:::

詳目顯示

回上一頁
題名:穿戴式智慧化注意力視覺回饋應用於博物館教育:探討大專院校學生的學習投入、認知負荷、學習成效和滿意度
作者:游師柔
作者(外文):Yu, Shih-Jou
校院名稱:國立交通大學
系所名稱:教育研究所
指導教授:孫之元
學位類別:博士
出版日期:2019
主題關鍵詞:博物館教育穿戴式科技注意力視覺回饋學習投入認知負荷學習成效滿意度Museum educationWearable technologyAttentionVisual feedbackEngagementCognitive loadLearning achievementSatisfaction
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:5
  博物館是保存文物的重要空間,博物館的教育角色與定位也備受非正式和正式課程的關注。在博物館教育中,運用科技協助博物館彙整資料、傳遞資訊和進行教學已是現今趨勢。現階段,在博物館情境中,穿戴式科技具有成為教育科技的潛力,以及參觀者在博物館的投入仍存有進步空間,但博物館中的大量資訊或不適當的科技應用使參觀者較難以取得個人化的學習內容,進而造成分心,故本研究的目的是探討穿戴式智慧化注意力視覺回饋導覽使用於博物館教育,對大專院校學生的學習投入、認知負荷、學習成效與滿意度之影響。
  本研究以94位大專院校學生為研究對象,隨機分為影音導覽組,智慧化注意力視覺回饋導覽組,穿戴式智慧化注意力視覺回饋導覽組。研究工具包含先備知識測驗、學習投入量表、認知負荷量表、學習成效測驗、滿意度問卷與活動後問卷。研究結果發現:
1.與智慧化注意力視覺回饋導覽相較,影音導覽能促進學習投入、行為投入和認知投入且穿戴式智慧化注意力視覺回饋導覽能促進學習投入、行為投入、認知投入和情緒投入。
2.三種導覽方式之間的內在認知負荷和外在認知負荷無顯著差異;和智慧化注意力視覺回饋導覽相較,影音導覽和穿戴式智慧化注意力視覺回饋導覽皆能促進增生認知負荷。
3.三種導覽方式之間的學習成效記憶層次無顯著差異;和智慧化注意力視覺回饋導覽相較,影音導覽能促進學習成效理解層次,穿戴式智慧化注意力視覺回饋導覽能促進學習成效分析層次。
4.和智慧化注意力視覺回饋導覽相較,穿戴式智慧化注意力視覺回饋導覽能提高滿意度。
  本研究建議可以保持影音導覽的應用,但若是參觀時間有限或需手持導覽設備,改用穿戴式智慧化注意力視覺回饋導覽將更適合,也可以提供學習者新的學習體驗。此外,互動性和設備輕巧的設計是重要的博物館教育設計,展覽規劃者也可以根據知識類型設置展覽區域和選擇適合的導覽方式做為學習工具。最後,穿戴式智慧化注意力視覺回饋導覽能增加學習者的學習動機和學習樂趣。
Museums are important places to preserve cultural relics. The role and orientation of museum education are also essential for informal and formal education. Using technologies to organize, deliver, and teach information has become a trend for museum education. Currently, wearable technology has the potential to be one of the educational technologies in the museum. At the same time, there is a need to improve visitors’ engagement. In museum education, the excess of information and inappropriate technologies make it difficult for visitors to find personalized learning content, in turn causing distractions. Therefore, this study aimed to incorporate wearable intelligent visual feedback based on attention into museum education and analyze the effect on university students' engagement, cognitive load, learning achievement, and satisfaction.
This study examined a total of 94 university students visiting a sports museum who were randomly divided into three groups: video guide (the VG group), intelligent visual feedback based on attention (the IVFA group), and wearable intelligent visual feedback based on attention (the WIVFA group). The instruments included a prior knowledge test, engagement scale, cognitive load scale, learning achievement test, satisfaction scale, and post-activity open-format feedback. The results of this study indicate that:
1.Compared with the IVFA group, the VG group increased the visitors’ engagement, behavioral engagement, and cognitive engagement. The WIVFA group increased the visitors’ engagement, behavioral engagement, cognitive engagement, and emotional engagement.
2.There were no statistically significant differences in the intrinsic cognitive load or extraneous cognitive load of the three groups, but compared with the IVFA group, the VG and WIVFA groups had increased germane cognitive load.
3.There were no statistically significant differences in the remembering dimension of learning achievement of the three groups. Compared with the IVFA group, the VG group increased the visitor understanding dimension of learning achievement and the WIVFA group increased the visitor analysis dimension of learning achievement.
4.When compared with the IVFA group, the WIVFA group had increased visitor satisfaction.
The findings of this study suggest that video guides can still be used for museum education. However, when there is limited time to use the guide or hand carrying is required, it is more suitable to use the wearable intelligent visual feedback based on attention as the guide. The wearable intelligent visual feedback based on attention also brings visitors new learning experiences. In addition, the interaction capability and the light weight of the devices are important factors for designing museum education. The exhibiter can consider the type of knowledge when planning the exhibition venue and choose the appropriate learning tool. Finally, the wearable intelligent visual feedback based on attention increases visitors’ learning motivation and enjoyment.
中文文獻
林言熹(2013)。你,怎麼能不愛台灣棒球:擁抱世界第一等的夢想,找回單純愛棒球的初心。台北市:日出出版。
國立台灣歷史博物館(2014)。逆轉勝:台灣棒球特展。台南市:作者。
陸銘澤(2011)。棒球樂事。台北市:台灣書房出版有限公司。
瞿欣怡(2011)。打一場生命的好球-棒球之父謝國城的故事。台北市:天下。

英文文獻
Adams Becker, S., Cummins, M., Davis, A., Freeman, A., Hall Giesinger, C., & Ananthanarayanan, V. (2017). NMC Horizon Report: 2017 Higher Education Edition. Austin, TX: The New Media Consortium.
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge & Data Engineering, 17(6), 734-749. doi:10.1109/TKDE.2005.99
Aggarwal, C. C. (2016). Recommender systems: The textbook. Basel, Switzerland: Springer.
Ahmad, S., Abbas, M. Y., Yusof, W. Z. M., & Mohd.Taib, M. Z. (2015). Adapting museum visitors as participants benefits their learning experience? Procedia - Social and Behavioral Sciences, 168, 156-170. doi:10.1016/j.sbspro.2014.10.221
Aiken, L. R. (1991). Psychological testing and assessment. Boston, MA: Allyn and Bacon.
Al-Emran, M., Elsherif, H. M., & Shaalan, K. (2016). Investigating attitudes towards the use of mobile learning in higher education. Computers in Human Behavior, 56, 93-102. doi:10.1016/j.chb.2015.11.033
Allen, S. (2004). Designs for learning: Studying science museum exhibits that do more than entertain. Science Education, 88(S1), S17–S33. doi:10.1002/sce.20016
American Alliance of Museums. (2015). TRENDSWATCH 2015. Retrieved from http://museumsassn.bc.ca/wp-content/uploads/2015/02/Center-for-the-Future-of-Museums.pdf
Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., . . . Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives, abridged edition (1st ed.). Cambridge, MA: Pearson.
Appleton, J. J. (2012). Systems consultation: Developing the assessment-to-intervention link with the student engagement instrument. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of student engagement (pp. 725-742). Boston, MA: Springer.
Ark, T. V. (2013). The future of learning: Personalized, adaptive, and competency-based. Retrieved from http://www.gettingsmart.com/wp-content/uploads/2011/08/D1-white-paper-the-future-of-learning-personalized-adaptive-and-competency-based.pdf
Augusto, J. C., Nakashima, H., & Aghajan, H. (2010). Ambient intelligence and smart environments: A state of the art. In H. Nakashima, H. Aghajan, & J. C. Augusto (Eds.), Handbook of ambient intelligence and smart environments (pp. 3-31). Boston, MA: Springer.
Australian Council for Educational Research. (2010). Doing more for learning: Enhancing engagement and outcomes. Retrieved from https://research.acer.edu.au/cgi/viewcontent.cgi?article=1011&context=ausse
Axiell. (2016). Digital transformation in the museum industry. Retrieved from https://alm.axiell.com/wp-content/uploads/2016/07/Axiell-ALM-Digitise-Museums-Report.pdf
Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829-839. doi:10.1038/nrn1201
Bannert, M. (2002). Managing cognitive load—Recent trends in cognitive load theory. Learning and Instruction, 12(1), 139-146. doi:10.1016/S0959-4752(01)00021-4
Bellur, S., Nowak, K. L., & Hull, K. S. (2015). Make it our time: In class multitaskers have lower academic performance. Computers in Human Behavior, 53, 63-70. doi:10.1016/j.chb.2015.06.027
Betts, J. (2012). Issues and methods in the measurement of student engagement: Advancing the construct through statistical modeling. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of student engagement (pp. 783-803). New York, NY: Springer.
Bitgood, S. (2009). Museum fatigue: A critical review. Visitor Studies, 12(2), 93-111. doi:10.1080/10645570903203406
Bitgood, S. (2010). An attention-value model of museum visitors. Washington, DC: Center for Advancement of Informal Science Education.
Black, G. (2012). Transforming museums in the twenty-first century. London, United Kingdom: Routledge.
Borrego-Jaraba, F., García, G. C., Ruiz, I. L., & Gómez-Nieto, M. Á. (2013). An NFC based context-aware solution for access to bibliographic sources in university environments. Journal of Ambient Intelligence and Smart Environments, 5(1), 105-118. doi:10.3233/AIS-120188
Bower, M., & Sturman, D. (2015). What are the educational affordances of wearable technologies? Computers & Education, 88, 343-353. doi:10.1016/j.compedu.2015.07.013
Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53-61. doi:10.1207/S15326985EP3801_7
Brusilovsky, P. (2007). Adaptive navigation support. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The adaptive web: Methods and strategies of web personalization (pp. 263-290). Berlin, Germany: Springer.
Burke, R. (2007). Hybrid web recommender systems. In P. Brusilovski, A. Kobsa, & W. Nejdl (Eds.), The adaptive web: Methods and strategies of web personalization (pp. 377-408). Berlin, Germany: Springer.
Cena, F., Likavec, S., & Rapp, A. (2018). Real world user model: Evolution of user modeling triggered by advances in wearable and ubiquitous computing. Information Systems Frontiers, 1-26. doi:10.1007/s10796-017-9818-3
Chang, K.-E., Chang, C.-T., Hou, H.-T., Sung, Y.-T., Chao, H.-L., & Lee, C.-M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185-197. doi:10.1016/j.compedu.2013.09.022
Chen, C. Y., Pedersen, S., & Murphy, K. L. (2012). The influence of perceived information overload on student participation and knowledge construction in computer-mediated communication. Instructional Science, 40(2), 325-349. doi:10.1007/s11251-011-9179-0
Chi, M. T., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219-243. doi:10.1080/00461520.2014.965823
Cizek, G. J. (1996). Learning, achievement, and assessment: Constructs at a crossroads. In G. D. Phye (Ed.), Handbook of classroom assessment: Learning, achievement, and adjustment (pp. 1-32). San Diego, CA: Academic Press.
Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2009). Ambient intelligence: Technologies, applications, and opportunities. Pervasive and Mobile Computing, 5(4), 277-298. doi:10.1016/j.pmcj.2009.04.001
Corno, F., & De Russis, L. (2017). Training engineers for the ambient intelligence challenge. IEEE Transactions on Education, 60(1), 40-49. doi:10.1109/TE.2016.2608785
Dascalu, M.-I., Bodea, C.-N., Mihailescu, M. N., Tanase, E. A., & Ordoñez de Pablos, P. (2016). Educational recommender systems and their application in lifelong learning. Behaviour & Information Technology, 35(4), 290-297. doi:10.1080/0144929X.2015.1128977
Dieck, M. C. t., Jung, T. H., & Dieck, D. t. (2018). Enhancing art gallery visitors’ learning experience using wearable augmented reality: Generic learning outcomes perspective. Current Issues in Tourism, 21(17), 2014-2034. doi:10.1080/13683500.2016.1224818
Ebel, R. L., & Frisbie, D. A. (1991). Essentials of educational measurement (5th ed.). Englewood Cliffs, NJ: Prentice-Hall.
Eghbal-Azar, K., Merkt, M., Bahnmueller, J., & Schwan, S. (2016). Use of digital guides in museum galleries: Determinants of information selection. Computers in Human Behavior, 57, 133-142. doi:10.1016/j.chb.2015.12.035
Eppler, M. J. (2015). Information quality and information overload: The promises and perils of the information age. In L. Cantoni & J. A. Danowski (Eds.), Communication and technology (pp. 215-232). Berlin, Germany: Walter de Gruyter.
Eppler, M. J., & Mengis, J. (2004). The concept of information overload: A review of literature from organization science, accounting, marketing, MIS, and related disciplines. The Information Society, 20(5), 325-344. doi:10.1080/01972240490507974
European Commission Community Research. (2001). Scenarios for ambient intelligence in 2010. Retrieved from http://mmlab.snu.ac.kr/courses/2005_advanced_internet/handout/paper/31.Scenarios%20for%20Ambient%20Intelligence%20in%202010.pdf
Falk, J. H., & Dierking, L. D. (2000). Learning from museums: Visitor experiences and the making of meaning. Walnut Creek, CA: Alta Mira Press.
Fredricks, J. A., Blumenfeld, P., Friedel, J., & Paris, A. (2005). School engagement. In K. A. Moore & L. H. Lippman (Eds.), What do children need to flourish? Conceptualizing and measuring indicators of positive development (pp. 305-321). New York, NY: Springer.
Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59-109.
Freeman, A., Adams Becker, S., Cummins, M., McKelroy, E., Giesinger, C., & Yuhnke, B. (2016). NMC horizon report: 2016 museum edition. Austin, TX: The New Media Consortium.
Gaggioli, A. (2005). Optimal experience in ambient intelligence. In G. Riva, F. Vatalaro, F. Davide, & M. Alcañiz (Eds.), Ambient intelligence: The evolution of technology, communication and cognition towards the future of human-computer interaction (pp. 35-43). Amsterdam, Netherlands: IOS Press.
Gao, Y., Liu, T.-C., & Paas, F. (2016). Effects of mode of target task selection on learning about plants in a mobile learning environment: Effortful manual selection versus effortless QR-code selection. Journal of Educational Psychology, 108(5), 694-704. doi:10.1037/edu0000080
Garden, M., & Dudek, G. (2006, July). Mixed collaborative and content-based filtering with user-contributed semantic features. Paper presented at the 21st National Conference on Artificial Intelligence, Boston, MA.
Gemperle, F., Kasabach, C., Stivoric, J., Bauer, M., & Martin, R. (1998, October). Design for wearability. Paper presented at the Second International Symposium on Wearable Computers, Pittsburgh, PA.
Ghauth, K. I., & Abdullah, N. A. (2010). Learning materials recommendation using good learners’ ratings and content-based filtering. Educational Technology Research and Development, 58(6), 711-727. doi:10.1007/s11423-010-9155-4
Gobert, D. (2002). Designing wearable performance support: Insights from the early literature. Technical Communication, 49(4), 444-448.
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70.
Grammenos, D., Zabulis, X., Michel, D., Padeleris, P., Sarmis, T., Georgalis, G., . . . Sifakis, M. (2013). A prototypical interactive exhibition for the archaeological museum of thessaloniki. International Journal of Heritage in the Digital Era, 2(1), 75-99. doi:10.1260/2047-4970.2.1.75
Hanko, K., Lee, S., & Okeke, N. (2014). What makes a great museum experience and how can technology help? Retrieved from http://www.sloverlinett.com/files/publications/Executive summary - Field Museum visitor experience and technology research - Slover Linett.pdf
Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015). Measuring student engagement in technology-mediated learning: A review. Computers & Education, 90, 36-53. doi:10.1016/j.compedu.2015.09.005
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5-53. doi:10.1145/963770.963772
Huang, Y. M., Liu, C. H., Lee, C. Y., & Huang, Y. M. (2012). Designing a personalized guide recommendation system to mitigate information overload in museum learning. Educational Technology & Society, 15(4), 150-166.
Hung, J. C., Weng, J.-D., & Chen, Y.-H. (2016). A recommendation system based on mining human portfolio for museum navigation. Evolving Systems, 7(2), 145-158. doi:10.1007/s12530-016-9154-8
Hwang, G.-J., & Chang, H.-F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56(4), 1023-1031. doi:10.1016/j.compedu.2010.12.002
Hwang, G.-J., Chu, H.-C., Lin, Y.-S., & Tsai, C.-C. (2011). A knowledge acquisition approach to developing Mindtools for organizing and sharing differentiating knowledge in a ubiquitous learning environment. Computers & Education, 57(1), 1368-1377. doi:10.1016/j.compedu.2010.12.013
Hwang, G.-J., Kuo, F.-R., Chen, N.-S., & Ho, H.-J. (2014). Effects of an integrated concept mapping and web-based problem-solving approach on students’ learning achievements, perceptions and cognitive loads. Computers & Education, 71, 77-86. doi:10.1016/j.compedu.2013.09.013
Hwang, G.-J., Wu, P. H., Zhuang, Y. Y., & Huang, Y. M. (2013). Effects of the inquiry-based mobile learning model on the cognitive load and learning achievement of students. Interactive Learning Environments, 21(4), 338-354. doi:10.1080/10494820.2011.575789
Hwang, G.-J., Yang, T.-C., Tsai, C.-C., & Yang, S. J. (2009). A context-aware ubiquitous learning environment for conducting complex science experiments. Computers & Education, 53(2), 402-413. doi:10.1016/j.compedu.2009.02.016
IST Advisory Group. (2005). Ambient intelligence: From vision to reality. In G. Riva, F. Vatalaro, F. Davide, & M. Alcañiz (Eds.), Ambient intelligence: The evolution of technology, communication and cognition towards the future of human-computer interaction (pp. 45-68). Amsterdam, Netherlands: IOS Press.
Janosz, M. (2012). Part IV commentary: Outcomes of engagement and engagement as an outcome: Some consensus, divergences, and unanswered questions. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 695-703). Boston, MA: Springer.
Jhajharia, S., Pal, S., & Verma, S. (2014). Wearable computing and its application. International Journal of Computer Science and Information Technologies, 5(4), 5700-5704.
Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329-354.
Kahu, E. R. (2013). Framing student engagement in higher education. Studies in Higher Education, 38(5), 758-773. doi:10.1080/03075079.2011.598505
Kanagarajan, S., & Ramakrishnan, S. (2018). Ubiquitous and ambient intelligence assisted learning environment infrastructures development - A review. Education and Information Technologies, 23(1), 569-598. doi:10.1007/s10639-017-9618-x
Kline, R. B. (2010). Principles and practice of structural equation modeling (3rd ed.). New York, NY: The Guilford Press.
Knight, M. J., & Tlauka, M. (2017). Interactivity in map learning: The effect of cognitive load. Spatial Cognition & Computation, 17(3), 185-198. doi:10.1080/13875868.2016.1211661
Leppink, J., Paas, F., Van der Vleuten, C. P., Van Gog, T., & Van Merriënboer, J. J. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods, 45(4), 1058-1072. doi:10.3758/s13428-013-0334-1
Leppink, J., Paas, F., Van Gog, T., van Der Vleuten, C. P., & Van Merrienboer, J. J. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 32-42. doi:10.1016/j.learninstruc.2013.12.001
Leue, M. C., Jung, T., & Dieck, D. t. (2015). Google glass augmented reality: Generic learning outcomes for art galleries. In I. Tussyadiah & A. Inversini (Eds.), Information and communication technologies in tourism 2015 (pp. 463-476). New York, NY: Springer.
Ma, J., Han, X., Yang, J., & Cheng, J. (2015). Examining the necessary condition for engagement in an online learning environment based on learning analytics approach: The role of the instructor. The Internet and Higher Education, 24, 26-34. doi:10.1016/j.iheduc.2014.09.005
Maggio, M., Hoffmann, H., Papadopoulos, A. V., Panerati, J., Santambrogio, M. D., Agarwal, A., & Leva, A. (2012). Comparison of decision-making strategies for self-optimization in autonomic computing systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 9(4), 39:31-39:33. doi:10.1145/2382570.2382572
Markowitz, A. J. (2017). Associations between emotional engagement with school and behavioral and psychological outcomes across adolescence. AERA Open, 3(3), 1-21. doi:10.1177/2332858417712717
Marks, H. M. (2000). Student engagement in instructional activity: Patterns in the elementary, middle, and high school years. American Educational Research Journal, 37(1), 153-184.
Martella, C., Miraglia, A., Frost, J., Cattani, M., & van Steen, M. (2017). Visualizing, clustering, and predicting the behavior of museum visitors. Pervasive and Mobile Computing, 38(2), 430-443. doi:10.1016/j.pmcj.2016.08.011
Martin, A. J., Durksen, T. L., Williamson, D., Kiss, J., & Ginns, P. (2016). The role of a museum‐based science education program in promoting content knowledge and science motivation. Journal of Research in Science Teaching, 53(9), 1364-1384. doi:10.1002/tea.21332
Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370-396.
Mason, M. (2016). The MIT museum glassware prototype: Visitor experience exploration for designing smart glasses. ACM Journal on Computing and Cultural Heritage, 9(3), 12:01-12:28. doi:10.1145/2872278
Memon, M., Wagner, S. R., Pedersen, C. F., Beevi, F. H. A., & Hansen, F. O. (2014). Ambient assisted living healthcare frameworks, platforms, standards, and quality attributes. Sensors, 14(3), 4312-4341. doi:10.1080/15228835.2011.596464
Meyer, J.-A. (1998). Information overload in marketing management. Marketing Intelligence & Planning, 16(3), 200-209. doi:10.1108/02634509810217318
Meza, J., Simó Mezquita, E., & Monguet Fierro, J. M. (2017, July). Toward a collective intelligence recommender system for education. Paper presented at the 9th International Conference on Education and New Learning Technologies, Barcelona, Spain.
Miller, B. W. (2015). Using reading times and eye-movements to measure cognitive engagement. Educational Psychologist, 50(1), 31-42. doi:10.1080/00461520.2015.1004068
Morris Hargreaves Mcintyre. (2007). Audience knowledge digest: Why people visit museums and galleries, and what can be done to attract them. Retrieved from http://webarchive.nationalarchives.gov.uk/20120215211331/http://research.mla.gov.uk/evidence/documents/Audience%20Knowledge%20Digest.pdf
Muis, K. R., Ranellucci, J., Trevors, G., & Duffy, M. C. (2015). The effects of technology-mediated immediate feedback on kindergarten students' attitudes, emotions, engagement and learning outcomes during literacy skills development. Learning and Instruction, 38, 1-13. doi:10.1016/j.learninstruc.2015.02.001
Musto, C., Narducci, F., Lops, P., de Gemmis, M., & Semeraro, G. (2010). Integrating a content-based recommender system into digital libraries for cultural heritage. In M. Agosti, F. Esposito, & C. Thanos (Eds.), IRCDL 2010: Digital Libraries (pp. 27-38). Berlin, Germany: Springer.
Najjar, L. J., Thompson, C., & Ockerman, J. J. (1999). Using a wearable computer for continuous learning and support. Mobile Networks and Applications, 4(1), 69-74. doi:10.1023/A:1019126226904
Norman, D. A. (1968). Toward a theory of memory and attention. Psychological Review, 75(6), 522-536. doi:10.1037/h0026699
Nunnally, J. C. (1967). Psychometric Theory. New York, NY: McGraw-Hill.
Nuzzaci, A. (2012). Experimentalism in the field museum education: An empirical reaserch on the school-museum relationship. Education, Special Issue, 31-42. doi:10.5923/j.edu.20120001.06
Oguego, C. L., Augusto, J. C., Muñoz, A., & Springett, M. (2018). A survey on managing users’ preferences in ambient intelligence. Universal Access in the Information Society, 17(1), 97-114. doi:10.1007/s10209-017-0527-y
Okazaki, S., Navarro, A., Mukherji, P., & Plangger, K. (2019). The curious versus the overwhelmed: Factors influencing QR codes scan intention. Journal of Business Research, 99, 498-506. doi:10.1016/j.jbusres.2017.09.034
Pérez-Sanagustín, M., Parra, D., Verdugo, R., García-Galleguillos, G., & Nussbaum, M. (2016). Using QR codes to increase user engagement in museum-like spaces. Computers in Human Behavior, 60, 73-85. doi:10.1016/j.chb.2016.02.012
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4. doi:10.1207/S15326985EP3801_1
Paas, F. G., & Van Merriënboer, J. J. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6(4), 351-371. doi:10.1007/BF02213420
Packer, J. (2006). Learning for fun: The unique contribution of educational leisure experiences. Curator: The Museum Journal, 49(3), 329-344. doi:10.1111/j.2151-6952.2006.tb00227.x
Paola, A. D., Ferraro, P., Gaglio, S., Re, G. L., & Das, S. K. (2017). An adaptive bayesian system for context-aware data fusion in smart environments. IEEE Transactions on Mobile Computing, 16(6), 1502-1515. doi:10.1109/TMC.2016.2599158
Park, H. M., Lee, S. H., & Choi, J. S. (2008, September). Wearable augmented reality system using gaze interaction. Paper presented at the 7th IEEE/ACM international Symposium on Mixed and Augmented Reality, Cambridge, United Kingdom.
Pavlidis, G. (2019). Recommender systems, cultural heritage applications, and the way forward. Journal of Cultural Heritage, 35, 183-196. doi:10.1016/j.culher.2018.06.003
Pekarik, A. J., Schreiber, J. B., Hanemann, N., Richmond, K., & Mogel, B. (2014). IPOP: A theory of experience preference. Curator: The Museum Journal, 57(1), 5-27. doi:10.1111/cura.12048
Pekrun, R. (2011). Emotions as drivers of learning and cognitive development. In R. A. Calvo & S. K. D'Mello (Eds.), New perspectives on affect and learning technologies (pp. 23-39). New York, NY: Springer.
Pickens, K. E. (2017). Applying cognitive load theory principles to library instructional guidance. Journal of Library & Information Services in Distance Learning, 11(1-2), 50-58. doi:10.1080/1533290X.2016.1226576
PwC. (2014). Consumer intelligence series: The wearable future. Retrieved from https://www.pwc.com/us/en/technology/publications/assets/pwc-wearable-tech-design-oct-8th.pdf
PwC. (2016). The wearable life 2.0: Connected living in a wearable world. Retrieved from https://www.pwc.com/us/en/industry/entertainment-media/assets/pwc-cis-wearables.pdf
Reed, W. M., Burton, J. K., & Kelly, P. P. (1985). The effects of writing ability and mode of discourse on cognitive capacity engagement. Research in the Teaching of English, 19(3), 283-297.
Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. doi:10.1145/245108.245121
Rodley, E. (2011). Looking around v.s. looking down: Incorporating mobility into your experience design. In N. Procto (Ed.), Mobile apps for museums: The AAM guide to planning and strategy (pp. 34-41). Washington, DC: The AAM Press.
Rossi, S., Barile, F., Improta, D., & Russo, L. (2016). Towards a collaborative filtering framework for recommendation in museums: From preference elicitation to group's visits. Procedia Computer Science, 98, 431-436. doi:10.1016/j.procs.2016.09.067
Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The adaptive web: Methods and strategies of web personalization (pp. 291-324). Berlin, Germany: Springer.
Sinha, M. (2015). Google Glass in medical environment. Retrieved from https://www.researchgate.net/profile/Mohit_Sinha8/publication/283854268_Google_Glass_in_Medical_Environment/links/56489c8608ae54697fbe2655.pdf
Skydsgaard, M. A., Møller Andersen, H., & King, H. (2016). Designing museum exhibits that facilitate visitor reflection and discussion. Museum Management and Curatorship, 31(1), 48-68. doi:10.1080/09647775.2015.1117237
Sparacino, F. (2002, April). The museum wearable: Real-time sensor-driven understanding of visitors' interests for personalized visually-augmented museum experiences. Paper presented at the Museums and the Web, Boston, MA.
Statista. (2017). Wearable device unit sales worldwide by region from 2015 to 2021 (in millions). Retrieved from https://www.statista.com/statistics/490231/wearable-devices-worldwide-by-region/
Stephanidis, C. (2012). Human factors in ambient intelligence environments. In G. Salvendy (Ed.), Handbook of Human Factors and Ergonomics (4th ed., pp. 1354-1373). Hoboken, NJ: Wiley.
Sun, J. C.-Y. (2014). Influence of polling technologies on student engagement: An analysis of student motivation, academic performance, and brainwave data. Computers & Education, 72, 80-89. doi:10.1016/j.compedu.2013.10.010
Sun, J. C.-Y., & Rueda, R. (2012). Situational interest, computer self-efficacy and self-regulation: Their impact on student engagement in distance education. British Journal of Educational Technology, 43(2), 191-204. doi:10.1111/j.1467-8535.2010.01157.x
Sun, J. C.-Y., & Yu, S.-J. (2019). Personalized wearable guides or audio guides: An evaluation of personalized museum guides for improving learning achievement and cognitive load. International Journal of Human-Computer Interaction, 35(4-5), 404-414. doi:10.1080/10447318.2018.1543078
Sung, H.-Y., Hwang, G.-J., Liu, S.-Y., & Chiu, I.-h. (2014). A prompt-based annotation approach to conducting mobile learning activities for architecture design courses. Computers & Education, 76, 80-90. doi:10.1016/j.compedu.2014.03.015
Sung, Y.-T., Chang, K.-E., Hou, H.-T., & Chen, P.-F. (2010). Designing an electronic guidebook for learning engagement in a museum of history. Computers in Human Behavior, 26, 74-83. doi:10.1016/j.chb.2009.08.004
Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295-312. doi:10.1016/0959-4752(94)90003-5
Sweller, J. (1999). Instructional design in technical areas. Camberwell, Australia: ACER Press.
Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22(2), 123-138. doi:10.1007/s10648-010-9128-5
Sweller, J. (2016). Cognitive load theory, evolutionary educational psychology, and instructional design. In D. C. Geary & D. B. Berch (Eds.), Evolutionary perspectives on child development and education (pp. 291-306). Basel, Switzerland: Springer.
Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296.
Taheri, B., Jafari, A., & O'Gorman, K. (2014). Keeping your audience: Presenting a visitor engagement scale. Tourism Management, 42, 321-329. doi:10.1016/j.tourman.2013.12.011
Tarus, J. K., Niu, Z., & Mustafa, G. (2018). Knowledge-based recommendation: A review of ontology-based recommender systems for e-learning. Artificial Intelligence Review, 50(1), 21-48. doi:10.1007/s10462-017-9539-5
Taylor, C. (2013). Cognitive load theory sometimes less is more. i-Manager's Journal on School Educational Technology, 9(1), 61-68. doi:10.26634/jsch.9.1.2402
Tussyadiah, I. P., Jung, T. H., & tom Dieck, M. C. (2018). Embodiment of wearable augmented reality technology in tourism experiences. Journal of Travel Research, 57(5), 597-611. doi:10.1177/0047287517709090
Valente Klaine, P., Imran, M. A., Onireti, O., & Souza, R. D. (2017). A survey of machine learning techniques applied to self organizing cellular networks. IEEE Communications Surveys and Tutorials, 19(4), 2392-2431. doi:10.1109/COMST.2017.2727878
Van Merrienboer, J. J., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147-177. doi:10.1007/s10648-005-3951-0
Waltl, C. (2006, November). Museums for visitors: Audience development-A crucial role for successful museum management strategies. Paper presented at the International Committee on Management Conference, Taipei, ROC.
Wang, P.-Y., & Yang, H.-C. (2012). Using collaborative filtering to support college students’ use of online forum for English learning. Computers & Education, 59(2), 628-637. doi:10.1016/j.compedu.2012.02.007
Wang, T. I., Tsai, K. H., Lee, M.-C., & Chiu, T. K. (2007). Personalized learning objects recommendation based on the semantic-aware discovery and the learner preference pattern. Educational Technology & Society, 10(3), 84-105.
Wang, Y., Stash, N., Aroyo, L., Hollink, L., & Schreiber, G. (2009, October). Using semantic relations for content-based recommender systems in cultural heritage. Paper presented at the 2009 International Conference on Ontology Patterns, Washington, DC.
We Are Social, & Hootsuite. (2017). Digital in 2017 global overview. Retrieved from https://wearesocial.com/special-reports/digital-in-2017-global-overview
Wu, J.-H., Tennyson, R. D., & Hsia, T.-L. (2010). A study of student satisfaction in a blended e-learning system environment. Computers & Education, 55, 155-164. doi:10.1016/j.compedu.2009.12.012
Wu, P.-H., Hwang, G.-J., Yang, M.-L., & Chen, C.-H. (2018). Impacts of integrating the repertory grid into an augmented reality-based learning design on students’ learning achievements, cognitive load and degree of satisfaction. Interactive Learning Environments, 26(2), 221-234. doi:10.1080/10494820.2017.1294608
Wu, T., Dameff, C., & Tully, J. (2014). Integrating Google Glass into simulation-based training: Experiences and future directions. Journal of Biomedical Graphics and Computing, 4(2), 49-54. doi:10.5430/jbgc.v4n2p49
Xiao, J., Wang, M., Jiang, B., & Li, J. (2018). A personalized recommendation system with combinational algorithm for online learning. Journal of Ambient Intelligence and Humanized Computing, 9(3), 667-677. doi:10.1007/s12652-017-0466-8
Yu, S.-J., Sun, J. C.-Y., & Chen, O. T.-C. (2019). Effect of AR-based online wearable guides on university students' situational interest and learning performance. Universal Access in the Information Society, 18(2), 287-299. doi:10.1007/s10209-017-0591-3
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關書籍
 
無相關著作
 
QR Code
QRCODE