:::

詳目顯示

回上一頁
題名:社經代謝作用與土地利用變遷之整合與空間動態
作者:李俊霖
作者(外文):Chun-Lin Lee
校院名稱:國立臺北大學
系所名稱:都市計劃研究所
指導教授:黃書禮
詹士樑
學位類別:博士
出版日期:2008
主題關鍵詞:社經代謝作用土地利用變遷生物物理觀點最大功率原則容受力空間系統模擬SEMLUC空間系統模型Socio-economic metabolismLand-use changeBiophysical approachSpatial system simulationSEMLUCMetropolitan Taipei
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(1) 博士論文(2) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:58
近年來探討社會經濟系統(socio-economic system)對自然與生態系統(ecosystem)所造成的衝擊時,跨學門(interdisciplinary)的觀點與整合開始被提出來,以試圖探討單一學門無法解決的問題,而社經代謝作用 (socio-economic metabolism)即為其中重要的一支。IHDP與LUCC將社經代謝作用與土地利用變遷之探討列為核心計畫(core projects),其不但點出此領域之發展方向應著重在探討社經代謝作用與土地利用變遷間之關連性,並應加強其間相互驅動關係與理論之發展。然而,目前國際上此一領域之發展仍侷限在以會計帳(accounting)形式,探討整體性的社經代謝作用與土地利用變遷,而缺乏空間型態與互動關連性方面研究的發展。
本研究中在克服空間系統模擬(spatial system simulation)方法論上之缺點後,提出一套空間系統模擬模型發展程序,並以生物物理與系統觀點(biophysical and system approaches)為基礎,探討土地利用變遷過程中物質與能量的流動,且配合空間系統模擬方法於ArcGIS之Model Builder中開發台北都會區SEMLUC(Socio-Economic Metabolism and Land-Use Change)空間系統模型,以探討社經代謝作用與土地利用變遷空間型態(spatial patterns)上之演變趨勢與其間之互動假說。其中,主要發現生態經濟系統之發展在最大功率原則(maximum power principle)的引導下,藉由大量不可再生物質的輸入(收斂)促使都市資產累積;為能使都市系統持續的成長,當其資產累積達到容受力(carrying capacity)上限時,將透過回饋(feedback)部分都市資產的途徑,引導不可再生物質的投入(擴散)促使土地利用變遷發生,以使都市系統有更多的發展空間。而土地利用變遷所呈現出來的都市土地擴張,亦將進一步吸引不可再生物質的輸入,來促使該地區都市資產的持續累積,而都市空間階層即在這樣持續的物質收斂與都市資產擴張下被形塑出來。此外,為維持都市系統的運作亦自系統外輸入大量的不可再生能量,而這些能量輸入與都市空間階層具有一致的空間型態。
本研究所建構之空間系統模型開發程序與方法論改良,為空間系統模擬方法應用之重要基礎,而都市能量假說的驗證以及社經代謝作用與土地利用變遷互動假說的提出,也可作為該領域中理論與假說發展的重要參考。後續如何以空間系統模擬方法探討溫室氣體排放、全球環境變遷、社經代謝作用與土地利用變遷空間型態上之關連性,則為未來有待進一步研究之領域。
The concept of socio-economic metabolism can provide a useful framework for both natural and social scientists to study the interrelations between human societies and their natural environments. Resources consumption, assets accumulation, and waste emission of socio-economic metabolism are involved with complex processes of land-use change. However, current researches focus on macroscopic comparison of socio-economic metabolism for different countries and regions from accounting approaches. Therefore, the International Human Dimension Programme (IHDP) and Land-Use and Land-Cover Change (LUCC) list researches on socio-economic metabolism and land-use change as core projects, and suggest the relationship between land-use change and socio-economic metabolism must be analyzed using a more dynamic and spatial approach.
This article overcomes methodological disadvantages of spatial system simulation and proposes a procedure for developing spatial system models. Socio-Economic Metabolism and Land-Use Change (SEMLUC) model, based on the procedure and biophysical approach, was developed via Model Builder in ArcGIS to investigate spatial patterns and spatial interaction hypotheses of socio-economic metabolism and land-use change for Metropolitan Taipei in this research. SEMLUC is a raster-based model and divided into 9,827 cells (cell size, 500x500 m2). Simulation results illustrated that spatial patterns of land use are the results of assets competition between natural, agricultural, and urban subsystems. In addition, urban assets have the characteristics of spatial convergence and diffusion, which are driven by the maximum power principle and carrying capacity of assets accumulation. The spatial diffusion process of urban assets triggers off land-use change. Moreover, spatial patterns of land-use change dominate the spatial distribution of non-renewable material and goods inflows. Based on the spatial pattern analyses, the spatial interaction hypotheses of socio-economic metabolism and land-use change are proposed in this research. These hypotheses can be bases for developing interaction theories between land-use change and socio-economic metabolism. Furthermore, impacts of global climate change on spatial patterns of socio-economic metabolism and land-use change will be important issues in the future.
1.Agarwal, C., Green, G.M., Grove, J.M., Evans, T.P., Schweik, C.M., 2002. A Review and Assessment of Land-use Change Models: Dynamics of Space, Time, and Human Choice. USDA Forest Service, Newton Square, PA. (http://nrs.fs.fed.us/pubs/gtr/gtr_ne297.pdf) accessed 06-01-07.
2.Alberti, M., 1999. Modeling the urban ecosystem: a conceptual framework. Environ. Plann. B 26, 605–630.
3.Alberti, M., Waddell, P., 2000. An integrated urban development and ecological simulation model. Integr. Assess. 1 (3), 215–227.
4.Alcamo, J., ed. (1994). IMAGE 2.0: Integrated Modeling of Global Climate Change. Kluwer Academic Publishers, Dordrecht, Germany.
5.Anselin, L., 2002. Under the hood: issues in the specification and interpretation of spatial regression models. Agr. Econ. 17 (3), 247–267.
6.Ayres, R(1989), Industrial Metabolism, Washington, DC: Natl. Acad.
7.Baker, W.L., 1989. A review of models in landscape change. Landscape Ecol. 2 (2), 111-133.
8.Balling, R. J., J. T. Taber, M. Brown, and K. Day. (1999). Multiobjective urban planning using a genetic algorithm. ASCE Journal of Urban Planning and Development 125 (2): 86-99.
9.Baron, J.S., Hartman, M.D., Kittel, T.G.F., Band, L.E., Ojima, D.S., Lammers, R.B., 1998. Effects of land cover, water redistribution, and temperature on ecosystem processes in the South Platte Basin. Ecol. Appl. 8, 1037–1051.
10.Barr, S.L., Barnsley, M.J., Steel, A. (2004), On the separability of urban land-use categories in fine spatial scale land-cover data using structural pattern recognition, Environment and Planning B: Planning and Design, 31: 397-418.
11.Barredo, J.I., Kasanko, M., McCormick, N., Lavalle, C., 2003. Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape Urban Plan. 64, 145–160.
12.Batty, M., Y. Xie, and Z. Sun. (1999). Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems 23 (3): 205-233.
13.Beck, W. S., Liem, K. S., and Simpson, G. G.(1991), Life: An Introduction to biology. 3d ed., New York: Harper Collins.
14.Benenson, I. (1998). Multiagent simulations of residential dynamics in the city. Computers, Environment and Urban Systems 22 (1): 25-42.
15.Bockstael, N., Costanza, R., Strand, I., Boynton, W., Bell, K., and Wainger, L. (1995), Ecological economic modeling and valuation of ecosystems, Ecological Economics, 14: 143-159.
16.Boumans, R. M., Villa, F., Costanza, R., Voinov, A., Voinov, H. and Maxwell, T. (2001), Non-spatial calibrations of a general unit model for ecosystem simulations, Ecological Modelling, 146: 17–32.
17.Brown, D.G., Page, S., Riolo, R., Zellner, M., Rand, W., 2005. Path dependence and the validation of agent-based spatial models of land use. Int. J. Geogr. Inf. Sci. 19, 153–174.
18.Chadwick, G. (1978), A system view of planning, 2nd ed, Oxford: Pergamon Press. “Ch.8 Models”.
19.Chomitz, K. M., and D. A. Gray. (1996). Roads, land use, and deforestation: A spatial model applied to Belize. The World Bank Economic Review 10 (3): 487-512.
20.Christensen, P.P. (1989), Historical roots for ecological economics- biophysical versus allocative approached, Ecological Economics, 1: 17-36.
21.Clarke, K., Gaydos, L. (1998), Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore, International Journal of Geographical Information Science, 12(7), 699–714.
22.Clements, F. E.(1916), Plant Succession, Carnegie Institute Washington Publication. 242.
23.Cliff, A.D. (1981), Spatial diffusion: an historical geography of epidemics in an island community, Cambridge University Press, New York.
24.Costanza, R., Wainger, L., Folke, C., Maler, K.-G., 1993. Modeling complex ecological and economic systems: towards an evolutionary, dynamic understanding of people and nature. BioScience 43 (8), 545–555.
25.Costanza, R.; Sklar, F.; and White, M. (1990), Modeling coastal landscape dynamics. BioScience, 40: 91-107.
26.Cromley, R.G., Hanink., D.M., 1999. Coupling land-use allocation models with raster GIS. J. Geographic Syst. 1, 137–153.
27.Das, B. M. (1996), Principles of Geotechnical Engineering, 3rd Edition, Boston: PWS. (周毅、洪明瑞 譯)
28.Dowling, R., R. Ireson, A. Skabardonis, D. Gillen, P. Stopher,.A. Horowitz, J. Bowman, E. Deakin, and R. Dulla. (2000) Predicting Short-Term and Long-Term Air Quality Effects of Traffic-Flow Improvement Projects. NCHRP 25-21. Transportation Research Board.
29.Engelen, G., White, R., Uljee, I., & Drazan, P. (1995), Using cellular automata for integrated modeling of socio-environmental systems, Environmental Monitoring and Assessment, 34, 203–214.
30.Field, C. B.(2001), Sharing the Garden, Science, 294: 2490-2491.
31.Fischer-Kowalski, M. & Huttler, W.(1998), Society’s Metabolism: The Intellectual History of Materials Flow Analysis, PartⅡ, 1970-1998, Journal of Industrial Ecology, 2(4):107-136.
32.Fischer-Kowalski, M. (1998), Society’s Metabolism: The Intellectual History of Materials Flow Analysis, PartⅠ, 1860-1970, Journal of Industrial Ecology, 2(1): 61-78.
33.Fischer-Kowalski, M. and Haberl, H. (1997), Tons, Joules, and Money: Modes of Production and Their Sustainability Problems, Society & Natural Resources, 10:61-85.
34.Fischer-Kowalski, M., and Huttler, W.(1998), Society’s Metabolism: The Intellectual History of Materials Flow Analysis, PartⅡ, 1970-1998, Journal of Industrial Ecology, 2(4):107-136.
35.Fitz, H.C., DeBellevue, E., Costanza, R., Boumans, R., Maxwell, T., Wainger, L., Sklar, F., 1996. Development of a general ecosystem model for a range of scales and ecosystems. Ecol. Model. 88 (1/3), 263–295.
36.Ford, A. (1999), “Modeling the environment: an introduction to system dynamics modeling of environmental systems.” Island Press, Washington D.C..
37.Forrester, J.W. (1969), Urban Dynamics. MIT Press, Cambridge, MA.
38.Getis, A., Ord, J.K., 1992. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206.
39.Giampietro, M., Cerretelli, G., and Pimentel, D.(1992), Energy Analysis of Agriculture Ecosystem Management: Human Return and Sustainability, Agriculture, Ecosystem, and Environment, 38:219-244.
40.Gigerenzer, G., and P. Todd. 1999. Simple Heuristics that Make Us Smart. Oxford University Press, Oxford.
41.Gilbert, N., and K. G. Troitzsch. (1999). Simulation for the Social Scientist. Open University Press, London, UK.
42.Haberl, H. (1997), Human Appropriate of Net Primary Production as an Environmental Indicators: Implication for Sustainable development, Ambio, 26: 143-146.
43.Haberl, H. and Schandl, H. (1998), Indicators of Sustainable Land Use – Concepts for the Analysis of Society-nature Interrelations and Implications for Sustainable Development, The 38th Congress of the European Regional Science Association “Europe Quo Vadis? – Regional Questions at the Turn of the Century”, 28 August – 1 September 1998, Vienna, Austria.
44.Haberl, H.(2001), The energetic metabolism of societies, Journal of Industrial Ecology, 5(1):11-31.
45.Haberl, H., Batterbury, S. and Moran, E. (2001), Using and Shaping the Land: a Long-term Perspective, Land Use Policy, 18:1-8.
46.Haberl, H., Erb, K. -H., and Krausmann, F.(2002), Land-Use Change and Socio-economic Metabolism: Towards an Integrated Analysis of the “Human Dimensions” of Global Environmental Change, In: Advances in Energy Studies – Reconsidering the Importance of Energy, edited by Ulgiati, S.
47.Haberl, H., Erb, K. -H., Krausmann, F., Adensam, H., and Schulz, N. B. (2003), Land-Use Change and Socio-economic Metabolism in Austria, Part II: Land-Use Scenarios for 2020, Land Use Policy, 20: 21-39.
48.Hagen, A., 2002. Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Sci. 17, 235–249.
49.Hall, C. A. S., H. Tian, Y. Qi, G. Pontius, and J. Cornell. (1995). Modelling spatial and temporal patterns of tropical land use change. Journal of Biogeography 22 (4/5): 753-757.
50.Howitt, R.E., 1995. Positive mathematical programming. Am. J. Agr. Econ. 77 (2), 329–42.
51.Huang, S. -L. and Chen, C. -W., (2005). Theory of urban energetics and mechanisim of urban development, Ecological Modelling, 189: 49-71.
52.Huang, S. -L., (1998). Ecological Energetic, Hierarchy, and Urban Form: A System Modeling Approach to the Evolution of Urban Zonation, Environment and Planning B: Planning and Design, 25: 391-410.
53.Huang, S. –L., Kao, W.-C. and Lee, C. –L., (2007), Energetics Mechanisms and Development of an Urban Landscape System, Ecological Modelling, 201: 495-506.
54.Huang, S. -L., Lai, H. -Y., and Lee, C. -L., (2001). Energy Hierarchy and Urban Landscape System, Landscape and Urban Planning, 53: 145-161.
55.Huang, S. -L., Lee, C. -L., and Chen, C. -W. (2006), Socioeconomic Metabolism in Taiwan: Emergy Synthesis versus Material Flow Analysis, Resources, Conservation and Recycling, 48: 166-196.
56.Hubacek, K. and Giljum, S. (2003), Applying physical Input-Output Analysis to Estimate Land Appropriation (Ecological Footprint) of International Trade Activities, Ecological Economics, 44: 137-151.
57.Jordao, L.; Antunes, P.; Santos, R.; Videira, N.; and Sandra, M. (1997), “Hydrological and ecological economic simulation to support watershed management: linking SD and geographical information systems.“ Proceedings of the 15th International System Dynamics Conference.
58.Kaimowitz, D., and A. Angelsen. (1998). Economic Models of Tropical Deforestation: A Review. Centre for International Forestry Research, Jakarta, Indonesia.
59.Krausmann, F. (2001), Land Use and Industrial Modernization: An Empirical Analysis of Human Influence in the Functioning of Ecosystem in Austria 1830-1995, Land Use Policy, 18: 17-26.
60.Krausmann, F. and Haberl, H. (2002), The Process of Industrialization from the Perspective of Energetic Metabolism: Socio-economic Energy Flows in Austria 1830-1995, Ecological Economics, 41: 177-201.
61.Krausmann, F., Haberl, H., Schulz, N. B., Erb, K.-H., Darge, E. and Gaube,V.(2003), Land-Use Change and Socio-Economic Metabolism in Austria, Part I: Driving Forces of Land-Use Change 1950-1995, Land Use Policy, 20: 1-20.
62.Lambin, E., 1997. Modelling and monitoring land-cover change rocesses in tropical regions. Progr. Phys. Geogr. 21, 375–393.
63.Lambin, E.F., Bauleis, X., Bockstael, N., Fischer, G., Krug, T., Leemans, R., Moran, E.F., Rindfuss, R.R., Sato, Y., Skole, D. II, Turner II, B.L., Vogel, C., 1999. Land-use and land-cover change (lucc): implementation strategy. Technical Report, IGBP Report No. 48 and IHDP Report No. 10. International Geosphere–Biosphere Programme (IGBP) and International Human Dimensions Programme on Global Environmental Change (IHDP), Stockholm.
64.Lambin, E.F., Geist, H.J., 2003. Global land-use and land-cover change: what have we learned so far?. Global Change Newsletter 46, 27–30. (http://www.geo.ucl.ac.be/LUCC/pdf/Pages%20from%20NL%2046.pdf) accessed 01-27-05.
65.Lambin, E.F., Geist, H.J., 2006. Land-use and Land-cover Change: Local Processes and Global Impacts. Springer, Berlin.
66.Lambin, E.F., Rounsevell, M.D.A., Geist, H.J., 2000. Are agricultural land-use models able to predict changes in land-use intensity?. Agr. Ecosyst. Environ. 82, 321–331.
67.Landis, J., Zhang, M. (1998a), The second generation of the California urban futures model. Part 1. Model logic and theory, Environ. Plann. B: Plann. Des. 25 (5), 657–666.
68.Landis, J., Zhang, M. (1998b), The second generation of the California urban futures model. Part 2. Specification and calibration results of the land-use change submodel, Environ. Plann. B: Plann. Des. 25 (6), 795–824.
69.Lee, R. G., R. Flamm, M. G. Turner, C. Bledsoe, P. Chandler, C. DeFerrari, R. Gottfried, R. J. Naiman, N. Schumaker, and D. Wear. (1992). Integrating sustainable development and environmental vitality: A landscape ecology approach. Pages 499-521 in R. J. Naiman, ed. Watershed Management: Balancing sustainability and environmental change. Springer-Verlag, New York.
70.Li, H., Reynolds, J.F. (1997), Modeling effects of spatial pattern, drought, and grazing on rates of rangeland degradation: a combined Markov and cellular automaton approach. In: Quattrochi, D.A., Goodchild, M.F. (Eds.), Scale in Remote Sensing and GIS. Lewis Publishers, Boca Raton, Florida, pp. 211–230.
71.Loibl, W. and Toetzer, T. (2003), Modeling growth and densification processes in suburban regions—simulation of landscape transition with spatial agents, Environmental Modelling & Software, 18: 553–563.
72.Martinez-Alier, J., 1987. Ecological Economics: Energy, Environment and Society. Basil Blackwell, Oxford.
73.Matthews, R., 2006. The people and landscape model (PALM): towards full integration of human decision-making and biophysical simulation models. Ecol. Model. 194, 329–343.
74.Maxwell, T., Costanza, R., 1997. A language for modular spatio-temporal simulation. Ecol. Model. 103 (2/3), 105–114.
75.McHarg, I.L., 1969. Design with Nature. Natural History Press, New York.
76.Mertens, B., and E. F. Lambin. (1997). Spatial modelling of deforestation in southern Cameroon. Applied Geography 17 (2): 143-162.
77.Miller, E. J., Hunt, J. D., Abraham, J. E. and Salvini, P. A. (2004), Microsimulating urban systems, Computers, Environment and Urban Systems, 28: 9–44.
78.Muetzelfeldt, R., Massheder, J., 2003. The Simile visual modelling environment. Eur. J. Agron. 18, 345–358.
79.Munroe, D., J. Southworth, and C. Tucker. (2001). The Dynamics of Land-Cover Change in Western Honduras: Spatial Autocorrelation and Temporal Variation. Paper presented in the American Agricultural Economics Association Annual Meeting, August 5-8, Chicago, IL.
80.Newman, P. W. G. (1999), Sustainability and Cities: Extending the Metabolism Model, Landscape and Urban Planning, 44: 219-226.
81.Odum, E. P. (1973), Fundamentals of Ecology. 3d ed., Philadelpia: Saunders.
82.Odum, H. T. (1983), System Ecology, New York: John Wiley and sons.
83.Odum, H. T. and Odum, E. C. (2000), Modeling for all scaling: an introduction to system simulation, Academic Press, San Diego.
84.Parker, D.C., Berger, T., Manson, S.M., 2001. Agent-based Models of Land-use and Land-cover Change. LUCC Report series No. 6. (http://www.globallandproject.org/LUCC_No_6.pdf) assessed 01-27-06.
85.Parker, D.C., Evans, T.P., Meretsky, V., 2001. Measuring emergent properties of agent-based land-use/land-cover models using spatial metrics. In: the Seventh Annual Conference of the International Society for Computational Economics, June 28- 29th, New Haven, CT.
86.Parker, D.C., Manson, S.M., Janssen, M., Hoffmann, M.J., Deadman, P.J., 2003. Multi-agent systems for the simulation of land use and land cover change: a review. Ann. Assoc. Am. Geogr. 93 (2), 316–340.
87.Pauleit, S. and Duhme, F. (2000), Assessing the Environmental Performance of Land Cover Types for Urban Planning, Landscape and Urban Planning, 52: 1-20.
88.Pontius, R.G., Huffaker, D., Denman, K., 2004. Useful techniques of validation for spatially explicit land-change models. Ecol. Model. 179, 445–461.
89.Purves, W. K., Orians, G. H., and Heller, H. C.(1992), Life: The Science of Biology. 3d ed. Sunderland, MA: Sinauer.
90.Putman, S.H., 1983. Integrated Urban Models. Pion, London.
91.Rasul, G., Thapa, G.B., Zoebisch, M.A. (2004), Determinants of land-use changes in the Chittagong Hill Tracts of Bangladesh, Applied Geography, 24: 217–240.
92.Ross, D. J., Tate, K. R., Scott, N. A., and Feltham, C. W. (1999), Land-use Change: Effects on Soil Carbon, Nitrogen and Phosphorus Pools and Fluxes in Three Adjacent Ecosystems, Soil Biology & Biochemistry, 31: 803-813.
93.Schandl, H. and Schulz, N. (2002), Changes in the United Kingdom’s Natural Relations in terms of Society’ Metabolism and Land-use from 1850 to the Present Day, Ecological Economics, 41:203-221.
94.Serneels, S., Lambin, E.F. (2001), Proximate causes of land-use change in narok district, kenya: a spatial statistical model, Agriculture, Ecosystems and Environment, 85: 65–81.
95.Silvertown, J., Holtier, S., Johnson, J., Dale, P. (1992), Cellular automaton models of interspecific competition for spacethe effect of pattern on process, Journal of Ecology 80, 527–534.
96.Sklar, F.H., Costanza, R., 1991. The development of dynamic spatial models for landscape ecology: A review and prognosis. In: Tuner, M.G., Gardner, R.H. (Eds.), Quantitative Methods in Landscape Ecology. Springer-Verlag, New York, pp. 239–288.
97.Stéphenne, N. and Lambin, E. F. (2001), A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU), Agriculture, Ecosystems and Environment, 85: 145–161.
98.Sutton, D. B. and Harmon, N. P. (1973), Ecology: Selected Concept. New York: John Wiley and Sons.
99.Tobler, W. (1979), Cellular geography. In: Gale, S., Olson, G. (Eds.), Philosophy in Geography. Reidel, Dordrecht, pp. 379–386.
100.Tomlin, C.D., 1990. Geographic Information Systems and Cartographic Modelling. Prentice Hall, NJ.
101.Turner II, B. L., Moss, R. H., and Skole, D. L. (1993), Relating Land Use and Global Land Cover Change: A Proposal for an IGBP-HDP core Project, IGBP Report No. 24, HDP Report No.5, International Geosphere-Biosphere Programme and Human Dimensions of Global Change Programme, Stockholm.
102.Turner II, B.L., Kasperson, R.E., Meyer, W.B., Dow, K.M., Golding, D., Kasperson, J.X., Mitchel, R.C., Ratick, S.J., 1990. Two types of global environmental change: definitional and spatial-scale issues in their human dimensions. Global Environ. Chang. 1, 14–22.
103.Turner, B.L. II, 1997. Spirals, bridges and tunnels: engaging human-environment perspectives in geography. Ecumene. 4, 196–217.
104.U.S. EPA,(2000),Projecting Land-Use Change: A Summary of Models for Assessing the Effects of Community Growth and Change on Land-Use Patterns, Science Applications International Corporation (SAIC).(600/R-00/098)
105.Veldkamp, A., Fresco, L.O., 1996. CLUE: a conceptual model to study the conversion of land use and its effects. Ecol. Model. 85, 253–270.
106.Verburg, P.H., De Koning, G.H.J., Kok, K., Veldkamp, A., Bouma, J. (1999), A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use, Ecological Modelling, 116: 45–61.
107.Verburg, P.H., de Nijs, T.C.M., Ritsema van Eck, J., Visser, H., de Jong, K., 2004. A method to analyse neighborhood characteristics of land use patterns. Comput. Environ. Urban 28, 667–690.
108.Verburg, P.H., Veldkamp, A., 2001. The role of spatially explicit models in land-use change research: a case study for cropping patterns in China. Agri. Ecosyst. Environ. 85, 177–190.
109.Vester, F. und A. von Hesler (1980), Sensitivitäts modell, Frankfurt am Main, Deutschland.
110.Voinov, A., Costanza, R., Wainger, L., Boumans, R., Villa, F., Maxwell, T. and Voinov, H. (1999), Patuxent landscape model: integrated ecological economic modeling of a watershed, Environmental Modelling & Software, 14: 473–491.
111.Voinov, A., Fitz, C., Boumans, R. and Costanza, R. (2004), Modular ecosystem modeling, Environmental Modelling & Software, 19: 285–304.
112.Wang, Y. and Zhang, X. (2001), A dynamic modeling approach to simulating socioeconomic effects on landscape changes, Ecological Modelling, 140: 141–162.
113.Weiss, G., ed. (1999). Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge.
114.Wernick, I. and Ausubel, J. H. (1995), National Material Flows and the Environment, Annual Review Energy Environment, 20: 463-492.
115.Wolman, A. (1965), The metabolism of cities, Scientific American, 213(3): 178-193.
116.Wu, F. (1998). An experiment on the generic poly centricity of urban growth in a cellular city. Environment and Planning B 25: 731-752.
117.Yamamoto, H., Yamaji, K., Fujino, J. (1999), Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique, Applied Energy, 63: 101-113.
118.中興工程顧問股份有限公司(2004),「北區水資源管理系統建置-系統分析規劃報告」,經濟部水利署北區水資源局委託。
119.朱健銘(2000),「土地利用空間形態之研究」,國立台灣大學地理研究所碩士論文。
120.何瓊芳(2002),臺灣鋼鐵業鋼鐵物質流之情境分析及每人使用量與使用密集度之跨國比較,中國環境工程學刊,12(4):325-335。
121.呂文堯、李中彥(2002),鋼筋混凝土,台北:新文京開發。
122.李宜欣(2002),「自農業資源變遷初探淡水河流域之物質流課題」,國立臺灣大學環境工程學研究所碩士論文。
123.李俊霖(2001),「都市成長管理監測之研究:以台北市綜合發展計畫為例」,國立臺北大學都市計劃研究所碩士論文。
124.林建元(2003),國土規劃與土地區位之研究—以台北都會區為例(II)—子計畫二:台北都會區公共建設計畫評估模式之研究,行政院國家科學委員會專題研究計畫,NSC 91-2621-Z-002-019。
125.徐婉玲(2000),「台北地區都市建設代謝作用之研究」,國立台北大學都市計劃研究所碩士論文。
126.陳麗如(2002),「物質流- 鎘在台灣生活圈中之流向與流量初探」,國立臺灣大學環境工程學研究所碩士論文。
127.游紹課(2002),「台灣工業廢棄物物質流之研究」,國立臺灣大學環境工程學研究所碩士論文。
128.黃書禮(2000),生態土地使用規劃,台北:詹氏書局。
129.黃書禮(2002),都市能量理論與都市發展機制之研究,國科會研究計畫。
130.黃書禮(2003),都市能量理論與都市發展機制之研究(1/2)(2/2),行政院國家科學委員會專題研究計畫成果報告。NSC90-2415-H-305-005;NSC91-2415-H-305-003。
131.黃書禮(2005),土地使用變遷與社經系統的能量代謝作用(1/2)(2/2),行政院國家科學委員會專題研究計畫成果報告。NSC92-2415-H-305-020;NSC93-2415-H-305-002。
132.黃書禮,1997,都市能量系統之空間階層分析,行政院國家科學委員會專題研究計畫成果報告。NSC86-2415-H-005A-002。
133.詹士樑(1999),台北市獎勵都市更新地區空間分佈之探討,「人與地」,189:16-25。
134.廖本富(2001),「物質流分析架構與量制系統之探討」,國立台北大學資源管理研究所碩士論文。
135.蔡攀鰲(1994),土壤力學實驗,台北:三民。
136.鄭秀雯(2003),「物質流分散性分析—台灣地區營建砂石工業代謝循環探討」,國立台北大學資源管理研究所碩士論文。
137.蕭登元(2003),「工業生態學中物質流系統之研究-以台灣地區砂石為例」,國立臺灣大學環境工程學研究所博士論文。
138.謝銘智(2000),「公共設施計畫空間公平性之研究」,國立成功大學都市計劃研究所碩士論文。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
QR Code
QRCODE