:::

詳目顯示

回上一頁
題名:系統基模教學策略對修正高中學生力的迷思概念及增進描繪力圖能力影響之研究
作者:蔡興國
作者(外文):Hsing-Kuo Tsai
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:張惠博
陳錦章
學位類別:博士
出版日期:2012
主題關鍵詞:力的概念力圖系統基模概念改變the concept of forceforce diagramsystem schemaconceptual change
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:52
本研究旨在發展系統基模的教學策略,並以實徵性研究探究系統基模教學策略對高中學生力的概念理解、力的迷思概念改變及描繪力圖能力的影響,此外亦探討學生對系統基模的接受度。本研究以量為主質為輔,研究設計採準實驗研究法輔以半結構式晤談。實驗組為研究者任教之高二學生48人,進行系統基模教學,授課教材除教科書外,尚包括系統基模簡介及學習單,著重定性分析系統受力的訓練;對照組則為另一位教師任教之高二學生49人,進行傳統講述式教學,授課教材則僅有教科書,著重定量解題的訓練。晤談對象採立意取樣,從實驗組學生中分別選取10位進行力的概念晤談,及11位進行力圖晤談,俾瞭解系統基模教學策略對高中學生力的概念理解、力的迷思概念改變及描繪力圖能力的影響。研究工具計有「力的概念測驗」、「力的概念測驗晤談大綱」、「力圖描繪測驗」、「力圖描繪測驗晤談大綱」及「系統基模表徵工具接受度調查問卷」等五項。研究結果顯示:1.系統基模教學策略有助於提升學生力的概念理解、改變學生力的迷思概念及增進學生描繪力圖能力;2.多數學生認為系統基模有助於概念學習及繪製力圖;3.力的概念理解程度愈低的學生,經系統基模教學後,力的概念進步幅度愈大;4.多數學生遇到不熟悉的力學題目,才會使用系統基模解題。
The purpose of this study was to develop a system schema teaching strategy, and to explore the influence of this strategy on improving the high school students’ conceptions of force, correcting their misconceptions of force, and enhancing their drawing ability of force diagrams. In addition, the students’ acceptance of the system schema was also investigated. Quasi-experimental research method and semi-structured interview were implemented in the study. The subjects consisted of two classes of 11th graders. The researcher’s class consisting of 48 students was the experimental group that received the system schema instruction. Instructional materials included the introduction and working sheets of the system schema in addition to the physics textbook. The training of analyzing the force on system qualitatively was stressed in the experimental group. Another teacher’s class consisting of 49 students, the control group, received the traditional expository instruction. Instructional materials included only the physics textbook. The training of solving quantitative problems was stressed in the control group. Interviews with 10 students on the conceptions of force and 11 students on the force diagrams from the experimental group were conducted respectively to understand the influence of the teaching strategy on improving students’ conceptions of force, correcting their misconceptions of force, and enhancing the drawing ability of force diagrams. The research tools included “the Force Concept test”, “the outline of the interview on the Force Concept test”, “the Force Diagram test”, “the outline of the interview on the Force Diagram test”, and “the System Schema Acceptance questionnaire”.The results of the study were as follows: (1) System schema teaching strategy can improve the high school students’ conceptions of force, correct their misconceptions of force, and enhance the drawing ability of force diagrams; (2) Most students who received the system schema instruction thought system schemas could help to learn the concepts of force and draw force diagrams; (3) The lower students scored on the Force Concept pretest, the larger they made progress on the Force Concept learning through the system schema instruction; (4) Most students used system schemas to solve problems only when they encountered unfamiliar problems.
一、中文部分
左台益、蔡志仁(2001)。高中生建構橢圓多重表徵之認知特性。科學教育學刊,9,281-297。new window
林明瑞、張仁昌、劉國棟、劉怡君(2000)。普通高級中學物理上冊。台南市:南一書局企業股份有限公司。
邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8,1-34。new window
邱韻如(2006a)。大一普物教學的迷思之我見我思。物理雙月刊,28,554-562。
邱韻如(2006b)。從學生對牛頓第三定律的迷思概念探討教學上的一些問題。劉湘瑤(主持人),多元素養與科學教育。中華民國第22屆科學教育學術研討會,國立臺灣師範大學公館校區。
邱韻如(2008)。自由落體主題教學探討及其教材教法發展模式。物理教育學刊,9,69-84。
金尚年(1989)。古典力學。台北市:亞東書局。
姚衍、張嘉泓、施華強、李崇賢、鍾彩霞、陳東閔(2008)。普通高級中學物理(上)。台南市:翰林出版事業股份有限公司。
張春興、林清山(1995)。教育心理學。台北市:東華書局。
張慧貞(2007)。創新物理教材教法:理論與錦囊。台中:逢甲大學出版社。
陳瓊森(1998)。從建構主義觀點談概念形成及概念轉變。「國民中學學生概念學習學術研討會」發表之論文,國立台灣大學。
黃永和(1997)。「教學表徵」-教師教學的法寶。國教世紀,178,17-24。
褚德三、蔣亨進、蔡尚芳、沈清嵩、徐國城、楊樹基(2007a)。普通高級中學物理(上)。新北市:龍騰文化事業股份有限公司。
褚德三、蔣亨進、蔡尚芳、沈清嵩、徐國城、楊樹基(2007b)。普通高級中學物理(下)。新北市:龍騰文化事業股份有限公司。
劉嘉茹、侯依伶(2004)。國三學生板塊構造運動概念學習之心智狀態研究。科學教育學刊,12,399-420。new window
蔡興國(2011)。使用系統基模協助學生描繪正確力圖之探討。科學教育月刊,341,13-26。
蔡興國、陳錦章、張惠博(2010)。高中學生解題歷程之力圖表徵與列式關係之研究。科學教育學刊,18,155-175。new window
鍾聖校(1995)。國小自然科課程教學研究。台北市:五南圖書出版公司。

二、西文部分
Ainsworth, S. E. (1999). The functions of multiple representations. Computer &; Education, 33(2/3), 131-152.
Berg, T., &; Brouwer, W. (1991). Teacher awareness of student alternative conceptions about rotational motion and gravity. Journal of Research in Science Teaching, 28(1), 3-18.
Brown, D. E. (1992). Using examples and analogies to remediate misconceptions in physics: Factor influencing conceptual change. Journal of Research in Science Teaching, 29(1), 17-34.
Champagne, A. B., Gunstone, R. F., &; Klopfer, L. E. (1982). A perspective on the differences between expert and novice performance in solving physics problems. Research in Science Education, 12(1), 71-77.
Chee, C. T. (1989). Misconceptions concerning laws of motion, frictional force and work done among students of different abilities at upper secondary level. Retrieved from ERIC database. (ED309950)
Chi, M. T. H., Slotta, J. D., &; de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
Clement, J. (1982). Students’ preconceptions in introductory mechanics. American Journal of Physics, 50(1), 66-71.
Court, J. E. (1993). Free-body diagrams. The Physics Teacher, 31(2), 104-108.
Court, J. E. (1999a). Free-body diagrams revisited-Ⅰ. The Physics Teacher, 37(7), 427-433.
Court, J. E. (1999b). Free-body diagrams revisited-Ⅱ. The Physics Teacher, 37(8), 490-495.
Davis, F. D., Bagozzi, R. P., &; Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical model. Management Science, 35(8), 982-1003.
DeVellis, R. F. (1991). Scale development: Theory and applications. Newbury Park, CA: Sage.
Driver, R., Guesne, E., &; Tiberghien, A. (1985a). Children's ideas and the learning of science. In R. Driver, E. Guesne, &; A. Tiberghien (Eds.), Children's ideas in science (pp. 1-9). Milton Keynes, England: Open University.
Driver, R., Guesne, E., &; Tiberghien, A. (1985b). Some features of children’s ideas and their implications for teaching. In R. Driver, E. Guesne, &; A. Tiberghein (Eds.), Children’s ideas in science (pp. 193-201). Milton Keynes, England: Open University.
Dufresne, R. J., Gerace, W. J., &; Leonard, W. J. (1997). Solving physics problems with multiple representations. The Physics Teacher, 35(5), 270-275.
Enderstein, L. G., &; Spargo, P. E. (1996). Beliefs regarding force and motion: A longitudinal and cross‐cultural study of South African school pupils. International Journal of Science Education, 18(4), 479-492.
Finegold, M. &; Gorsky, P. (1991). Students’ conceptions of force as applied to related physical systems: A search for consistency. International Journal of Science Education, 13(1), 97-113.
Fischbein, E., Stavy, R., &; Ma-Naim, H. (1989). The psychological structure of naive impetus conceptions. International Journal of Science Education, 11(1), 71-81.
Fishbein, M., &; Ajzen, I. (1975). Beliefs, attitude, intentions, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
Fisher, K. (1999). Exercises in drawing and utilizing free-body diagrams. The Physics Teacher, 37(7), 434-435.
Fisher, K. M. (1985). A misconception in biology: Amino acids and translation. Journal of Research in Science Teaching, 22(1), 53-62.
French, A. P. (1971). Newtonian mechanics. New York, NY: Norton.
Galili, I., &; Kaplan, D. (1996). Students’ operations with the weight concept. Science Education, 80(4), 457-487.
Giancoli, D. C. (2000). Physics for scientists &; engineers (3rd ed.). Upper Saddle River, NJ: Prentice-Hall.
Gunstone, R., &; Watts, M. (1985). Force and motion. In R. Driver, E. Guesne, &; A. Tiberghein (Eds.), Children’s ideas in science (pp. 85-104). Milton Keynes, England: Open University.
Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64-74.new window
Halliday, D., Resnick, R., &; Walker, J. (2001). Fundamentals of physics (6th ed.). New York, NY: John Wiley &; Sons.
Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041.
Halloun, I., &; Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043-1055.
Heller, P., Keith, P., &; Anderson, S. (1992). Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving. American Journal of Physics, 60(7), 627-636.
Hestenes, D. (1995). Modeling software for learning and doing physics. In C. Bernardini, C. Tarsitani, &; M. Vincentini (Eds.), Thinking physics for teaching (pp. 25-66). New York, NY: Plenum.
Hestenes, D. (1996). Modeling method for physics teachers. In E. F. Redish &; J. S. Rigden (Eds.), The changing role of physics departments in modern universities (pp. 935-958). College Park, MD: AIP.
Hestenes, D., Wells, M., &; Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30(3), 141-158.
Jiménez, J. D., &; Perales, F. J. (2001). Graphic representation of force in secondary education: Analysis and alternative educational proposals. Physics Education, 36(3), 227-235.
Kelley, T. L. (1939). The selection of upper and lower groups for the validation of test item. Journal of Educational Psychology, 30(1), 17-24.new window
Maloney, D. P. (1990). Forces as interactions. The Physics Teacher, 28(6), 386-390.
Mattson, M. (2004). Getting students to provide direction when drawing free-body diagrams. The Physics Teacher, 42(7), 398-399.
Meriam, J. L., &; Kraige, L.G. (2003). Engineering mechanics. New York, NY: Wiley.
Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York, NY: McGraw-Hill.
Oliva, J. M. (1999). Structural patterns in students’ conceptions in mechanics. International Journal of Science Education, 21(9), 903-920.
Palmer, D. (2001). Students’ alternative conceptions and scientifically acceptable conceptions about gravity. International Journal of Science Education, 23(7), 691-706.
Palmer, D. H., &; Flanagan, R. B. (1997). Readiness to change the conception that “motion-implies-force”: A comparison of 12-year-old and 16-year-old students. Science Education, 81(3), 317-331.
Perkins, D. N. (1993). Person-plus: A distributed view of thinking and learning. In G. Salomon (Ed.), Distributed cognitions: Psychological and educational Considerations (pp. 88-109). New York, NY: Cambridge University.
Plotzner, R. (1994). The integrative use of qualitative and quantitative knowledge in physics problem solving. Frankfurt, Germany: Peter Lang.
Posner, G. J., Strike, K. A., Hewson, P. W., &; Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
Puri, A. (1996). The art of free-body diagrams. Physics Education, 31(3), 155-157.
Reif, F. (1995). Millikan Lecture 1994: Understanding and teaching important scientific thought processes. American Journal of Physics, 63(1), 17-32.
Roth, K. J. (1991). Reading science texts for conceptual change. In C. M. Santa &; D. E. Alvermann (Eds.), Science learning: Processes and applications (pp. 48-63). Newark, DE: International Reading Association.
Roth, W. M., McRobbie, C. J., Lucas, K. B., &; Boutonne, S. (1997). Why may students fail to learn from demonstrations? A social practice perspective on learning in physics. Journal of Research in Science Teaching, 34(5), 509-533.
Sadanand, N., &; Kess, J. (1990). Concepts in force and motion. The Physics Teacher, 28(8), 530-533.
Savinainen, A., &; Scott, P. (2002). The force concept inventory: A tool for monitoring student learning. Physics Education, 37(1), 45-52.
Savinainen, A., Scott, P., &; Viiri, J. (2005). Using a bridging representation and social interactions to foster conceptual change: Designing and evaluating an instructional sequence for Newton’s third law. Science Education, 89(2), 175-195.
Scott, P. H., Asoko, H. M., &; Driver, R. H. (1992). Teaching for conceptual change: A review of strategies. In R. Duit, F. Goldberg, &; H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical issues and empirical studies (pp. 310-329). Kiel, Germany: University of Kiel.
Sequeira, M., &; Leite, L. (1991). Alternative conceptions and history of science in physics teacher education. Science Education, 75(1), 45-56.
Terry, C., &; Jones, G. (1986). Alternative frameworks: Newton's third law and conceptual change. European Journal of Science Education, 8(3), 291-298.
Thijs, G. D. (1992). Evaluation of an introductory course on “force” considering students’ preconceptions. Science Education, 76(2), 155-174.
Thornton, R. K., &; Sokoloff, D. R. (1998). Assessing student learning of Newton’s laws: The force and motion conceptual evaluation and the evaluation of active learning laboratory and lecture curricula. American Journal of Physics, 66(4), 338-351.
Trumper, R., &; Gorsky, P. (1997). A survey of biology students’ conceptions of force in preservice training for high school teachers. Research in Science and Technological Education, 15(2), 133-147.
Turner, L. (2003). System schemas. The Physics Teacher, 41(7), 404-408.
Van Heuvelen, A. (1991). Learning to think like a physicist: A review of research-based instructional strategies. American Journal of Physics, 59(10), 891-897.
Van Heuvelen, A., &; Zou, X. (2001). Multiple representations of work-energy processes. American Journal of Physics, 69(2), 184-194.
Vosniadou, S., &; Brewer, W. F. (1987). Theories of knowledge restructuring in development. Review of Educational Research, 57(1), 51-67.
Whiteley, P. (1996). Using free body diagrams as a diagnostic instrument. Physics Education, 31(5), 309-313.
Wilson, J. D., &; Buffa, A. J. (2000). College physics (4th ed.). Upper Saddle River, NJ: Prentice-Hall.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE