japan, based on cryptotephra analysis, Quaternary International, 246: 190-202.
Knighton, D. (1984): Fluvial Forms and Processes. London: Edward Arnold.
Kock, S., Kramers, J. D., Preusser, F., &; Wetzel, A. (2009): Dating of late Pleistocene terrace deposits of the River Rhine using uranium series and luminescence methods: potential and limitations, Quaternary Geochronology, 4: 363-373.
Ku, C. C. (1963): Photogeologic study of terraces in northwestern Taiwan, Proceedings of the Geological Society of China, 6: 51-60.
Lavé, J &; Avouac, J. P. (2001): Fluvial incision and tectonic uplift across the Himalayas of central Nepal, Journal of Geophysical Research, 106(B11): 26561-26591.
Liew, P.-M., Hsieh, M.-L. &; Lai, C.-K. (1990): Tectonic significance of Holocene marine terraces in the Coastal Range, eastern Taiwan, Tectonophysics, 183: 121-127.
Liew, P.-M., Huang, S.-Y. &; Kuo, C.-M. (2006): Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan, central Taiwan, Quaternary International, 147: 16-33.
Liew, P.-M., Pirazzoli, P. A., Hsieh, M.-L., Arnold, M., Barusseau, J. P., Fontugne, M. &; Giresse, P. (1993): Holocene tectonic uplift deduced from elevated shorelines, eastern Coastal Range of Taiwan, Tectonophysics, 222: 55-68.
Litchfield, N. J. &; Berryman, K. R. (2005): Correlation of fluvial terraces within the Hikurangi Margin, New Zealand: implications for climate and baselevel controls, Geomorphology, 68: 291-313.
Litchfield, N. J. &; Rieser, U. (2005): Optically stimulated luminescence age constraints for fluvial aggradation terraces and loess in the eastern North Island, New Zealand, New Zealand Journal of Geology &; Geophysics, 48: 581-589.
Litchfield, N., Wilson, K., Berryman, K. &; Wallace, L. (2010): Coastal uplift mechanisms at Pakarae River mouth: Constraints from a combined Holocene fluvial and marine terrace dataset, Marine Geology, 270: 72-83.
Maddy, D. (1997): Uplift-driven valley incision and river terrace formation in southern England, Journal of Quaternary Science, 12(6): 539-545.
Martins, A. A., Cunha, P. P., Huot, S., Murray, A. S. &; Buylaert (2009): Geomorphological correlation of the tectonically displaced Tejo River terraces (Gavião-Chamusca area, central Portugal) supported by luminescence dating, Quaternary International, 199: 75-91.
Matsu’ura, T., Furusawa, A. &; Saomoto, H. (2008): Late Quaternary uplift rate of the northeastern Japan arc inferred from fluvial terraces, Geomorphology, 95: 384-397.
Mizutani, T. (1998): Laboratory experiment and digital simulation of multiple fill-cut terrace formation, Geomorphology, 24:353-361.
Molnar, P., Brown, E. T., Burchfiel, B. C., Deng, Q., Feng, X., Li, J., Raisbeck, G.. M., Shi, J., Wu, Z., Yiou, F., &; You, H. (1994) Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, China, The Journal of Geology, 102: 583-602.
Montgomery, D. R. (2004): Observations on the role of lithology in strath terrace formation and bedrock channel width, American Journal of Science, 304: 454-476.
Nakamura, F. (1986): Chronological study on the torrential channel bed by the age distribution of deposits, Research Bulletins of the College Experiment Forests, 43(1): 1-27.
Olszak, J. (2011): Evolution of fluvial terraces in response to climate change and tectonic uplift during the Pleistocene: Evidence from Kamienica and Ochotnica River valleys (Polish Outer Carpathians), Geomorphology, 129: 71-78.
Ota, Y., Lin, Y. N., Chen, Y., Chang, H. &; Hung, J. (2006): Newly found Tunglo active fault system in the fold and thrust belt in northwestern Taiwan deduced from deformed terraces and its tectonic significance, Tectonophysics, 417: 305-323.
Ota, Y., Shyu, J. B. H., Chen, Y. &; Hsieh, M. (2002): Deformation and age of fluvial terraces south of the Choushi River, central Taiwan, and their tectonic implications, Western Pacific Earth Sciences, 2(3): 251-260.
Pazzaglia, F. J. (2010): Fluvial terraces. In: Treatise of Geomorphology (ed. by Whol, E.) New York: Elsevier.
Peng, T.-H., Li, Y.-H. &; Wu, F.-T. (1977): Tectonic uplift rates of the Taiwan Island since the early Holocene, Memoir of the Geological Society of China, 2: 57-69.
Personius, S. F., Kelsey, H. M. &; Grabau, P. C. (1993): Evidence for Regional Stream Aggradation in the Central Oregon Coast Range during the Pleistocene-Holocene Transition, Quaternary Research, 40: 297-308.
Pierce, J. L., Meyer, G. A. &; Rittenour, T. (2011): The relation of Holocene fluvial terraces to changes in climate and sediment supply, South Fork Payette River, Idaho, Quaternary Science Review, 30: 628-645.
Pirazzoli, P. A., Arnold, M., Giresse, P., Hsieh, M. L. &; Liew, P. M. (1993): Marine deposits of late glacial times exposed by tectonic uplift on the east coast of Taiwan, Marine Geology, 110: 1-6.
Ritter, D. F., Kochel, R. C. &; Miller, J. R. (2002): Process Geomorphology. (4th) New York: McGraw-Hill.
Robustelli, G., Lucà, F., Corbi, F., Pelle, T., Dramis, F., Fubelli, G.., Scarciglia, F., Muto, F. &; Cugliari, D. (2009): Alluvial terraces on the Ionian of northern Calabria, southern Italy: implications for tectonic and sea level controls, Geomorphology, 106: 165-179.
Schumm, S. A. (1973): Geomorphic thresholds and complex response of drainage systems. In: Fluvial Geomorphology. (ed. by M. Morisawa) S.U.N.Y. Publications in Geomorphology, Binghamton, N.Y., 299-310.
Schumm, S. A. (1977): The Fluvial System. New York: John Wiley &; Sons, 210-243.
Schumm, S. A., &; Parker, R. S. (1973): Implications of complex response of drainage systems for Quaternary alluvial stratigraphy, Natyral Physical Science, 243: 99-100.
Shen, S. M. (2000): Geomorphological and Tectonic Controls on Coastal Erosion Huatung, Eastern Taiwan, Unpublished PhD thesis of University College, the University of London.
Shyu, J. B. H., Sieh, K., Avouac, J. P., Chen, W. &; Chen, Y. (2006): Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan, Journal of Geophysical Research, 111, BO8403, doi: 10.1029/2005JB003971.
Silva, P. G., Harvey, A. M., Zazo, C. &; Goy, J. L. (1992): Geomorphology, Depositional style and Morphometric relationships of Quaternary alluvial fans in the Guadalentin Depression (Murcia, Southeast Spain), Zeitschrift für Geomorphologie Neue Folge, 36(3): 325-341.
Sklar, L. S. &; Dietrich, W. E. (2001): Sediment and rock strength controls on river incision into bedrock, Geology, 29(12): 1087-1090.
Sklar, L. S. &; Dietrich, W. E. (2004): A mechanistic model for river incision into bedrock by saltating bed load, Water Resources Research, 40: W06301, doi: 10.1029/2003WR002496.
Sklar, L. S. &; Dietrich, W. E. (2006): The role of sediment in controlling steady-state bedrock channel slope: Implications of the saltation-abrasion incision model, Geomorphology, 82: 58-83.
Starkel, L. (2003): Climatically controlled terraces in uplifting mountain areas, Quaternary Science Reviews, 22: 2189-2198.
Strahler, A. N. (1952): Hypsometric (area-altitude) analysis of erosional topography, Bulletin of the Geological Society of America, 63: 1117-1142.
Sugai, T. (1993): River terrace development by concurrent fluvial processes and climatic changes, Geomorphology, 6: 243-252.
Summerfield, M.A.( 1991): Approaches to geomorphology, Global Geomorphology: An introduction to the study of landforms, Harlow: Longman.
Sun, S. C. (1962): Photogeologic interpretation of the Kengtzukou anticline, Hsinchu, Taiwan, Petroleum Geology of Taiwan, 1: 127-134.
Sung, Q., &; Chu, Y. (1992): Application of the diffusion model in slope evolution – some cases study in Taiwan, Journal of the Geological Society of China, 35(4): 407-419.
Sung, Q., Lu, M., Tsai, H. &; Leiw, P. (1997): Discussion on the genetics and the correlation of river terraces in Taiwan, Journal of the Geological Society of China, 40(1): 31-46.
Sung, Q. &; You, S. (1993): Morphological dating of fluvial terraces along the Ta-Han Hsi, northern Taiwan – An ergodic approach, Journal of the Geological Society of China, 36(4):437-456.
Sung, Q., You, S. &; Liao, J. (1995): Correlation of river terraces by quantitative morphological dating and its neotectonic implication, Journal of the Geological Society of China, 38(1):65-80.
Suresh, N., Bagai, T. N., Kumar, R &; Thakur, V. C. (2007): Evolution of Quaternary alluvial fans and terraces in the intramontane Pinjaur Dun, Sub-Himalaya, NW India: interaction between tectonics and climate change, Sedimentology, 54: 809-833.
Tsai, H., Huang, W. S., Hseu, Z. Y. &; Chen, Z. S. (2006): A river terrace soil chronosequence of the Pakua tableland in central Taiwan, Soil Science, 171(2): 167-179.
Tsai, H., Huang, W. S. &; Hseu, Z. Y. (2007a): Pedogenic correlation of lateritic river terraces in central Taiwan, Geomorphology, 88: 201-213.
Tsai, H., Hseu, Z. Y., Huang, W. S. &; Chen, Z. S. (2007b): Pedogenic approach to resolving the geomorphic evolution of the Pakua river terraces in central Taiwan, Geomorphology, 83: 14-28.
Viseras, C., Calvache, M. L., Soria, J. M. &; Fernández, J. (2003): Differential features of alluvial fans controlled by tectonic or eustatic accommodation space. Examples from the Betic Cordillera, Spain, Geomorphology, 50: 181-202.
Vita-Finzi, C. &; Lin, J.-C. (1998): Serial reverse and strike slip on imbricate faults: The coastal range of east Taiwan, Geology, 26(3): 279-281.
Wang, A., Smith, J. A., Wang, G., Zhang, K., Xiang, S., &; Liu, D. (2009): Late Quaternary river terrace sequences in the eastern Kunlun Range, northern Tibet: a combined record of climatic change and surface uplift, Journal of Asian Earth Sciences, 34: 532-543.
Wang, C.-H., &; Burnett, W. C. (1990): Holocene mean uplift rate across an active plate-collision boundary in Taiwan, Science, 248: 204-206.
Wang, P., Jiang, H., Yuan, D., Liu, X., &; Zhang, B. (2010): Optically stimulated luminescence dating of sediments from the Yellow River terraces in Lanzhou: tectonic and climatic implications, Quaternary Geochronology, 5: 181-186.
Wegmann, K. W. &; Pazzaglia, F. J. (2002): Holocene strath terrace, climate change, and active tectonics: The Clearwater River basin, Olympic Peninsula, Washington State, Geological Society of America Bulletin, 114(6): 731-744.
Wegmann, K. W. &; Pazzaglia, F. J. (2009): Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: climatic, lithologic, and tectonic controls on terrace genesis in an active orogen, Quaternary Science Reviews, 28: 137-165.
Wenske, D. W., Frechen, M., Böse, M., Reimann, T., Tseng, C.-H. &; Hoelzmann, P. (2012): Late Quaternary river terraces in the Central Mountain Range of Taiwan: A study of cover sediments across a terrace section along the Tachia River, Quaternary International: 263: 26-36.
William, V. S. (1984): Pedimentation versus debris-flow origin of plateau-side desert terraces in southern Utah, Journal of Geology, 92: 457-468.
Yamaguchi, M. &; Ota, Y. (2004): Tectonic interpretations of Holocene marine terraces, east coast of Coastal Range, Taiwan, Quaternary International, 115-116: 71-81.
Yang, G., Zhang, X., Tian, M., Brierley, G., Chen, A., Ping, Y., Ge, Z., Ni, Z. &; Yang., Z. (2011) Alluvial terrace systems in Zhangjiajie of northwest Hunan, China: Implications for climatic change, tectonic uplift and geomorphic evolution, Quaternary International, 233(1): 27-39.
Yoxall, W. H. (1969): The relationship between falling base level and lateral erosion in experimental streams, Geological society of America Bulletin, 80: 1379-1384.
Yu, J.-F., Sui, F.-G., Li, Z.-X., Liu, H. &; Wang, Y.-L. (2008): Recognition of Milankovitch cycles in the stratigraphic record: application of the CWT and the FFT to well-log data, Journal of China University Mining &; Technology, 18: 594-598.
經濟部中央地質調查所:〈台灣活動斷層分布圖,2010〉。http://fault.moeacgs.gov.tw/TaiwanFaults/PageContent.aspx?type=C&;id=5。(2011/08/11 瀏覽)
經濟部中央地質調查所:〈坡地環境地質資料庫查詢系統〉。http://envgeo.moeacgs.gov.tw/geoenv/default.asp。(2011/009/08 瀏覽)
行政院農委會水土保持局:〈電腦數化圖檔申請〉。 (http://www.swcb.gov.tw/form/index-1.asp?m=&;m1=9&;m2=234&;id=1329。(2011/10/05 瀏覽)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
QR Code
QRCODE