:::

詳目顯示

回上一頁
題名:電腦動畫促進中學生「燃燒」微觀粒子概念發展之研究
作者:張容君
作者(外文):Rong-Chun Chang
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:張惠博
學位類別:博士
出版日期:2010
主題關鍵詞:燃燒微觀粒子概念發展combustionparticulateconceptual development
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:38
摘要
Siegler(1996)指出概念相關的研究應著重於概念發展的動態過程。目前教師教學多以Bruner的螺旋式課程方式編排,亦即透過重覆學習而加強認知,本研究採用多重診斷的觀點,配合傳統教學方式,將學生學習「燃燒」相關概念的歷程,畫分成三個階段,包括第一階段傳統教學前、第二階段傳統教學後和第三階段動畫教學後,在學生完成第二階段學習,並對學習內容有所認知後,再以動畫教學的方式提供學生學習,並逐次探討學生在學習歷程中,學習「燃燒」相關概念理解的動態過程。
本研究採質、量並重的研究設計。在量化研究方面,包含「燃燒」二段式診斷測驗工具和11份「燃燒」相關概念試卷。在質性研究方面,則包含針對學生概念圖和試卷的作答內容進行晤談,以釐清學生的想法。本研究的個案是台南縣立一所國民中學二年級的一個班級,共計37位學生。為了進一步瞭解國二學生「燃燒」相關概念理解情形,並分析學生概念理解和概念應用的微觀粒子認知層次之一致性,以描述學生在不同學習階段,其「燃燒」概念的改變和發展狀況,本研究根據個案班級學生對「燃燒」相關概念理解和應用的認知層次差異,選擇在概念理解和應用兩方面具有各類型認知層次的4位代表學生,分別比對其質性和量化兩方面的資料,以描述4位學生在不同學習階段的概念改變和發展歷程。本研究的結論如后:一、不同學習階段學生在多數診斷題目上所呈現的主要迷思概念內容仍沒有改變,亦即第一階段教學前和第二、三階段教學後的主要迷思概念內容仍相同。二、學生以微觀粒子概念理解「燃燒」相關概念時,概念理解和概念應用的認知層次並不一致。相較於概念應用的階段,學生在概念理解的更能以微觀粒子觀點解釋「燃燒」相關概念。三、不同階段的學習成效比較發現,第二階段的傳統教學對「燃燒的條件」概念領域之學習效果較佳,而第三階段的動畫教學對「質量守恆」和「化學反應」概念領域的學習更有增進的成效。四、學生經不同階段學習「燃燒」概念的發展,是
從「燃燒」相關事例開始,再逐漸提升至較高階的「燃燒」概念。
Abstract
Based on the perspectives of multiple diagnoses, this study was aimed to investigate the differences of students’ conceptual understanding about “combustion” focusing on the first stage before the teaching, second stage after traditional teaching and third stage after animation teaching. The study methods included both quantitative and qualitative approaches. In the quantlifative phase, including the two-tier instrument and pencil and paper test and in the qualitative phase, including the interview, were administered to 37 8th graders to explore the nature of their conceptual understanding, conceptual change and conceptual development about combustion.
Along with different learning stages, analyzing the uniformity of particulate cognition level between the student concept understanding and the concept application is another essential impose of the research. Finally, cross validation of quantitative and qualitative data, four students who owned the different particulate cognition level were selected to describe their conceptual change and development about combustion. Major findings were as follows:
First, along with different learning stages, the students’ misconception resisted to change in the most diagnosis questions. It meant that the students kept the same misconception with different learning stages. Second, when the students used the particulate cognition level to understand the conception of combustion concept, the concept understanding and the concept application's cognition level was inconsistent. However, compared with the concept application, the student can use the particulate concept to explain the conception of combustion in most situations. Third, the second stage of traditional teaching has more influential effect on “the combustion terms”, but the third stage of animation teaching had better result on “mass conservation” and “chemical reaction”. Fourth, the different learning phase promoted the student to cognitive the conception of combustion from the instance to relevant concepts.
參考文獻
中文部份
王春源(1991)。物質變化相關概念診斷測驗工具之發展。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
王澄霞與楊永華(1985)。中小學科學課程中「物質的粒子概念」之研究。師大學報,30,481-516。
尹基勉(1999)。「原子結構」概念之建構式教學研究。國立台灣師範大學系所碩士論文,未出版,台北市。
史嘉章(2002)。發展二階層(two tiers)試題以探討國高中氣體迷思概念。國立台灣師範大學碩士論文,未出版,台北市。
李文德(2002)。國小學童「物質細微顆粒概念」學習之研究。屛師科學教育,15,41-53。
李宗薇(1991)。教學媒體與教育工學。台北:師大書苑有限公司。
李武勳(2000)。國中學生氣體壓力概念之教學成效探討。國立台灣師範大學系所碩士論文,未出版,台北市。
邱美虹(1993)。科學教科書與概念改變。科學教育月刊,第163期,2-8。
邱美虹(2000)。概念改變研究的省思與啟示。科學教育月刊,第8卷1期,1-34。new window
邱美虹(2002)。台灣地區中學生「粒子與化學平衡」概念之心智模式與成因之研究。行政院國家科學委員會專題研究計畫成果報告(報告編號:NSC91-2522-S-003-020),未出版。
邱美虹、傅化文(1993)。分子模型與立體化學的解題。科學教育期刊,1,161-188。new window
杜嘉玲(1999)。概念發展--古典論與聯結論。國立中正大學哲學研究所碩士論文,未出版,嘉義縣。
林小慧(2008)。微粒概念理解測驗之編製。測驗學刊,55,341-376。new window
林生傳(1996)。概念教學對概念發展的實驗效果-階次理論模式的概念教學實驗。國立高雄師範大學教育學系教育學刊,12,31-70。new window
林哲彥(1992)。我國國小學生氧化還原概念之研究(Ⅰ)。行政院國家科學委員會專題研究計畫成果報告(報告編號:NSC81-0111-S024-01-N),未出版。
林財庫(2004)。中小學生物質微粒模式之迷思概念的診斷工具和分析方法。科學教育學刊,12(2),183-218。new window
林財庫、林慧潔(2003)。高雄市國中小學生氣體迷思概念的認知類型、層次、頻率分佈及認知發展的分析研究。科學教育學刊,11 (3),297-330 。new window
林振霖(1993)。我國學生分子概念發展與診斷教學的研究(2):我國學生分子概念的發展之研究。彰化師範大學學報,4,337-398。
洪振方(1987)。學生空氣體積及壓力之粒子模型概念與推理能力之相關研究。國立台灣師範大學系所碩士論文,未出版,台北市。
張容君和張惠博(2007)。國中學生「燃燒」概念診斷之研究。科學教育學刊,15(6),671-701。
黃湘武、黃寶鈿(1985)。我國中小學生科學概念與推理能力發展之相關研究:(1)浮
力原理與粒子概念。行政院國家科學委員會專題研究計畫成果報告(報告編號:NSC74-0111-S-003-009),未出版。
黃寶鈿(1988)。我國學生科學概念與推理能力發展之相關研究:燃燒的化學及物理概念。行政院國家科學委員會專題研究計畫成果報告(報告編號:NSC 77-0111-S003-020-D),未出版。
許良榮、王瓏真(2003)。中小學生對物質「燃燒」的迷思概念之研究。科學教育研究與發展季刊,2003專刊,1-17。
許良榮、劉政華(2004)。中小學生之溶解概念的形成與發展。科學教育學刊,12(3),265-287。new window
許瑛玿(1999)。網路科技支援之電腦教學軟體對學生學習科學概念的影響。師大學報,科學教育類,44,1-16。
許榮富(1990)。科學概念發展與診斷教學合作研究計劃芻議。科學發展月刊,18(2),150-156。
莊雅茹(1996)。CAL軟體動畫介面設計。教學科技與媒體,28,13-18。new window
郭重吉、董正玲(1992)。利用晤談方式探究國小兒童運動與力學概念的另有架構。科學教育,第三期,92-123。
張春興(1991)。現代心理學。台北:東華書局。
張容君(2000)。發展二段式紙筆測驗探討國中學生燃燒概念之研究。國立高雄師範大學系所碩士論文,未出版,高雄市。
張國恩(1999)。資訊融入各科教學之內涵與實施。資訊與教育,72期,2-9。
教育部(2003)。九年一貫課程綱要。台北:教育部。
詹耀宗、邱鴻麟(2004)。以多元觀點探討中學生氧化還原迷失概念。高雄師範大學報,17,337-358。
廖焜熙(1999)。有機立體化學成就影響因素及解題模式之研究。國立台灣師範大學科學教育研究所博士論文,未出版,台北市。new window
鄭志鵬(1998)。探究高中學生之氣體概念及相關粒子概念。國立台灣師範大學化學研究所碩士論文,未出版,台北市。
蔡嘉興(2006)。從量子哲學觀探討概念理解本質之研究-以國三學生電流概念為例。國立高雄師範大學系所博士論文,未出版,高雄市。
謝志仁(1992)。國中學生化學變化相關概念另有架構之研究。國立彰化師大科學教育研究所碩士論文,未出版,彰化市。
謝秀月(1995)。師院非數理系學生熱與溫度概念架構之探討。國立台南師範學院學報, 28,479-507。new window
盧文顥(1991)。從粒子模型概念探討學生對於溶液概念之思考模式。國立台灣師範大學系所碩士論文,未出版,台北市。
鍾聖校(1994)。對科學教育錯誤觀念研究之省思。教育研究資訊,2(3),89-110。new window
蘇育任(2002)。國小學生原子/分子/與粒子的迷思概念及其成因之研究 (II)。行政院國家科學委員會專題研究計畫成果報告(報告編號:NSC90-2511-S-142-005),未出版。
魏明通(1995)。科學教育。台北:五南。

英文部分
Alao, S., & Guthrie, J. T. (1999). Predicting conceptual understanding with cognitive and motivational variables. The Journal of Educational Research, 92, 243–254.
Anderson, B. (1990). Pupils’ conception of matter and its transformation (age 12-16). Studies in Science Education, 18, 53-85.
Baek, Y. K., & Layne, B. H. (1988). Color, graphics, and animation in a computer-assisted learning tutorial lesson. Journal of Computer-Based Instruction, 15(4), 131-135.
Bar, V. (1990). The development of the conception of evaporation. Jerusalem: The Hebrew University of JerusalemPress, Israel.
Bar, V., & Travis, A. S. (1991). Children’s views concerning phase changes. Journal of Research in Science Teaching, 28(4), 363-382.
Barke, H. D., & Engida, T. (2001). Structural chemistry and spatial ability different cultures. Chemistry Education: Research and practice in Europe, 2(3), 227-239.
Bell, B. (1985). Students’ ideas about plant’ nutrition: What are they? Journal of Biological Education, 19(3), 213-318.
Benson, D. L., Wittrock, M. C., & Baur, M. E. (1993). Students’ preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(9), 587-597.
Borges, A. T., & Gilbert, J. K. (1999). Mental models of electricity. International Journal of Science Education, 21, 95-117.
Boujaoude, S. B. (1989). A study of conceptual change in junior high school science students during instruction about the concept of burning. UMI Document NO.8903612.
Briggs, M. W. (2004). A cognitive model of second-year organic students' conceptualizations of mental model rotation. Unpublished doctoral dissertation, Purdue University.
Briggs, M. W., & Bodner, G. M. (2005). A model of molecular visualization. In J. K. Gilbert (Ed.), Visualization in science education (pp. 61-73). Netherlands: Springer.
Buckley, B. C., & Boulter, C., J. (2000). Investigating the role of representations and expressed model in building mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education. Netherlands: Kluwer Academic Publishers.
Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: The MIT Press.
Chan, C., Burtis, J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15, 1–40.
Chen, C. C., Lin, H. S., & Lin, M. L. (2002). Developing a two-tier diagnostic instrument to assess high school students’ understanding- the formation of images by a plane mirror. Proceedings of the National Science Council, Part D: Mathematics, Science, and Technology Education, 12(3), 106-121.
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science(pp.129-186). Minneapolis, MN: University of Minnesota Press.
Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
Chiu, M. H. (2007). A national survey of students’ conceptions of chemistry in Taiwan. International Journal of Science Education, 29(4), 421-452.
Coll, R. K., & Treagust, D. F. (2003a). Investigation of secondary school, undergraduate, and graduate learners' mental models of ionic bonding. Journal of Research in Science Teaching, 40, 464-486.
Coll, R. K., & Treagust, D. F. (2003b). Learners' mental models of metallic bonding:A cross-age study. Science Education, 87, 685-707.
Dale, E. (1946). Audio-visual methods in teaching. New york: The Dryden Press.
de Boo, M., & Asoko, H. (2000). Using models, analogies and illustrations to help children think about science ideas. Primary Science Review, 65, 25-28.
Dekkers, J., & Domatti, S. (1981). The integration of research studies on the use of simulation as an instructional strategy. Journal of Educational Research, 74(6), 424-427.
de Vos, W., & Verdonk, A. H. (1996). The Particulate Nature of Matter in Science Education and in Science. Journal of Research in Science Teaching, 33(6), 657-664.
Driver, R. (1985). Beyond appearances:the conservation of matter under physical and chemical ransformations. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp.145-169). Philadelphia: Open University Press.
Driver, R., & Russell, J. (1982). An investigation in the idea of heat, temperature and change of state, of children between 8 and 14 years. Leeds: University of leeds.
Duit, R., & Treagust, D. F. (1998). Learning in science – from behaviourism towards social constructivism and beyond. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 3-25). UK: Kluwer Academic Publishers.
Duit, R., & Widodo, A. (2002). Conceptual change views and the reality of classroom practice. Paper presented at 3th European Symposium Conceptual Change. Turkey.
Ebenezer, J. V., & Erikson, G. L. (1996). Chemistry students’ concepts of solubility: A phenomenography. Science Education, 80(2), 181-201.
Engel-Clough, E., & Driver, R. (1986). A study of consistency in the use of students’ conceptual frameworks across different task contexts. Science Education, 70(4), 473-496.
Eilam, B. (2004). Drops of water and soap solution: Students' constraining mental models of the nature of matter. Journal of Research in Science Teaching, 41, 970-993.
Fensham, P. (2001). Science Content as Problematic- Issues for Research. In Berendt, H. (Eds.), Research in science education- pas, present and future(pp.27-41). Kluwer academic press.
Fensham, P. J., Gunstone, R. F., & White, R. T. (eds) (1994). The content of science: A construction approach to its teaching and learning. London: Falmer Press.
Fishman, B. J., & Duffy, T. M. (1992). Classroom restructuring: What do teachers really need? Education Technology. Research and Development, 40(3), 95-111.
Fox, D., & Waite, M. (1984). Computer animation primer. New York: McGraw-Hill Book Company.
Franco, C., & Colinvaux, D. (2000). Grasping mental model. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education(pp.93-118). Netherlands:Kluwer Academic Publishers.
Frey, M. L. (2005). Connectionist categorization of concepts. Retrieved January 11, 2006, from http://www.ikp.uni-bonn.de/kolloquium/frey.pdf
Gabel, D. L., Samuel, K. V., & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695- 697.
Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623-633.
Glazer, N., Ben-Zvi, R., & Hofstein, A. (1999, March). The gap between factual knowledge and conceptual understanding in learning the concept “chemical bonding.” Paper presented at the annual meeting of the National Association for Research in Science Teaching, Boston, MA.
Glynn, S. M., & Duit, R. (1995). Learning science meaningfully: Constructing conceptual model. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools:Research reforming practice(pp.3-33). Mahwah, NJ: Lawrence Erlbaum Associates.
Gómez, E. J., Benarroch, A., & Marín, N. (2006). Evaluation of the degree of coherence found in students’ conceptions concerning the particulate nature of matter. Journal of Research in Science Teaching, 43(6), 577-598.
Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22, 1-11.
Griffard, P. B., & Wandersee, J. H. (2001). The two-tier instrument on photosynthesis: What does it diagnose? International Journal of Science Education, 23(10), 1039–1052.
Haidar, A. H., & Abraham, M. R. (1991). A Comparison of applied and theoretical knowledge of concepts based on the particulate nature of matter. Journal of Research in Science Teaching, 28(10), 919-938.
Happs, J. (1980). Particles. Learning in Science Project. Working Paper No. 18. (ERIC Document Reproduction NO:ED235026)
Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: a case study of multiple-model use in Grade 11 chemistry. Science Education, 84, 352-381.
Hashweh, M. Z. (1988). Descriptive studies of students conceptions in science. Journal of Research in Science Teaching, 8(3), 229-249.
Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3, 383-396.
Hewson, P. W. (1996). Teaching for conceptual change. In D. F. Treagust, R. Duit & B. J. Fraser (Eds.), Improving teaching & learning in science and mathematics(pp.131-140). NY:Cambridge University Press.
Hewson, P. W., & Hewson, M. G. (1992). The status of students' conceptions. In R. Duit, F. Goldberg & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies(pp.203-224). Proceedings of an international workshop hold at the University of Bremen, March, 1991 : Kiel: IPN.
Herron (1996). The Chemistry Classroom: Formula for Student Teaching. American Chemical Society Press.
Hesse, J. J., & Anderson, C. W. (1992). Students’ conception of chemical change. Journal of Research in Science Teaching, 29(3), 277-299.
Jang, N. H. (2003). Developing and validating a chemical bonding instrument for Korean high school students. Unpublished doctoral dissertation, University of Missouri-Columbia.
Keil, F. (1999). Conceptual change. In R. A.Wilson & F. C. Keil (1999). The MIT Encyclopedia of the Cognitive Sciences. The MIT Press, Cambridge, MA.
Kesidou, S., & Roseman, J. E. (2002). How well do middle school science programs measure up? Findings from project 2061’s curriculum review. Journal of Research in Science Teaching, 39(6), 522 – 549.
Krueger, R., & Casey, M. A. (2000). Focus group. London: Sage.
Klausmeier, H. J., Ghatala, E. S., & Frayer, D. A. (1974). Conceptual Learning and Development: A Cognitive View. London: Academic Press.
Krajcik, J. S. (1989). Students’ interactions with science software containing dynamic visuals. In M. Eisenhart & J. G. Goetz (Chairs), Meanings of science and technology in schools and communities. Symposium conducted at the 88th annual meeting of the American Anthropological Association, Washington, D.C.
Krajcik, J. S. (1991). Developing students' understanding of chemical concepts. In S. M. Glynn, R. H. Yeany & B. K. Brutton (Eds.), The psychology of learning science (pp. 117-147). Hillsdale, NJ: Lawrence Erlbaum Associates.
Law, C. K. & Shih, T. S. (1996). Students’ performance in learning Calculus with computers. Proceedings of NSC, part D, 6(1), 1-8.
Levy Nahum, T., Hofstein, A., Mamlok-Naaman, R., & Bar-Dov, Z. (2004). Can final examinations amplify students’ misconceptions in chemistry? Chemistry Education: Research and Practice in Europe, 5(3), 301–325.
Linder, C. J. (1993). A challenge to conceptual change. Science Education, 77, 293-300.
Lee, J. (1999). Effectiveness of Computer-based instruction simulation:A meta-analysis. International Journal of Instructional Media, 26(1), 71-85.
Lythcott, J. (1990). Problem solving and requisite knowledge of chemistry. Journal of Chemical Education, 67(3), 248–252.
Mathewson, J. H. (1999). Visual-spatial thinking: An aspect of science overlooked by educators. Science Education, 83, 33-54.
Meheut, M., Saltiel, E. & Tiberghien. (1985). Pupils’ (11-12 years old) conceptions of combustion. Europeanan of Journal Science Education, 7(1), 83-93.
Mintzes, J. J., Novak, J. D., & Wandersee, J. H. (1998). Teaching science for understanding : A human constructivist view. San Diego: Academic Press.
Mintzes, J. J., Wandersee, J. H., & Novak, J. D. (2000). Assessing Science Understanding: A Human Constructivist View. San Diego: Academic Press.
Mortimer, E. F. (1995). Conceptual change or conceptual profile change? Science & Education, 4, 267-285.
Nakhleh, M. B., & Samarapungavan, A. (1999). Elementary school children’s beliefs about matter. Journal of Research in Science Teaching, 36(7), 777-805.
Newell, A. (1982). The knowledge level. Artificial Intelligence, (34), 87-127.
Nieswandt, M. (2001). Problems and possibilities for learning in an introductory chemistry course from a conceptual change perspective. Science Education, 85, 158-179.
Novak, J. D. (1990). Concept Mapping: A Useful Tool for Science Education. Journal of Research in Science Teaching, 27, 937-949.
Novak, J. D. (1998). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. Mahwah, New Jersey: Lawrence Erlbaum Associates.
Novick, S., & Nussbaum, J. (1978). Junior high school pupils’ understanding of the particulate nature of matter: an interview study. Science Education, 62(3), 273-281.
Novick, S., & Nussbaum, J. (1981). Pupils’ understanding of the particulate nature of matter : A cross-age study. Science Education, 65(2), 187-196.
Paivio, A. (1986). Mental representations: A dual coding approach Mental representations: a dual coding approach. Oxford. England: Oxford University Press.
Paris, S.G., Cross, D.R., & Lipson, M. Y. (1984). Informed strategies for learning: A program to improve children’s reading awareness and comprehension. Journal of Educational Psychology, 76, 1239–1252.
Park, O., & Gittelman, S. (1992). Selective use of animation and feedback in computer-based instruction. Educational Technology Research & Development, 42(4), 27-38.
Peterson, R. F., Treagust, D. F., & Garnett, P. (1989). Development and application of a diagnostic instrument to evaluate grade-11 and -12 students' conceptions of covalent bonding and structure following a course of instruction. Journal of Research in Science Teaching, 26, 301-314.
Piaget, J. (1930). The child’s conception of physical causality. New York: Harcourt Brace.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.
Pfundt, H. (1982). Pre-instructional conceptions about transformations of substances (Report No. IPN-RR-82-0). Kiel, West Germany: Institut füer die Päedagogik der Naturwissenschaften. (ERIC Document Reproduction Service No. ED 229 235)
Rea-Ramirez, M. A., & Clement, J. (1998). In search of dissonance:The evolution of dissonance in conceptual change theory. (ERIC Document Reproduction Service No. ED417 985)
Rieber, L. (1989). The effects of computer animated elaboration strategies and practice on factual and application learning in an elementary science lesson. Journal of Educational Computing Research, 5, 431-444.
Rieber, L., & Hannafin, M. (1988). Effects of textual and animated orienting activities and practice on learning from computer-based instruction. Computers in the schools. 5(12), 77-89.
Roblyer, M. D., Edwards, J., & Havriluk, M. A. (1997). Integration educational technology into teaching. Columbus, OH: prentice.
Ross, K. (1991). Burning: a constructive not a destructive process. School Science Review, 72(251), 39-49.
Rumelhart, D. E., & Norman, D. A. (1981). Accretion, tuning and restructuring: Three modes of learning. In R. Klatsky & J. W. Cotton (Eds.), Semantic factors in cognition (pp.136-158). Hillsdale, NJ: Lawrence Erllbaum Associates.
Salloum, S., & Abd-El-Khalick, F. (2004). Relationships between selective cognitive variables and students’ ability to solve chemistry problems. International Journal of Science Education, 26(1), 63 – 84.
Schollum, B. (1981a). Chemical change. Learning in Science Project. Working Paper No.10. (ERIC Document Reproduction NO: ED236010).
Schollum, B. (1981b). Burning. Learning in Science Project. Working Paper No.36. (ERIC Document Reproduction NO: ED236019).
Schollum, B. (1982). Reaction. Learning in Science Project. Working Paper No.37. (ERIC Document Reproduction NO: ED236020).
Scott, P. H. (1992). Pathways in learning science: A case study of the development of one student's ideas relating to the structure of matter. In R. Duit, F. Goldberg & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies. Proceedings of an international workshop hold at the University of Bremen, March, 1991 (pp. 203-224). Kiel: IPN.
Selley, N. J. (1981). Children’s Understanding of Atoms and Molecules. Kingston: Kingston Polytechnic.
Se're', M. G. (1986). Children’s conceptions of the gaseous state, prior to teaching. European Journal of Science Education, 8(4), 413-425.
She, H.-C. (2002). Concepts of a higher hierarchical level require more dual situated learning events for conceptual change: a study of air pressure and buoyancy. International Journal of Science Education, 24, 981-996.
She, H.-C. (2004). Fostering radical conceptual change through dual-situated learning model. Journal of Research in Science Teaching, 41, 142-164.
Siegler, R. S. (1996). Emerging mind: The process of change in children’s thinking. Oxford University Press.
Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, Mass: Harvard University press.
Spalding, T. L. & Ross, B. H. (1994). Comparison-based learning: Effects of comparing instances during category learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 20, 1251-1263.
Stavridou, H., & Somonidou, C. (1989). Physical phenomena-Chemical phenomena: do pupils make the distinction? International Journal of Science Education, 11(1), 83-92.
Stavy, R. (1988). Children’s conception of gas. International Journal of Science Education, 10(5), 553-560.
Stieff, M., Bateman, R., & Uttal, D. (2005). Teaching and learning with threedimensional representations. In J. K. Gilbert (Ed.), Visualization in science education (pp. 93-121). Netherlands: Springer.
Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147-176). Albany, NY: State University of New York Press.
Taagepera, M., Arasasingham, R., Potter, F., Soroudi, A., & Lam, G. (2002). Following the development of the bonding concept using knowledge space theory. Journal of Chemical Education, 79(6), 756-762.
Taber, K. S. (2001). Shifting sands: a case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23, 731-753.
Taber, K. S. (2002a). Chemical misconception - Prevention, diagnosis and cure: Volume I: Theoretical background. London: Royal Society of Chemistry.
Taber, K. S. (2003b). Understanding ionisation energy: Physical, chemical, and alternative conceptions. Chemical Education: Research and Practice in Europe, 4, 149-169.
Talley, L. Y. (1973), The use of three-dimensional visualization as a moderator in the higher cognitive learning of concepts in college level chemistry. Joural of Research in Science Teaching, 10(3), 263-269.
Tan, K-C., & Treagust, D. F. (1999). Evaluating students' understanding of chemical bonding. School Science Review, 81, 75-83.
Tao, P. K. (1996). Conceptual change, collaboration and the computer: learning introductory mechanics. Unpublished Ph.D. thesis. Monash University.
Tao, P. K., & Gunstone, R. F. (1997). The process of conceptual change in force and motion. Paper given at meeting of the American Educational Research. March. Chicago.
Teichert, M., & Stacy, A. (2002). Promoting understanding of chemical bonding and spontaneity through student explanation and integration of ideas. Journal of Research in Science Teaching, 39(6), 464 – 496.
Treagust, D. F. (1995). Diagnostic assessment of students' science knowledge. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice(pp.327-346). Mahwah, NJ: Lawrence Erlbaum Associates.
Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169.
Treagust, D. F., & Chandrasegaran, A. L. (2007). The Taiwan national science concept learning study in an international perspective. International Journal of Science Education, 29, 391-403.
Tsai C.C. & Chou C. (2002). Diagnosing students’ alternative conceptions in science. Journal of Computer Assisted Learning, 18, 157-165.
Tsai, C. C., & Chou, Y. R. (2005). The role of “core” and “anchored” concepts in knowledge recall:A study of knowledge organization of learning thermal physics. Knowledge Organization, 32, 143-158. (NSC 91-2511-S-009-008).
Tsai, C. H., & Chou, C. Y. (2006a). Conceptual change based on the development of conceptual categories: The change in Taiwanese eighth graders’ concept of mass. Paper presented at 5th European Symposium Conceptual Change. European. Association for Reaearch on Learning and Instruction. Stockholm, Sweden.
Tsai, C. W., & Chou, C. Y. (2006b). Conceptual construction as the development of conceptual categories: The study on the concept about mass for Taiwanese eighth graders. Paper presented at East-Asian Association of Science Education & Annual Project Meeting for the Year 2005 of NSC. Department of Science Education of National Science Council, Taiwan.
Tsai, C. H., Chen, H. Y., & Chou, C. Y. (2006). What does it diagnose? The alternative conceptions on the diagnosis of students’ conceptual understanding. Paper presented at 1st International Conference on SENS, Nove mber 16-18, Seoul.
Tsai, C. H., Chen, H. Y., Chou, C. Y., & Lain, K. D. (2007). Current as the key concept of Taiwanese students understanding on electric circuits. International Journal of Science Education, 29(4), 483-496.
Tsai, C. H., Lain, K. D., & Chou, C. Y. (2003). A Study on Misconceptions of Magnetic Effect of Current for Ninth Graders. Paper presented at the International Conference on Science & Mathematics Learning, December 16-18, Taipei.
Tyson, L. M., Venville, G. J., Harrison A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387-404.
Tytler, R. (1998). Children’s conceptions of air pressure: exploring the nature of conceptual change. International Journal of Science Education, 20(8), 929-958.
Vinner, S. (1997). The pseudo-conceptual and the pseudo-analytical thought processes in mathematics learning. Educational Studies in Mathematics, 34, 97 – 129.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.
Vosniadou, S. (2003). Exploring the relationships between conceptual change and intentional learning. In G. M. Sinatra & P. R. Printrich (Eds.), Intentional conceptual change (pp. 377-406). Mahwah, NJ: Lawrence Erlbaum Associates.
Vosniadou, S., & Brewer, W. (1992). Mental models of the Earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. International Journal of Science Education, 20, 1213-1230.
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. L. Gabel (ed.), Handbook of Research on Science Teaching and Learning (pp.177-210). New York: Macmillan.
White, R., & Gunstone, R. (1992). Probing Understanding. London: The Falmer Press.
Woolfolk, A. E. (1993). Education Psychology, 5th ed. Boston: Allyn & Bacon, 459-463.
Williamson, V. M., & Abraham, M R. (1995). The effects of Computer Animation on the Particulate Mental Models of College Chemistry Students. Journal of Research in Science Teaching. 32(5), 521-534.
Zhang, D., Zhao, J. L., Zhou, L., & Nunamaker Jr, J. F. (2004). Can E-learning Replace Classroom Learning? Communication of The ACM, Vol. 47. No. 5, 75-79. Retrieved January 25, 2005, from database on the World Wide Web: http://www.ebsco.com

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE