:::

詳目顯示

回上一頁
題名:利用網路化心智模式診斷系統診斷七年級學生之「擴散與滲透作用」心智模式
作者:董曜瑜
作者(外文):Tung, Yao-Yu
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:王國華
學位類別:博士
出版日期:2018
主題關鍵詞:心智模式診斷資料探勘擴散與滲透作用data miningdiagnosis of mental modelsdiffusion and osmosis
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:4
本研究主要目的在利用網路化心智模式診斷系統診斷國中7年級學生的擴散與滲透概念之心智模式。研究對象為台灣北部及中部七年級學生共1107位,透過問卷調查法以擴散與滲透作用二階層診斷測驗(DODT)的問卷資料收集,藉由資料探勘的關聯規則分析及網路化心智模式診斷系統(WMMD)的分析,以建立學生答題反應之關聯,從中探尋學生可能存在之心智模式類型。並於分析後,篩選30位學生以事件晤談法探究學生形成相關心智模式的可能因素。
在研究方法中,除了對於學生於DODT的迷思概念分析外,藉由DODT的各題得分情形進行學生的集群分析(Cluster Analysis),將學生分為高中低分三群,透過R軟體輔以Apriori演算法將學生於DODT的作答反應進行各群及全體的關聯規則分析,藉以比較各群及全體的規則差異,並匯整成有效之關聯規則,以作為WMMD系統的分析基礎。而後,透過關聯規則的基礎作為WMMD的匯入使用,並以解釋融貫性理論(The theory of Explanatory Coherence)作為概念組合之融貫性篩選,而形成學生於於擴散與滲透作用之心智模式。而晤談法以DODT中的事件作為發展,以半結構式晤談法進行晤談,以釐清學生在作答反應的組合中的選答因素。
研究結果顯示,(1)DODT測驗的迷思概念診斷結果,有關「擴散的過程」具有4種迷思概念、「粒子的本質與運動」具有5種迷思概念、「滲透的過程」具有4種迷思概念、「生命力對擴散與滲透的影響」具有1種迷思概念、「濃度與滲性」具有1種迷思概念。(2)關聯規則分析中,可得到有效規則25個,而其中僅有2個規則是三群學生普遍共有,而有5個規則是其中二群所共有,其餘18個規則皆為其中一群的規則,顯示了不同群學生之作答情形具有獨特傾向與作答關聯,可用以預測學生可能概念組合情形。(3)由關聯規則的結果,藉WMMD系統的分析比較,並以解釋融貫性理論的評估,發現了存在於擴散與滲透作用之23種次心智模式,而其對應物質本因模式有11種、粒子本因模式有4種、外在變因模式有4種、混合變因模式有3種、類科學模式有1種。(4)另外,由晤談的結果,探討影響擴散與滲透作用心智模式形成之因素,發現存在學生本體論的影響(如物質的本質、直觀解釋)、先前學習的概念及科學理論、以及巨觀與微觀的轉換困難而產生不同類比物的表徵呈現,是影響學生於擴散與滲透作用心智模式形成之主要因素。
The purpose of this research was to diagnose seventh grade students’ mental model on diffusion and osmosis concepts through a web-based mental model diagnostic system. The research method was questionnaire survey, consisting of 1107 students in the junior high schools in northern and central Taiwan. The questionnaires were collected by Diffusion and Osmosis Diagnostic Test (DODT), through association rule analysis of data. The analysis of Web-based Mental Model Diagnostic System (WMMD) was to establish students’ response, and explore the types of mental models that students may have. After the analysis, 30 students were selected to explore the possible factors of students’ formation of mental models by Interview-About-Evants (IAE).
In the research, in addition to the analysis of students’ misconception in DODT, the students were divided into three groups by cluster analysis according to their response of each question in DODT. The R with Apriori algorithm analyzed the association rules of each group and the whole in the DODT response, so as to compare the rules of each group and the whole, and integrate them into effective association rules, which were used as the analysis basis of the WMMD system. Then, the association rules were input into WMMD system, and the theory of Explanatory Coherence (TEC) was cohesively to assess the concept combination and thus the students formed the mental models of diffusion and osmosis. The events in the interview were developed by DODT, and the semi-structured interview was to clarify the factors in the students’ response.
The results revealed that: (1) The students’ misconception was found in DODT: five misconception in ‘the Particulate & Random Nature of Matter’, one misconception in ‘Concentration & Tonicity’ and ‘the Influence of Life Forces on Diffusion & Osmosis’ respectively, and four misconception on ‘the Process of Diffusion’ and ‘the Process of Osmosis’ respectively. (2) In the association rule analysis, 25 effective rules can be obtained. And only 2 of them were common on the three groups, while 5 of them were common on the two groups, and remaining 18 rules were rules on one group. It showed that every group of students’ response had unique tendencies and association response, which can be used to predict the possible combination of students’ concepts. (3) By the results of the association rules, through the analysis and comparison of the WMMD system, and assessment of TEC, we found 23 sub-mental models about diffusion and osmosis. There were 11 types of matter nature model, 4 types of particle nature model, 4 types of external force model, 3 types of mixed model, and 1 type of science-like model. (4) In addition, the results of the interview, we found the factors to influence mental models about diffusion and osmosis were students’ ontology (such as the nature of matter, intuitive interpretation), the prior learning and scientific theory, and transformation difficulty between microscopic and macroscopic, producing the representation of analogies.
中文文獻
王子華(2010)。以研究與教學為基礎之科學概念研究-應用資訊通訊技術發展網路化心智模式診斷系統與課室互動式數位教材以改善學生科學概念學習之研究。行政院國家科學委員會專題研究成果報告(編號:NSC 99-2511-S134-002-MY3),未出版。
江文瑋(2007)。探討高中生氧化還原心智模式及概念改變之研究(未出版之碩士論文)。國立臺灣師範大學科學教育研究所,臺北市。
余秀麗(2003)。探討國三學生對於重力概念之了解及心智模式(未出版之碩士論文)。國立臺灣師範大學科學教育研究所,臺北市。
吳明珠(2008)。科學模型本質剖析。科學教育月刊,307,2-8。
林生傳(2003)。教育研究法。臺北市:心理。
林伶芳(2010)。教科書和教師教學對學童「動物生殖」心智模式建構歷程的影響(未出版之碩士論文)。國立屏東大學科普傳播學系,屏東縣。
邱柏融(2008)。建模教學對國小五年級學生酸鹼心智模式改變之探究(未出版之碩士論文)。國立臺灣師範大學科學教育研究所,臺北市。
邱美虹等(譯)(2003)。概念革命(原作者:P. Thagard)。臺北市:洪葉文化。(原著出版年:1992)
邱美虹、劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。
邱美虹、鐘建坪、張志康、白勝安(2011)。跨年級中學生認知地圖之分析研究:以粒子行為試題為例。教育科學研究期刊,56(2),207-240。
邱美虹、吳文龍、鍾曉蘭、李雪碧(2013)。以概念演化樹探討跨年級學生理想氣體心智模式之發展歷程。科學教育學刊,21(2),135-162。
翁慈宗(2009)。資料探勘的發展與挑戰。科學發展月刊,442,32-39。
張志康、林靜雯、邱美虹(2009)。跨年級中學生串並聯電路心智模式的研究。科學教育月刊,317,2-17。
陳瑞麟(2004)。科學理論版本的結構與發展。臺北市:國立臺灣大學出版中心。
黃建翔(2015)。資料探勘在教育領域之發展與應用。臺灣教育評論月刊,4(8),78-84。
劉寶元(2003)。國一學生人體血液循環概念之心智模式精鍊的探討(未出版之碩士論文)。國立高雄師範大學科學教育研究所,高雄市。
盧秀琴(2003)。顯微鏡下的世界兩階層診斷式紙筆測驗的發展與效化。國立臺北師範學院學報,16(1),127-166。
盧秀琴、林玟均(2006)。高中生細胞膜生理現象概念改變教學之發展研究。國立臺北教育大學學報:數理科技教育類,19(1),67-93。
盧秀琴、童禕珊(2003)。臺北市高中生的擴散與滲透作用概念認知之研究。92學年度師範學院教育學術論文發表會論文集,臺南市:國立臺南師院。
盧秀琴(2003)。科學概念學習研究(III)-生物科子計劃六:國小及國一學生產生「顯微鏡下的世界」之另有概念成因的探討(II)(1/2)。行政院國家科學委員會專題研究成果報告(編號:NSC 91-2522-S-152-007),未出版。
謝祥宏、耿正屏、湯清二(1996)。交互式多媒體教學系統對高中學生學習細胞生理之研究。科學教育學刊,4(1),1-30。
鍾曉蘭(2006)。以多重表徵的模型教學探究高二學生理想氣體心智模式的類型及演變的途徑(未出版之碩士論文)。國立臺灣師範大學科學教育研究所,臺北市。
鐘建坪(2013)。初探凱利方格技術診斷力概念之心智模型。中等教育,64(1),103-132。

英文文獻
Adbo, K., & Taber, K. S. (2009). Learners’ mental models of the particle nature of matter: A study of 16‐year‐old Swedish science students. International Journal of Science Education, 31(6), 757-786.
Agrawal, R., Imielinski, T., & Swami, A. (1993). Database mining: A performance perspective. IEEE transactions on knowledge and data engineering, 5(6), 914-925.
Agarwal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Paper presented at the Proc. of the 20th International Conference on Very Large Data Bases, San Francisco, USA.
Amershi, S., & Conati, C. (2009). Combining unsupervised and supervised classification to build user models for exploratory. Journal of Educational Data Mining, 1(1), 18-71.
Andersson, B. (1986). Pupils' explanations of some aspects of chemical reactions. Science Education, 70(5), 549-563.
Barke, H. D., Hazari, A., & Yitbarek, S. (2009a). Acid–base reactions. In H. D. Barke & A. Hazari,& S. Yitbarek(Eds.), Misconceptions in chemistry (pp. 173-206). Berlin, Germany: Springer.
Barke, H. D., Hazari, A., & Yitbarek, S. (2009b). Particle concept of matter. In H. D. Barke & A. Hazari,& S. Yitbarek(Eds.), Misconceptions in chemistry (pp. 67-102). Berlin, Germany: Springer.
Baker, R. (2010). Data mining for education. International encyclopedia of education, 7(3), 112-118.
Ben-Zvi, R., Eylon, B. S., & Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education, 63(1), 64-66.
Benson, D. L., Wittrock, M. C., & Baur, M. E. (1993). Students' preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(6), 587-597.
Boulter, C. J., & Gilbert, J. K. (2000). Challenges and opportunities of developing models in science education. In J. K. Gilbert, C. J. Boulter (Eds.), Developing models in science education (pp. 343-362). Berlin, Germany: Springer.
Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In J. K. Gilbert, C. J. Boulter (Eds.), Developing models in science education (pp. 119-135). Berlin, Germany: Springer.
Cañas, A., Novak, J., & Vanhear, J. (2012). Concept map-based knowledge assessment tasks and their scoring criteria: An overview. Paper presented at the Proc. of the 5th Conference on Concept Mapping, Valletta, Malta.
Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.
Chi, M.(1992). Conceptual change within and across ontological categories: examples from learning and discovery in science. In R. Giere & H. Feigl (Eds.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129-186). Minneapolis, MN: University of Minnesota Press.
Chi, M. (2008). Handbook of research on conceptual change. New York, NY: Routledge.
Chi, M. T. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. The Journal of the Learning Sciences, 14(2), 161-199.
Chi, M. T., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27-43.
Chiu, M. H. (2007). A national survey of students’ conceptions of chemistry in Taiwan. International Journal of Science Education, 29(4), 421-452.
Chiu, M. H., & Lin, J. W. (2005). Promoting fourth graders' conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429-464.
Christianson, R. G., & Fisher, K. M. (1999). Comparison of student learning about diffusion and osmosis in constructivist and traditional classrooms. International Journal of Science Education, 21(6), 687-698.
Craik, K. J. W. (1967). The nature of explanation. Cambridge, England: CU Press.
Crowder, E. M. (1996). Gestures at work in sense-making science talk. The Journal of the Learning Sciences, 5(3), 173-208.
Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.
Edmondson, K. M. (1995). Concept mapping for the development of medical curricula. Journal of Research in Science Teaching, 32(7), 777-793.
Fisher, K. M., Williams, K. S., & Lineback, J. E. (2011). Osmosis and diffusion conceptual assessment. CBE-Life Sciences Education, 10(4), 418-429.
Franco, C., & Colinvaux, D. (2000). Grasping mental models. In J. K. Gilbert, C. J. Boulter (Eds.), Developing models in science education (pp. 93-118). Berlin, Germany: Springer.
Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), 57.
Friedler, Y., Amir, R., & Tamir, P. (1987). High school students’ difficulties in understanding osmosis. International Journal of Science Education, 9(5), 541-551.
Fuson, K. (1976). Piagetian stages in causality: Children's answers to" why?". The Elementary School Journal, 77(2), 150-158.
Gadgil, S., Nokes-Malach, T. J., & Chi, M. T. (2012). Effectiveness of holistic mental model confrontation in driving conceptual change. Learning and Instruction, 22(1), 47-61.
Garvin-Doxas, K., & Klymkowsky, M. W. (2008). Understanding randomness and its impact on student learning: Lessons learned from building the Biology Concept Inventory (BCI). CBE-Life Sciences Education, 7(2), 227-233.
Gentner, D., & Stevens, A. L. (2014). Mental models. London, England: Psychology Press.
Gilbert, J., & Osborne, R. (1980). "I understand, but I don’t get it”: Some problems of learning science. School Science Review, 61(218), 664-674.
Gilbert, J. K. (1998). Learning science trough models and modelling. In B. Fraser, K. Tobin (Eds.), International Handbook of Science Education (pp. 53-66). Berlin, Germany: Springer.
Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses? International Journal of Science Education, 20(1), 83-97.
Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert, C. J. Boulter (Eds.), Developing models in science education (pp. 3-17). Berlin, Germany: Springer.
Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education (Vol. 9). Cham, Switzerland: Springer.
Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79.
Griffard, P. B., & Wandersee, J. H. (2001). The two-tier instrument on photosynthesis: What does it diagnose? International Journal of Science Education, 23(10), 1039-1052.
Griffiths, A. K., & Preston, K. R. (1992). Grade‐12 students' misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611-628.
Halloun, I. A. (2007). Modeling theory in science education (Vol. 24). Berlin, Germany: Springer.
Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J. K. Gilbert , O. de Jong, R. Justi, D. F. Treagust, & J. H. van Driel (Eds.), Chemical education: Towards research-based practice (pp. 189-212). Berlin, Germany: Springer.
Haslam, F., & Treagust, D. F. (1987). Diagnosing secondary students' misconceptions of photosynthesis and respiration in plants using a two-tier multiple choice instrument. Journal of Biological Education, 21(3), 203-211.
Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students' prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743.
Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3(4), 383-396.
Hodson, D. (1990). A critical look at practical work in school science. School Science Review, 70(256), 33-40.
Hodson, D. (1992). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14(5), 541-562.
Ingham, A. M., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13(2), 193-202.
Ioannides, C., & Vosniadou, S. (2002). The changing meanings of force. Cognitive Science Quarterly, 2(1), 5-62.
Jeong, H., & Biswas, G. (2008). Mining student behavior models in learning-by-teaching environments. Paper presented at the Proc. of the 1st International Conference on Educational Data Mining, Montréal, Canada.
Johnson-Laird, P. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge, MA: Harvard University Press.
Johnson-Laird, P., & Byrne, R. (2000). The mental model theory of thinking and reasoning. Retrieved from https://mentalmodelsblog.wordpress.com/the-mental-model-theory-of-thinking-and-reasoning
Johnson-Laird, P. N. (1995). Mental models, deductive reasoning, and the brain. The Cognitive Neurosciences, 65, 999-1008.
Johnson, P. (1998). Progression in children's understanding of a ‘basic’particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393-412.
Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted learning, 7(2), 75-83.
Justi, R., & Gilbert, J. (2003). Teachers' views on the nature of models. International Journal of Science Education, 25(11), 1369-1386.
Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.
Kindfield, A. C. (1994). Understanding a basic biological process: Expert and novice models of meiosis. Science Education, 78(3), 255-283.
Knuuttila, T. (2005). Models, representation, and mediation. Philosophy of Science, 72(5), 1260-1271.
Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949-968.
Krajcik, J. S. (1991). Developing students’ understanding of chemical concepts. In S. M. Glynn, R. H. Yeany, & B. K. Britton(Eds.), The Psychology of Learning Science (pp. 117-147). Hillsdale, NJ: Lawrence Erlbaum Associates.
Krnel, D., Watson, R., & Glažar, S. A. (1998). Survey of research related to the development of the concept of ‘matter’. International Journal of Science Education, 20(3), 257-289.
Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65-100.
Lee, O., Eichinger, D. C., Anderson, C. W., Berkheimer, G. D., & Blakeslee, T. D. (1993). Changing middle school students' conceptions of matter and molecules. Journal of Research in Science Teaching, 30(3), 249-270.
Lin, S.-W. (2004). Development and application of a two-tier diagnostic test for high school students’ understanding of flowering plant growth and development. International Journal of Science and Mathematics Education, 2(2), 175-199.
Magnusson, S. J., Templin, M., & Boyle, R. A. (1997). Dynamic science assessment: A new approach for investigating conceptual change. The Journal of the Learning Sciences, 6(1), 91-142.
Mann, M., & Treagust, D. F. (1998). A pencil and paper instrument to diagnose students' conceptions of breathing, gas exchange and respiration. Australian Science Teachers Journal, 44(2), 55.
Marbach-Ad, G., Briken, V., El-Sayed, N. M., Frauwirth, K., Fredericksen, B., Hutcheson, S., McIver, K. S. (2009). Assessing student understanding of host pathogen interactions using a concept inventory. Journal of Microbiology & Biology Education, 10(1), 43.
Marek, E. (1986). Understandings and misunderstandings of biology concepts. The American Biology Teacher, 48(1), 37-40.
Margel, H., Eylon, B. S., & Scherz, Z. (2008). A longitudinal study of junior high school students' conceptions of the structure of materials. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 45(1), 132-152.
McClary, L., & Talanquer, V. (2011). College chemistry students' mental models of acids and acid strength. Journal of Research in Science Teaching, 48(4), 396-413.
McCloskey, M. (1983). Naïve theories of motion. In D. Gentner, & A. L. Stevens. (Eds.) Mental models (pp.299-321). Hillsdale, NJ: Lawrence Erlbaum Associates.
Medin, D. L., & Rips, L. J. (2005). Concepts and categories: Memory, meaning, and metaphysics. In M. Holyoak (Ed.), The Cambridge handbook of thinking and reasoning (pp.37-72). London, England: Cambridge University Press.
Merrill, M. D. (2002). Knowledge objects and mental models. In D. A. Wiley(Ed.), The Instructional Use of Learning Objects (pp. 261-280). Bloomington, IN: Agency for instructional technology.
Morgan, M. S., & Morrison, M. (1999). Models as mediators: Perspectives on natural and social science (Vol. 52). London, England: Cambridge University Press.
Morrison, M. (2007). Where have all the theories gone? Philosophy of Science, 74(2), 195-228.
Nakhleh, M. B. (1992). Why some students don't learn chemistry: Chemical misconceptions. Journal of Chemical Education, 69(3), 191.
Nakhleh, M. B., & Samarapungavan, A. (1999). Elementary school children's beliefs about matter. Journal of Research in Science Teaching, 36(7), 777-805.
Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich,& M. Siegal (Eds.), The cognitive basis of science (pp. 133-153). London, England: Cambridge University Press.
Nersessian, N. J. (2008). Mental modeling in conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 391-416). New York, NY: Routledge.
Norman, D. A. (1983). Design rules based on analyses of human error. Communications of the ACM, 26(4), 254-258.
Norman, D. A. (1988). The psychology of everyday actions. In D. A. Norman (Ed.), The design of everyday things (pp. 45-46). New York, NY: Basic Book.
Odom, A. L. (1995). Secondary & college biology students' misconceptions about diffusion & osmosis. The American Biology Teacher, 57(7), 409-415.
Odom, A. L., & Barrow, L. H. (1995). Development and application of a two‐tier diagnostic test measuring college biology students' understanding of diffusion and osmosis after a course of instruction. Journal of Research in Science Teaching, 32(1), 45-61.
Odom, A. L., & Barrow, L. H. (2007). High school biology students' knowledge and certainty about diffusion and osmosis concepts. School Science and Mathematics, 107(3), 94-101.
Odom, A. L., & Kelly, P. V. (2001). Integrating concept mapping and the learning cycle to teach diffusion and osmosis concepts to high school biology students. Science Education, 85(6), 615-635.
Okebukola, P. A. (1992). Concept mapping with a cooperative learning flavor. The American Biology Teacher, 54(4), 218-221.
Osborne, R., & Freyberg, P. (1985). Learning in science: the implications of children's science. Portsmouth, NH: Heinemann.
Osborne, R. J., & Cosgrove, M. M. (1983). Children's conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825-838.
Osborne, R. J., & Gilbert, J. K. (1980). A method for investigating concept understanding in science. European Journal of Science Education, 2(3), 311-321.
Othman, J., Treagust, D. F., & Chandrasegaran, A. (2008). An investigation into the relationship between students’ conceptions of the particulate nature of matter and their understanding of chemical bonding. International Journal of Science Education, 30(11), 1531-1550.
Pfundt, H., & Duit, R. (2009). Students’ and teachers' conceptions and science education. Retrieved from http://www.ipn.uni-kiel.de/aktuell/stcse.
Posner, G. (1983). A model of conceptual change: Present status and prospect. Paper presented at the Proceedings on the Znternational Seminar on Misconceptions in Science and Mathematics, Ithaca, New York.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384.
Rouse, W. B., & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin, 100(3), 349-363.
Sanford, A., & Johnson-Laird, P. N. (2003). The nature and limits of human understanding. Edinburgh, Scotland: T&T Clark.
Schaal, S., Bogner, F. X., & Girwidz, R. (2010). Concept mapping assessment of media assisted learning in interdisciplinary science education. Research in Science Education, 40(3), 339-352.
Simpson, W. D., & Marek, E. A. (1988). Understandings and misconceptions of biology concepts held by students attending small high schools and students attending large high schools. Journal of Research in Science Teaching, 25(5), 361-374.
Singer, J., Marx, R. W., Krajcik, J., & Clay Chambers, J. (2000). Constructing extended inquiry projects: Curriculum materials for science education reform. Educational Psychologist, 35(3), 165-178.
Stepans, J., & Kuehn, C. (1985). What research says: Children's conceptions of weather. Science and Children, 23(1), 44-47.
Gentner, D. & Stevens, A. L. (1983). Mental models. Hillsdale, NJ: Lawren Erlbaum Associates.
Taber, K. S. (1996). Chlorine is an Oxide, heat causes Molecules to melt, and Sodium reacts badly in Chlorine: A survey of the background knowledge of one a-level chemistry class. School Science Review, 78(282), 39-48.
Taber, K. S. (2013). Modeling learners and learning in science education. Netherlands: Springer.
Tamir, P. (1989). Some issues related to the use of justifications to multiple-choice answers. Journal of Biological Education, 23(4), 285-292.
Tan, K. C. D., Goh, N. K., Chia, L. S., & Treagust, D. F. (2002). Development and application of a two‐tier multiple choice diagnostic instrument to assess high school students' understanding of inorganic chemistry qualitative analysis. Journal of Research in Science Teaching, 39(4), 283-301.
Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
Thagard, P. (2010). How brains make mental models. In L. Magnani, W.Carnielli,& C. Pizzi (Eds.) Model-based reasoning in science and technology (pp. 447-461). Berlin, Germany: Springer.
Treagust, D. (2006). Conceptual change as a viable approach to understanding student learning in science. In K. G. Tobin (Eds.), Teaching and learning science-a handbook (pp. 25-32). London, England: Praeger Publications.
Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169.
Treagust, D. F. (1995). Diagnostic assessment of students’ science knowledge. In S. M. Glynn, & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 327-436). London, England: Routledge.
Treagust, D. F., Chandrasegaran, A., Crowley, J., Yung, B. H., Cheong, I. P.-A., & Othman, J. (2010). Evaluating students' understanding of kinetic particle theory concepts relating to the states of matter, changes of state and diffusion: A cross-national study. International Journal of Science and Mathematics Education, 8(1), 141-164.
Tsui, C. Y., & Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biological education. In D. F. Treagust, & C. Y. Tsui (Eds.), Multiple representations in biological education (pp. 3-18). Netherlands: Springer.
Valanides, N. (2000). Primary student teachers’understanding of the particulate nature of matter and its transformations during dissolving. Chemistry Education Research and Practice, 1(2), 249-262.
Viscuso, S. R., & Spoehr, K. (1986). How does a mental model facilitate comprehension of instructions. Paper presented at the 27th annual meeting of the Psychonomic Society, New Orleans, LA.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45-69.
Vosniadou, S. (2002). Mental models in conceptual development. In Magnani, L., Nersessian, N. (Eds.) Model-based reasoning: Science, technology, values (pp. 353-368). Berlin, Germany: Springer.
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535-585.
Vosniadou, S., Skopeliti, I., & Ikospentaki, K. (2004). Modes of knowing and ways of reasoning in elementary astronomy. Cognitive Development, 19(2), 203-222.
Vosniadou, S., Vamvakoussi, X., & Skopeliti, X. (2008). The framework approach to the problem of conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 1-34). London, England: Routledge.
Wang, J.-R. (2004). Development and validation of a two-tier instrument to examine understanding of internal transport in plants and the human circulatory system. International Journal of Science and Mathematics Education, 2(2), 131-157.
Wang, T. H., Chiu, M. H., Lin, J. W., & Chou, C. C. (2013). Diagnosing students' mental models via the Web‐Based Mental Models Diagnosis system. British Journal of Educational Technology, 44(2), E49-E51.
Westbrook, S. L., & Marek, E. A. (1991). A cross‐age study of student understanding of the concept of diffusion. Journal of Research in Science Teaching, 28(8), 649-660.
White, R., & Gunstone, R. (1992). Probing understanding. London, England: The Falmer Press.
Yager, R. E., & Tamir, P. (1994). Success with STS in life science classrooms, grades 4-12. The American Biology Teacher, 56(5), 268-272.
Yeany, R. H., & Miller, P. (1983). Effects of diagnostic/remedial instruction on science learning: A meta analysis. Journal of Research in Science Teaching, 20(1), 19-26.
Yezierski, E. J., & Birk, J. P. (2006). Misconceptions about the particulate nature of matter. Using animations to close the gender gap. Journal of Chemical Education, 83(6), 954.
Zuzovsky, R., & Tamir, P. (1999). Growth patterns in students' ability to supply scientific explanations: Findings from the Third International Mathematics and Science Study in Israel. International Journal of Science Education, 21(10), 1101-1121.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE